
Development

Kernel modules

Kernel Lists

Synchronization

Timing

The Linux Kernel

Luca Abeni, Claudio Scordino

Copyright c©2006 Claudio Scordino, All rights reserved 1/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Outline

1 Development

2 Kernel modules

3 Kernel Lists

4 Synchronization

5 Timing

Copyright c©2006 Claudio Scordino, All rights reserved 2/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

The Kernel Source Tree

About 16,000 source files

Main directories in the kernel source:

arch/ Architecture-specific code
Documentation/ Kernel source documentation
drivers/ Device drivers
fs/ File systems
include/ Kernel headers
kernel/ Core

net/ Networking

Copyright c©2006 Claudio Scordino, All rights reserved 3/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Differences wrt normal user-space applications

Not a single entry point: a different entry point for any
type of interrupt recognized by the kernel

No memory protection

No control over illegal memory access

Synchronization and concurrency are major concerns

Susceptible to race conditions on shared resources!
Use spinlocks and semaphores.

No libraries to link to

Never include the usual header files, like <stdio.h>

A fault can crash the whole system

No debuggers

Small stack: 4 or 8 KB

Do not use large variables
Allocate large structures at runtime (kmalloc)

No floating point arithmetic

Copyright c©2006 Claudio Scordino, All rights reserved 4/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Programming language

Like all Unix-like OSs, Linux is coded mostly in C

No access to the C library

No printf: use printk:
printk(KERN ERR "This is an error!");

Not coded in ANSI C

Both ISO C99 and GNU C extensions used
64-bit long long data type
Inline functions to reduce overhead:
static inline void foo (...);

Branch annotation:
if (likely(pippo)) {
/*...*/

}

Copyright c©2006 Claudio Scordino, All rights reserved 5/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Programming language

Like all Unix-like OSs, Linux is coded mostly in C

No access to the C library

No printf: use printk:
printk(KERN ERR "This is an error!");

Not coded in ANSI C

Both ISO C99 and GNU C extensions used
64-bit long long data type
Inline functions to reduce overhead:
static inline void foo (...);

Branch annotation:
if (likely(pippo)) {
/*...*/

}

Copyright c©2006 Claudio Scordino, All rights reserved 5/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Programming language (2)

Few small critical functions coded in Assembly (around
10% of the code)

Architecture-dependent code placed in linux/arch

The symbolic link linux/include/asm identifies all
architecture-dependent header files
Inline assembly (asm primitive)

Copyright c©2006 Claudio Scordino, All rights reserved 6/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Loadable Kernel Modules

Linux provides the ability of inserting (and removing)
services provided by the kernel at runtime

Every piece of code that can be dynamically loaded
(and unloaded) is called Kernel Module

Copyright c©2006 Claudio Scordino, All rights reserved 7/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Loadable Kernel Modules (2)

A kernel module provides a new service (or services)
available to users

Event-driven programming:

Once inserted, a module just registers itself in order to
serve future requests
The initialization function terminates immediately

Once a module is loaded and the new service registered

The service can be used by all the processes, as long as
the module is in memory
The module can access all the kernel’s public symbols

After unloading a module, the service is no longer
available

In the 2.6 series, modules have extensions .ko

Copyright c©2006 Claudio Scordino, All rights reserved 8/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Loadable Kernel Modules (3)

The kernel core must be self-contained. Everything else
can be written as a kernel module

A kernel module is desirable for:

Device drivers
Filesystems
Network protocols

Modules can only use exported functions (a collection
of functions available to kernel developers). The
function must already be part of the kernel at the time
it is invoked.

A module can export symbols through the following
macros:

EXPORT SYMBOL(name);

EXPORT SYMBOL GPL(name);

makes the symbol available only to GPL-licensed
modules

Copyright c©2006 Claudio Scordino, All rights reserved 9/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Loadable Kernel Modules (3)

The kernel core must be self-contained. Everything else
can be written as a kernel module

A kernel module is desirable for:

Device drivers
Filesystems
Network protocols

Modules can only use exported functions (a collection
of functions available to kernel developers). The
function must already be part of the kernel at the time
it is invoked.

A module can export symbols through the following
macros:

EXPORT SYMBOL(name);

EXPORT SYMBOL GPL(name);

makes the symbol available only to GPL-licensed
modules

Copyright c©2006 Claudio Scordino, All rights reserved 9/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Why using kernel modules

Not all kernel services of features are required every
time into the kernel: a module can be loaded only when
it is necessary, saving memory

Easier development: kernel modules can be loaded and
unloaded several times, allowing to test and debug the
code without rebooting the machine.

Copyright c©2006 Claudio Scordino, All rights reserved 10/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

How to write a kernel module

Ways to write a kernel module:

1. Insert the code into the Linux kernel main source tree

Modify the Kconfig and the main Makefile

Create a patch for each new kernel version

2. Write the code in a separate directory, without
modifying any file in the main source tree

More flexible
In the 2.6 series, the modules are linked against object
files in the main source tree:

⇒ The kernel must be already configured and compiled

Copyright c©2006 Claudio Scordino, All rights reserved 11/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

How to write a kernel module

Ways to write a kernel module:

1. Insert the code into the Linux kernel main source tree

Modify the Kconfig and the main Makefile

Create a patch for each new kernel version

2. Write the code in a separate directory, without
modifying any file in the main source tree

More flexible
In the 2.6 series, the modules are linked against object
files in the main source tree:

⇒ The kernel must be already configured and compiled

Copyright c©2006 Claudio Scordino, All rights reserved 11/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Loading/unloading a module

Only the superuser can load and unload modules

insmod inserts a module and its data into the kernel.

The kernel function sys init module:

1. Allocates (through vmalloc) memory to hold the module
2. Copies the module into that memory region
3. Resolves kernel references in the module via the kernel

symbol table (works like the linker ld)
4. Calls the module’s initialization function

modprobe works as insmod, but it also checks module
dependencies. It can only load a module contained in
the /lib/modules/ directory

rmmod removes a loaded module and all its services

lsmod lists modules currently loaded in the kernel

Works through /proc/modules

Copyright c©2006 Claudio Scordino, All rights reserved 12/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

The Makefile

The Makefile uses the extended GNU make syntax

Structure of the Makefile:

Name of the module:

obj-m = mymodule.o

Source files:

example-objs = file1.o file2.o

Command line:
make -C kernel dir M=‘pwd‘ modules

Copyright c©2006 Claudio Scordino, All rights reserved 13/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 1: the include part

We now see how to write a simple module that writes
“Hello World” at module insertion/removal

For a simple module we need to include at least the
following
#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/init.h>

that define some essential macros and function
prototypes.

Copyright c©2006 Claudio Scordino, All rights reserved 14/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 1: the init function

Function called when the module is inserted:

static int __init hello_init(void)

{

printk(KERN_ALERT "Hello world!\n");

return 0;

}

module_init(hello_init);

The function is defined static because it shouldn’t be
visible outside of the file

The init token tells the kernel that the function can
be dropped after the module is loaded

Similar tag for data: initdata

The module init macro specifies which function must be
called when the module is inserted

Copyright c©2006 Claudio Scordino, All rights reserved 15/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 1: the cleanup function
The unregister function must remove all the resources
allocated by the init function so that the module can be
safely unloaded
static void __exit hello_exit(void)

{

printk(KERN_ALERT "Goodbye, cruel world!\n");

}

module_exit(hello_exit);

The exit token tells the compiler that the function will
be called only during the unloading stage (the compiler
puts this function in a special section of the ELF file)

The module exit macro specifies which function must be
called when the module is removed

It must release any resource and undo everything the
init function built up

If it is not defined, the kernel does not allow module
unloading

Copyright c©2006 Claudio Scordino, All rights reserved 16/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Other information

Some other information should be specified:

MODULE AUTHOR("Claudio Scordino");

MODULE DESCRIPTION("Kernel Development Example");

MODULE VERSION("1.0");

License:

MODULE LICENSE("GPL");

The kernel accepts also "GPL v2", "GPL and additional

rights", "Dual BSD/GPL", "Dual MPL/GPL" and
"Proprietary"

Convention: put all information at the end of the file

Copyright c©2006 Claudio Scordino, All rights reserved 17/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 2: using the proc filesystem

We now see how to write a module that creates a new
entry in the proc filesystem

The entry will be created during the initialization phase
and removed by the cleanup function

Since modifications to the proc filesystem cannot be
done at user level, we have to work at kernel level. A
kernel module is perfect for this job!

Requires
#include <linux/proc fs.h>

Copyright c©2006 Claudio Scordino, All rights reserved 18/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 2: creating a directory

A new directory is created through
struct proc dir entry* proc mkdir(const char *name,

struct proc dir entry * parent);

It returns a pointer to
struct proc dir entry* lkh pde;

Copyright c©2006 Claudio Scordino, All rights reserved 19/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example 2: the code

static struct proc_dir_entry *lkh_pde;

static int __init ex2_init(void)

{

lkh_pde = proc_mkdir("lkh", NULL);

if (!lkh_pde) {

printk(KERN_ERR "%s: error creating proc_dir!\n", \

MODULE_NAME);

return -1;

}

printk("Proc dir created!\n");

return 0;

}

static void __exit ex2_exit(void)

{

remove_proc_entry("lkh", NULL);

printk("Proc dir removed!\n");

}

Copyright c©2006 Claudio Scordino, All rights reserved 20/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Module parameters

Both insmod and modprobe accept parameters given at
loading time

Require #include <linux/moduleparam.h>

A module parameter is defined through a macro:
static int myvar = 13;

module param(myvar, int, SIRUGO);

All parameters should be given a default value
The last argument is a permission bit-mask (see
linux/stat.h)
The macro should be placed outside of any function

Copyright c©2006 Claudio Scordino, All rights reserved 21/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Module parameters (2)

Supported types: bool, charp, int, long, short, uint,
ulong, ushort

The module ex3 can be loaded assigning a value to the
parameter myvar:
insmod ex3 myvar=27

Another macro allows to accept array parameters:
module param array(name, type, num, permission);

The module loader refuses to accept more values than
will fit in the array

Copyright c©2006 Claudio Scordino, All rights reserved 22/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Example: Kernel Linked Lists

Data structure that stores a certain amount of nodes

The nodes can be dynamically created, added and
removed at runtime

Number of nodes unknown at compile time
Different from array

For this reason, the nodes are linked together

Each node contains at least one pointer to another
element

Copyright c©2006 Claudio Scordino, All rights reserved 23/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Singly linked lists

struct list_element {

int data;

struct list_element *next;

};

Singly linked list:

. . .

next

. . .

next

. . .

next

Circular singly linked list:

. . .

next

. . .

next

. . .

next

Copyright c©2006 Claudio Scordino, All rights reserved 24/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Doubly linked lists

struct list_element {

int data;

struct list_element *next;

struct list_element *prev;

};

Doubly linked list:

. . .

next

prev

. . .

next

prev

. . .

next

prev

Circular doubly linked list:

. . .

next

prev

. . .

next

prev

. . .

next

prev

Copyright c©2006 Claudio Scordino, All rights reserved 25/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Kernel’s linked list implementation

Circular doubly linked list

No head pointer: does not matter where you start...

All individual nodes are called list heads

Declared in linux/list.h

Data structure:

struct list_head {

struct list_head* next;

struct list_head* prev;

};

No locking: your responsibility to implement a locking
scheme

Copyright c©2006 Claudio Scordino, All rights reserved 26/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Defining linked lists

1. Include the list.h file:

#include <linux/list.h>

2. Embed a list head inside your structure:

struct my_node {

struct list_head klist;

/* Data */

};

3. Define a variable to access the list:

struct list_head my_list;

4. Initialize the list:

INIT_LIST_HEAD(&my_list);

Copyright c©2006 Claudio Scordino, All rights reserved 27/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Defining linked lists

1. Include the list.h file:

#include <linux/list.h>

2. Embed a list head inside your structure:

struct my_node {

struct list_head klist;

/* Data */

};

3. Define a variable to access the list:

struct list_head my_list;

4. Initialize the list:

INIT_LIST_HEAD(&my_list);

Copyright c©2006 Claudio Scordino, All rights reserved 27/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Defining linked lists

1. Include the list.h file:

#include <linux/list.h>

2. Embed a list head inside your structure:

struct my_node {

struct list_head klist;

/* Data */

};

3. Define a variable to access the list:

struct list_head my_list;

4. Initialize the list:

INIT_LIST_HEAD(&my_list);

Copyright c©2006 Claudio Scordino, All rights reserved 27/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Defining linked lists

1. Include the list.h file:

#include <linux/list.h>

2. Embed a list head inside your structure:

struct my_node {

struct list_head klist;

/* Data */

};

3. Define a variable to access the list:

struct list_head my_list;

4. Initialize the list:

INIT_LIST_HEAD(&my_list);

Copyright c©2006 Claudio Scordino, All rights reserved 27/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists

Add a new node after the given list head:

struct my_node *q = kmalloc(sizeof(my_node));

list_add (&(q->klist), &my_list);

Remove a node:

list_head *to_remove = q->klist;

list_del (&to_remove);

Traversing the list:

list_head *g;

list_for_each (g, &my_list) {

/* g points to a klist field inside

* the next my_node structure */

}

Knowing the structure containing a klist* h:

struct my_node *f = list_entry(h, struct my_node, klist);

Copyright c©2006 Claudio Scordino, All rights reserved 28/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists

Add a new node after the given list head:

struct my_node *q = kmalloc(sizeof(my_node));

list_add (&(q->klist), &my_list);

Remove a node:

list_head *to_remove = q->klist;

list_del (&to_remove);

Traversing the list:

list_head *g;

list_for_each (g, &my_list) {

/* g points to a klist field inside

* the next my_node structure */

}

Knowing the structure containing a klist* h:

struct my_node *f = list_entry(h, struct my_node, klist);

Copyright c©2006 Claudio Scordino, All rights reserved 28/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists

Add a new node after the given list head:

struct my_node *q = kmalloc(sizeof(my_node));

list_add (&(q->klist), &my_list);

Remove a node:

list_head *to_remove = q->klist;

list_del (&to_remove);

Traversing the list:

list_head *g;

list_for_each (g, &my_list) {

/* g points to a klist field inside

* the next my_node structure */

}

Knowing the structure containing a klist* h:

struct my_node *f = list_entry(h, struct my_node, klist);

Copyright c©2006 Claudio Scordino, All rights reserved 28/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists

Add a new node after the given list head:

struct my_node *q = kmalloc(sizeof(my_node));

list_add (&(q->klist), &my_list);

Remove a node:

list_head *to_remove = q->klist;

list_del (&to_remove);

Traversing the list:

list_head *g;

list_for_each (g, &my_list) {

/* g points to a klist field inside

* the next my_node structure */

}

Knowing the structure containing a klist* h:

struct my_node *f = list_entry(h, struct my_node, klist);

Copyright c©2006 Claudio Scordino, All rights reserved 28/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists: Example

How to remove from the linked list the node having value 7:

struct my_node {

struct list_head klist;

int value;

};

struct list_head my_list;

struct list_head *h;

list_for_each_safe(h, &my_list)

if ((list_entry(h, struct my_node, klist))->value == 7)

list_del(h);

Copyright c©2006 Claudio Scordino, All rights reserved 29/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using linked lists (3)

Add a new node after the given list head:
list add tail();

Delete a node and reinitialize it: list del init();

Move one node from one list to another: list move();,
list move tail();

Check if a list is empty: list empty();

Join two lists: list splice();

Iterate without prefetching: list for each();

Iterate backward: list for each prev();

If your loop may delete nodes in the list:
list for each safe();

Copyright c©2006 Claudio Scordino, All rights reserved 30/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Synchronization

Sources of concurrency:

1. Processes using the same driver at the same time
2. Interrupt handlers invoked at the same time that the

driver is doing something else
3. Kernel timers run asynchronously as well
4. Kernel running on a symmetric multiprocessor (SMP)
5. Preemptible kernel: uniprocessors behave like

multiprocessors

Kernel and drivers code must allow multiple instances
to run at the same time in different contexts

Copyright c©2006 Claudio Scordino, All rights reserved 31/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Synchronization (2)

When programming the kernel it is crucial to forbid
execution flows (asynchronous functions, exception and
system call handlers) to badly interfere with each other
(race conditions).

Keep concurrency in mind!

The Linux kernel offers a large number of
synchronization primitives

Copyright c©2006 Claudio Scordino, All rights reserved 32/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Synchronization (3)

A large number of synchronization primitives are used
for efficiency reasons: the kernel must reduce to a
minimum the time spent waiting for a resource

In particular, most of the mutual exclusion mechanisms
have been introduced to allow some kernel core
components to scale well in large Enterprise systems

Simplifying a little bit, mutual exclusion can be enforced
by using

1. mutexes (used to be semaphores in old kernels)
2. spinlocks (optionally coupled with interrupt disabling)

Copyright c©2006 Claudio Scordino, All rights reserved 33/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Mutexes

Mutexes (mutex exclusion semaphores) can be used to
protect shared data structures that are only accessed in
process context

Like user-space (pthread) mutexes, kernel mutexes are
synchronization objects aimed at controlling the access
to the resources shared among the processes in the
system

While a process is waiting on a busy mutex, it is blocked
(put in state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE)
and replaced by another runnable process

Remember: mutexes cannot be used in interrupt

context!

Basically, a semaphore cannot be used in interrupt

context!

Copyright c©2006 Claudio Scordino, All rights reserved 34/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Mutexes

Mutexes (mutex exclusion semaphores) can be used to
protect shared data structures that are only accessed in
process context

Like user-space (pthread) mutexes, kernel mutexes are
synchronization objects aimed at controlling the access
to the resources shared among the processes in the
system

While a process is waiting on a busy mutex, it is blocked
(put in state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE)
and replaced by another runnable process

Remember: mutexes cannot be used in interrupt

context!

Basically, a semaphore cannot be used in interrupt

context!

Copyright c©2006 Claudio Scordino, All rights reserved 34/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using Mutexes

First of all, declare the mutex as a shared variable seen
by all the processes that need to use it:
struct mutex foo mutex;

To acquire the shared resource protected by the mutex:
mutex lock(&foo mutex); or
mutex lock interruptible(&foo mutex);

To release the resource:
mutex unlock(&foo mutex);

Copyright c©2006 Claudio Scordino, All rights reserved 35/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Spinlocks

Spinlocks are used to protect data structures that can
be possibly accessed in interrupt context

A spinlock is a mutex implemented by an atomic
variable that can have only two possible values: locked

and unlocked

When the CPU must acquire a spinlock, it reads the
value of the atomic variable and sets it to locked. If the
variable was already locked before the read-and-set
operation, the whole step is repeated (“spinning”).

Therefore, a process waiting for a spinlock is never
blocked!

Copyright c©2006 Claudio Scordino, All rights reserved 36/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Spinlocks

Spinlocks are used to protect data structures that can
be possibly accessed in interrupt context

A spinlock is a mutex implemented by an atomic
variable that can have only two possible values: locked

and unlocked

When the CPU must acquire a spinlock, it reads the
value of the atomic variable and sets it to locked. If the
variable was already locked before the read-and-set
operation, the whole step is repeated (“spinning”).

Therefore, a process waiting for a spinlock is never
blocked!

Copyright c©2006 Claudio Scordino, All rights reserved 36/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Spinlocks

When using spinlocks it’s easy to cause deadlocks.

Some important issues to remember:

If the data structure protected by the spinlock is
accessed also in interrupt context, we must disable the
interrupts before acquiring the spinlock
The kernel automatically disables kernel preemption
once a spinlock has been acquired

Copyright c©2006 Claudio Scordino, All rights reserved 37/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using spinlocks

To allocate and initialize a spinlock:
spinlock t foo lock;

spin lock init(&foo lock); [unlocked]

To disable interrupts and acquire the spinlock:
spin lock irqsave(&foo lock, flags); [locked]

To release the spinlock and restore the previous
interrupt status:
spin lock irqrestore(&foo lock, flags); [unlocked]

Copyright c©2006 Claudio Scordino, All rights reserved 38/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Time management

Several kernel functions are time-driven

Periodic functions:

Time of day and system uptime updating
Runqueue balancing on SMP
Timeslice checking

Copyright c©2006 Claudio Scordino, All rights reserved 39/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

System timer

Hardware timer issuing an interrupt at a programmable
frequency called tick rate

The interrupt handler is called timer interrupt

The tick rate is defined by the static preprocessor define
HZ (see linux/param.h)

The value of HZ is architecture-dependent

Some internal calculations assume 12 ≤ HZ ≤ 1535 (see
linux/timex.h)

On x86 architectures the primary system timer is the
Programmable Interrupt Timer (PIT)

Copyright c©2006 Claudio Scordino, All rights reserved 40/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Value of HZ
Architecture HZ value

alpha 1024

arm 100

cris 100

h8300 100

i386 250

ia64 1024

m68k 100

m68k-nommu 50, 100 or 1000

mips 100

mips64 100 or 1000

parisc 100 or 1000

ppc 1000

ppc64 1000

s390 100

sh 100 or 1000

sparc 100

sparc64 1000

um 100

v850 24,100 or 122

x86-64 1000
Copyright c©2006 Claudio Scordino, All rights reserved 41/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Larger HZ values: pros and cons

Timer interrupt runs more frequently

Benefits

Higher resolution of timed events
Improved accuracy of timed events

Average error = 5msec with HZ=100

Average error = 0.5msec with HZ=1000

Improved precision of syscalls employing a timeout

Examples: poll() and select().

Measurements (e.g. resource usage) have finer
resolution
Process preemption occurs more accurately

Drawbacks

The processor spends more time executing the timer
interrupt handler
Higher overhead
More frequent cache trashing

Copyright c©2006 Claudio Scordino, All rights reserved 42/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Measure of time

1. Relative times

Most important to kernel functions and device drivers
Example: 5 seconds from now
Kernel facilities: jiffies, clock cycles and get cycles()

2. Absolute times

Current time of day
Called “wall time”

Most important to user-space applications
Kernel facilities: xtime, mktime() and
do gettimeofday()

Usually best left to user-space, where the C library
offers better support
Dealing with absolute times in kernel space is often sign
of bad implementation

Copyright c©2006 Claudio Scordino, All rights reserved 43/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Measure of time

1. Relative times

Most important to kernel functions and device drivers
Example: 5 seconds from now
Kernel facilities: jiffies, clock cycles and get cycles()

2. Absolute times

Current time of day
Called “wall time”

Most important to user-space applications
Kernel facilities: xtime, mktime() and
do gettimeofday()

Usually best left to user-space, where the C library
offers better support
Dealing with absolute times in kernel space is often sign
of bad implementation

Copyright c©2006 Claudio Scordino, All rights reserved 43/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Jiffies

Global variable jiffies

Number of ticks occurred since the system booted

Read-only

Incremented at any timer interrupt

Not updated when interrupts are disabled

The system uptime is therefore jiffies/HZ seconds

Declared in linux/jiffies.h as
extern unsigned long volatile jiffies;

Declared as volatile to tell the compiler not to
optimize memory reads

unsigned long (32 bits) for backward compliance

Copyright c©2006 Claudio Scordino, All rights reserved 44/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Jiffies (2)

For high values of HZ, jiffies wraps around very quickly

Four macros to handle wraparounds:

time after(unknown, known)

time before(unknown, known)

time after eq(unknown, known)

time before eq(unknown, known)

The macros convert the values to signed long and
perform a subtraction

The unknown parameter is typically jiffies

See linux/jiffies.h

Copyright c©2006 Claudio Scordino, All rights reserved 45/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Jiffies 64

Extended variable jiffies 64

Read-only

Declared in linux/jiffies.h as
extern u64 jiffies 64;

jiffies is the lower 32 bits of the full 64-bit jiffies 64

variable

The access is not atomic on 32-bit architectures

Can be read through the function get jiffies 64()

Copyright c©2006 Claudio Scordino, All rights reserved 46/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

High-resolution processor-specific timing

Many architectures provide high-resolution counter
registers

Incremented once at each clock cycle

Architecture-dependent: readable from user space,
writable, 32 or 64 bits, etc.

x86 processors (from Pentium) have TimeStamp
Counter (TSC)

64-bit register
Readable from both kernel and user spaces
See asm/msr.h (“machine-specific registers”)
Three macros:
rdtsc(low32, high32);

rdtscl(low32);

rdtscll(var64);

Copyright c©2006 Claudio Scordino, All rights reserved 47/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

High-resolution architecture-independent timing

The kernel offers an architecture-independent function

cycles t get cycles(void);

Defined in asm/timex.h

Defined for every platform

Returns 0 on platforms without cycle-counter register

Copyright c©2006 Claudio Scordino, All rights reserved 48/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Absolute times: the xtime variable

The xtime variable

Defined in kernel/timer.c as struct timespec xtime;

Timespec data structure:

struct timespec

{

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

Time elapsed since January 1st 1970 (“epoch”)

Jiffies granularity

Not atomic access

Read through
struct timespec current kernel time(void);

Copyright c©2006 Claudio Scordino, All rights reserved 49/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Absolute times: do gettimeofday()

Function do gettimeofday()

Exported by linux/time.h

Prototype:
void do gettimeofday(struct timeval *tv);

Timeval data structure:

struct timeval {

time_t tv_sec; /* seconds */

suseconds_t tv_usec; /* microseconds */

};

Can have resolution near to microseconds

Interpolation: see what fraction of the current jiffy has
already elapsed
m68k and Sun3 systems cannot offer more than jiffy
resolution

Copyright c©2006 Claudio Scordino, All rights reserved 50/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Absolute times: mktime()

Function mktime()

Turns a wall-clock time into a jiffies value

Prototype:

unsigned long mktime (unsigned int year, \

unsigned int mon, \

unsigned int day, \

unsigned int hour, \

unsigned int min, \

unsigned int sec); \

See linux/time.h

Copyright c©2006 Claudio Scordino, All rights reserved 51/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Delaying Execution

The wrong way: busy waiting

while (time_before(jiffies, j1))

cpu_relax();

Works because jiffies is declared as volatile

Crash if interrupts are disabled

Copyright c©2006 Claudio Scordino, All rights reserved 52/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Delaying Execution (2)

Release the CPU

while (time_before(jiffies, j1))

schedule();

Still not optimal

There is always at least one runnable process

The idle task never runs

Waste of energy

Copyright c©2006 Claudio Scordino, All rights reserved 53/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Delaying Execution (3)

The best way to implement a delay is to ask the kernel
to do it!

Facilities:

1. ndelay(), udelay(), mdelay()
2. schedule timeout()

3. Kernel timers

Copyright c©2006 Claudio Scordino, All rights reserved 54/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Small delays

Sometimes the kernel code requires very short and
rather precise delays

Example: synchronization with hardware devices

The kernel provides the following functions:

void ndelay (unsigned long nsecs);

void udelay (unsigned long usecs);

void mdelay (unsigned long msecs);

Busy looping for a certain number of cycles

Trivial usage:
udelay(150); for 150 µsecs.

The delay is at least the requested value

See linux/delay.h

Copyright c©2006 Claudio Scordino, All rights reserved 55/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Small delays (2)

To avoid overflows, there is a check for constant
parameters

Unresolved symbol bad udelay

Do not use for big amounts of time!

Architecture-dependent (see asm/delay.h)

BogoMIPS:

How many loops the processor can complete in a second
Stored in the loops per jiffy variable
See proc/cpuinfo

Copyright c©2006 Claudio Scordino, All rights reserved 56/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Small delays without busy waiting

Another way of achieving msec delays

The kernel provides the following functions:
1. void msleep (unsigned int msecs);

Uninterruptible

2. unsigned long msleep interruptible (unsigned int

msecs);

Interruptible

Normally returns 0

Returns the number of milliseconds remaining if the

process is awakened earlier

3. void ssleep (unsigned int seconds);

Uninterruptible

See linux/delay.h

Copyright c©2006 Claudio Scordino, All rights reserved 57/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Small delays without busy waiting

Another way of achieving msec delays

The kernel provides the following functions:
1. void msleep (unsigned int msecs);

Uninterruptible

2. unsigned long msleep interruptible (unsigned int

msecs);

Interruptible

Normally returns 0

Returns the number of milliseconds remaining if the

process is awakened earlier

3. void ssleep (unsigned int seconds);

Uninterruptible

See linux/delay.h

Copyright c©2006 Claudio Scordino, All rights reserved 57/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Small delays without busy waiting

Another way of achieving msec delays

The kernel provides the following functions:
1. void msleep (unsigned int msecs);

Uninterruptible

2. unsigned long msleep interruptible (unsigned int

msecs);

Interruptible

Normally returns 0

Returns the number of milliseconds remaining if the

process is awakened earlier

3. void ssleep (unsigned int seconds);

Uninterruptible

See linux/delay.h

Copyright c©2006 Claudio Scordino, All rights reserved 57/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

schedule timeout()

Prototype:
signed long schedule timeout(signed long delay);

See linux/sched.h

Returns 0 unless the function returns before the given
delay has elapsed (e.g. signal)

Usage:
set current state(TASK INTERRUPTIBLE);

schedule timeout (delay);

Use TASK UNINTERRUPTIBLE for uninterruptible delays

Copyright c©2006 Claudio Scordino, All rights reserved 58/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Kernel timers

Allow to schedule an action to happen later without
blocking the current process until that time arrives

Have HZ resolution

Example: shut down the floppy drive motor

Also called “dynamic timers” or just “timers”

Asynchronous execution: run in interrupt context

Potential source of race conditions ⇒ protect data from
concurrent access

On SMPs the timer function is executed by the same
CPU that registered it to achieve better cache locality

Copyright c©2006 Claudio Scordino, All rights reserved 59/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Kernel timers (2)

Can be dynamically created and destroyed

Not cyclic

No limit on the number of timers

See linux/timer.h and kernel/timer.c

Represented by the struct timer list structure

struct timer_list {

struct list_head entry;

unsigned long expires;

spinlock_t lock;

void (*function)(unsigned long);

unsigned long data;

struct tvec_t_base_s * base;

};

Copyright c©2006 Claudio Scordino, All rights reserved 60/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Kernel timers (2)

The expires field represents when the timer will fire
(expressed in jiffies)

When the timer fires, it runs the function function with
data as argument.

Copyright c©2006 Claudio Scordino, All rights reserved 61/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers

1. Define a timer:
struct timer list my timer;

2. Define a function:
void my timer function(unsigned long data);

3. Initialize the timer:
init timer(&my timer);

4. Set an expiration time:
my timer.expires = jiffies + delay;

5. Set the argument of the function:
my timer.data = 0; or
my timer.data = (unsigned long) ¶m;

6. Set the handler function:
my timer.function = my function;

7. Activate the timer:
add timer(&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 62/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers (2)

8. Modify the timer:
mod timer (&my timer, jiffies + new delay);

9. Deactivate the timer:
del timer (&my timer);

10. Deactivate the timer avoiding race conditions on SMPs :
del timer sync (&my timer);

11. Knowing timer’s state:
timer pending (&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 63/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers (2)

8. Modify the timer:
mod timer (&my timer, jiffies + new delay);

9. Deactivate the timer:
del timer (&my timer);

10. Deactivate the timer avoiding race conditions on SMPs :
del timer sync (&my timer);

11. Knowing timer’s state:
timer pending (&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 63/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers (2)

8. Modify the timer:
mod timer (&my timer, jiffies + new delay);

9. Deactivate the timer:
del timer (&my timer);

10. Deactivate the timer avoiding race conditions on SMPs :
del timer sync (&my timer);

11. Knowing timer’s state:
timer pending (&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 63/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Using kernel timers (2)

8. Modify the timer:
mod timer (&my timer, jiffies + new delay);

9. Deactivate the timer:
del timer (&my timer);

10. Deactivate the timer avoiding race conditions on SMPs :
del timer sync (&my timer);

11. Knowing timer’s state:
timer pending (&my timer);

Copyright c©2006 Claudio Scordino, All rights reserved 63/64

Development

Kernel modules

Kernel Lists

Synchronization

Timing

Implementation of kernel timers

256 short range lists

64 short−medium range lists

64 medium range lists

64 medium−long range lists

64 long range lists

Base:

CPU

081415

Expires:
2120272631 9

Copyright c©2006 Claudio Scordino, All rights reserved 64/64

	Development
	Kernel modules
	Kernel Lists
	Synchronization
	Timing

