
Introduction to Real-Time

Systems

Real Time Operating Systems and Middleware

Luca Abeni

luca.abeni@unitn.it



Some Information

Real-Time Operating Systems and Middleware Introduction to the Course

• Slides available from
http://www.disi.unitn.it/˜abeni/RTOS

• Interested students can have a look at:

• Giorgio Buttazzo, “HARD REAL-TIME COMPUTING

SYSTEMS: Predictable Scheduling Algorithms and

Applications”, Second Edition, Springer, 2005

• Exam: Written Exam

• 4 questions, 30 minutes per question
• Each answer gets a score from 0 to 30
• OPTIONAL project.

• Prerequisites:

• Programming skills: C, maybe C++
• Knowledge about Operating Systems

http://www.disi.unitn.it/~abeni/RTOS


Prerequisites

Real-Time Operating Systems and Middleware Introduction to the Course

• You must know how to code in C (optionally C++)

• This is not about knowing the C syntax...
• It is about writing good and clean C code
• C language → “The C Programming

Language” by Kerrigan and Ritchie
• Notes about C programming on the web site

• About Operating Systems:

• “Sistemi Operativi I”, or similar exams
• References: a good OS book (Stallings, ...)
• How to use a shell, basic POSIX commands,

make, how to compile, ...



Overview of the Course - 1

Real-Time Operating Systems and Middleware Introduction to the Course

• Real-Time Systems: what are they?

• Real-Time Computing, Temporal Constraints
• Definitions and task model
• Real-Time scheduling

• Notes about real-time programming, RT-POSIX,
pthreads, . . .

• Real-Time Scheduling

• Fixed Priority scheduling, RM, DM
• EDF and dynamic priorities
• Resource Sharing (Priority Inversion, etc...)



Overview of the Course - 2

Real-Time Operating Systems and Middleware Introduction to the Course

• Operating System structure

• Notes about traditional kernel structures
• Sources of kernel latencies
• Some approaches to real-time kernels:

• dual kernel approach
• interrupt pipes
• microkernels
• monolithic kernels and RT

• Real-Time Kernels and OSs
• Developing Real-Time applications



Real-Time Operating Systems

Real-Time Operating Systems and Middleware Introduction to the Course

• Real-Time operating system (RTOS): OS providing
support to Real-Time applications

• Real-Time application: the correctness depends not
only on the output values, but also on the time when
such values are produced

• Operating System:

• Set of computer programs
• Interface between applications and hardware
• Control the execution of application programs
• Manage the hardware and software resources



Different Visions of an OS

Real-Time Operating Systems and Middleware Introduction to the Course

• An OS manages resources to provide services...
• ...hence, it can be seen as:

• A Service Provider for user programs

• Exports a programming interface...

• A Resource Manager

• Implements schedulers...



Operating System as a Resource Manager

Real-Time Operating Systems and Middleware Introduction to the Course

• Process and Memory Management
• File Management

• VFS
• File System

• Networking, Device Drivers, Graphical Interface

Resources must be managed so that
real-time applications are served properly



Operating System Services

Real-Time Operating Systems and Middleware Introduction to the Course

• Services (Kernel Space):

• Process Synchronisation, Inter-Process
Communication (IPC)

• Process / Thread Scheduling
• I / O
• Virtual Memory

Specialised API?



Resource Management Algorithms

Real-Time Operating Systems and Middleware Introduction to the Course

• Resource Manager (device drivers, ...)

• Interrupt Handling
• Device Management
• ...

OS Structure?



Real-Time Systems: What???

Real-Time Operating Systems and Middleware Introduction to the Course

• Real-Time application: the time when a result is
produced matters

• a correct result produced too late is equivalent to
a wrong result, or to no result

• characterised by temporal constraints that have
to be respected

• Example: mobile vehicle with a software module that

1. Detects obstacles
2. Computes a new trajectory to avoid them
3. Computes the commands for engine, brakes, . . .
4. Sends the commands



Real-Time Systems: What???

Real-Time Operating Systems and Middleware Introduction to the Course

• If the commands are correctly computed, but are not
sent in time...

• ...The vehicle crashes into the obstacle before
receiving the commands!

• Examples of temporal constraints:

• must react to external events in a predictable
time

• must repeat a given activity at a precise rate
• must end an activity before a specified time

• Temporal constraints are modelled using the concept
of deadline



Real-Time & Determinism

Real-Time Operating Systems and Middleware Introduction to the Course

• A Real-Time system is not just a “fast system” . . .
• speed is always relative to a specific environment!
• Running faster is good, but does not guarantee a

correct behaviour

• It must be possible to prove that temporal
constraints are always respected

• Running “fast enough”

• . . . ⇒ worst-case analysis



Throughtput vs Real-Time

Real-Time Operating Systems and Middleware Introduction to the Course

• Real-Time systems and general-purpose systems
have different goals

• General-purpose systems are optimised for the
“most common” or “average” case → fast sytems

• Real-Time systems only care about the worst
case

• In general, fast systems tend to minimise the
average response time of a task set . . .

• . . . While a real-time system must guarantee the
timing behaviour of RT tasks!



Processes, Threads, and Tasks

Real-Time Operating Systems and Middleware Introduction to the Course

• Algorithm → logical procedure used to solve a
problem

• Program → formal description of an algorithm, using
a programming language

• Process → instance of a program (program in
execution)

• Thread → flow of execution
• Task → process or thread



Real-Time Tasks

Real-Time Operating Systems and Middleware Introduction to the Course

• A task can be seen as a sequence of actions . . .

• . . . and a deadline must be associated to each one
of them!

• Some kind of formal model is needed to identify
these “actions” and associate deadlines to them



Mathematical Model of a Task - 1

Real-Time Operating Systems and Middleware Introduction to the Course

• Real-Time task τi: stream of jobs (or instances) Ji,k
• Each job Ji,k = (ri,k, ci,k, di,k):

• Arrives at time ri,k (activation time)
• Executes for a time ci,k
• Finishes at time fi,k
• Should finish within an absolute deadline di,k

ri,k
fi,k

di,k

ci,k



Mathematical Model of a Task - 2

Real-Time Operating Systems and Middleware Introduction to the Course

• Job: abstraction used to associate deadlines
(temporal constraints) to activities

• ri,k: time when job Ji,k is activated (by an external
event, a timer, an explicit activation, etc...)

• ci,k: computation time needed by job Ji,k to
complete

• di,k: absolute time instant by which job Ji,k must
complete

• job Ji,k respects its deadline if fi,k ≤ di,k

• Response time of job Ji,k: ρi,k = fi,k − ri,k



Periodic Tasks

Real-Time Operating Systems and Middleware Introduction to the Course

Periodic task τi = (Ci, Di, Ti): stream of jobs Ji,k, with

ri,k+1 = ri,k + Ti

di,k = ri,k +Di

Ci = max
k

{ci,k}

• Ti is the task period, Di is the task relative deadline,
Ci is the task worst-case execution time (WCET)

• Ri: worst-case response time →
Ri = maxk{ρi,k} = maxk{fi,k − ri,k}

• for the task to be correctly scheduled, it must be
Ri ≤ Di



Example: Periodic Task Model

Real-Time Operating Systems and Middleware Introduction to the Course

• A periodic task has a regular structure (cycle):

• activate periodically (period Ti)
• execute a computation
• suspend waiting for the next period

void *PeriodicTask(void *arg)
{

<initialization>;
<start periodic timer, period = T>;
while (cond) {
<read sensors>;
<update outputs>;
<update state variables>;
<wait next activation>;

}
}



Graphical Representation

Real-Time Operating Systems and Middleware Introduction to the Course

Tasks are graphically represented by using a scheduling
diagram. For example, the following picture shows a
schedule of a periodic task τ1 = (3, 6, 8) (with
WCET1 = 3, D1 = 6, T1 = 8)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that, while job J1,1 and J1,3 execute for 3 units of
time (WCET), job J1,2 executes for only 2 units of time.



Aperiodic Tasks

Real-Time Operating Systems and Middleware Introduction to the Course

• Aperiodic tasks are not characterised by periodic
arrivals:

• A minimum interarrival time between activations
does not exist

• Sometimes, aperiodic tasks do not have a
particular structure

• Aperiodic tasks can model:

• Tasks responding to events that occur rarely.
Example: a mode change.

• Tasks responding to events with irregular
structure (bursts of packets from the network, ...)



Aperiodic Tasks - Example

Real-Time Operating Systems and Middleware Introduction to the Course

The following example shows a possible arrival pattern
for an aperiodic task τ1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Notice that arrivals might be bursty, and there is not a
minimum time between them.



Sporadic tasks

Real-Time Operating Systems and Middleware Introduction to the Course

• Sporadic tasks: aperiodic tasks with a minimum
interarrival time between jobs

• In this sense, they are similar to periodic tasks, but...

• Periodic task ⇒ activated by a periodic timer
• Sporadic task ⇒ activated by an external event

(for example, the arrival of a packet from the
network)

void *SporadicTask(void *)
{

<initialization>;
while (cond) {
<computation>;
<wait event>;

}
}



Mathematical model of a sporadic task

Real-Time Operating Systems and Middleware Introduction to the Course

Similar to a periodic task: a sporadic task
τi = (Ci, Di, Ti) is a stream of jobs Ji,k, with

ri,k+1 ≥ ri,k + Ti

di,k = ri,k +Di

Ci = max
k

{ci,k}

• Ti is the task minimum interarrival time (MIT);
• Di is the task relative deadline;
• Ci is the task worst-case execution time (WCET).
• The task is correctly scheduled if Ri ≤ Di.



Graphical representation

Real-Time Operating Systems and Middleware Introduction to the Course

The following example, shows a possible schedule of a
sporadic task τ1 = (2, 5, 9).

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

Notice that

r1,2 = 12 > r1,1 + T1 = 9
r1,3 = 21 = r1,2 + T1 = 21



Task Criticality - 1

Real-Time Operating Systems and Middleware Introduction to the Course

• A deadline is said to be hard if a deadline miss
causes a critical failure in the system

• A task is said to be a hard real-time task if all its
deadlines are hard

• All the deadlines must be guaranteed
(∀j, ρi,j ≤ Di ⇒ Ri ≤ Di) before starting the task

• Examples:

• The controller of a mobile robot, must detect
obstacles and react within a time dependent on
the robot speed, otherwise the robot will crash
into the obstacles.



Task Criticality - 2

Real-Time Operating Systems and Middleware Introduction to the Course

• A deadline is said to be soft if a deadline miss
causes a degradation in the Quality of Service, but is
not a catastrophic event

• A task is said to be a soft real-time task if it has soft
deadlines

• Some deadlines can be missed without
compromising the correctness of the system...

• ... But the number of missed deadlines must be
kept under control, because the “quality” of the
results depend on the number of missed
deadlines



Soft Real-Time Requirements - 1

Real-Time Operating Systems and Middleware Introduction to the Course

• Characterising a soft real-time task can be difficult...

• What’s the tradeoff between “non compromising
the system correctness” and not considering
missed deadlines?

• Some way to express the QoS experienced by a
(soft) real-time task is needed

• Examples of QoS definitions:

• no more than X consecutive deadlines can be
missed

• no more than X deadlines in an interval of time T

can be missed



Soft Real-Time Requirements - 2

Real-Time Operating Systems and Middleware Introduction to the Course

• Other examples of soft real-time constraints:

• the deadline miss probability must be less than a
specified value

• P{fi,j > di,j} ≤ Rmax

• the deadline miss ratio can be used instead

number of missed deadlines

total number of deadlines
≤ Rmax

• the maximum tardiness must be less than a
specified value

• Ri

Di

< L

• ...



Example of Soft Real-Time

Real-Time Operating Systems and Middleware Introduction to the Course

• Audio / Video player:

• fps: 25 ⇒ frame period: 40ms

• if a frame is played a little bit too late, the user
might even be unable to notice any degradation
in the QoS...

• ...but skipped frames can be disturbing

• missing a lot of frames by 5ms can be better
than missing only few frames by 40ms!

• In some robotic systems, some actuations can be
delayed with little consequences on the control
quality

• In any case, soft real-time does not mean no
guarantee on deadlines...



Job Execution Times

Real-Time Operating Systems and Middleware Introduction to the Course

• Tasks can have variable execution times between
different jobs

• Execution times might depend on different factors:

• Input data
• Hw issues (cache effects, pipeline stalls, ...)
• The internal state of the task
• ...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1



Variable Execution Times: Video Player

Real-Time Operating Systems and Middleware Introduction to the Course

Distribution of the job execution times for a video player
(frame decoding times for an MPEG video)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2000 4000 6000 8000 10000

pr
ob

ab
ili

ty
 d

en
si

ty

decoding time (microseconds)


	Some Information
	Prerequisites
	Overview of the Course - 1
	Overview of the Course - 2
	Real-Time Operating Systems
	Different Visions of an OS
	Operating System as a Resource Manager
	Operating System Services
	Resource Management Algorithms
	Real-Time Systems: What???
	Real-Time Systems: What???
	Real-Time & Determinism
	Throughtput vs Real-Time
	Processes, Threads, and Tasks
	Real-Time Tasks
	Mathematical Model of a Task - 1
	Mathematical Model of a Task - 2
	Periodic Tasks
	Example: Periodic Task Model
	Graphical Representation
	Aperiodic Tasks
	Aperiodic Tasks - Example
	Sporadic tasks
	Mathematical model of a sporadic task
	Graphical representation
	Task Criticality - 1
	Task Criticality - 2
	Soft Real-Time Requirements - 1
	Soft Real-Time Requirements - 2
	Example of Soft Real-Time
	Job Execution Times
	Variable Execution Times: Video Player

