
Implementation of
Real-Time Scheduling

Algorithms

Luca Abeni
luca.abeni@unitn.it



Implementation of Fixed Priorities

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms

• Fixed priority schedulers can be implemented with
an array of queues (one per priority level)

• Insertion into the queue (task wake-up) → O(1)
operation

• Extraction of the highest priority task from the queue
(scheduling decision)

• Find the highest priority non-empty queue

• O(n) search!!! Too much overhead!!!

• Overhead due to naive implementation, not to an
inherent problem



More Efficient Implementation

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms

• The scheduler scalability can be improved by using
a bitmap

• Array of bits to mark the queues that are
non-empty

• The highest priority queue can be found by finding
the most significant bit in a word

• Extraction becomes O(1) if there is an Assembly
instruction that returns the first 1 bit in a word
(CLZ)

• If not, table to implement the operation ⌈logw⌉



Implementation of fixed priority - I

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms



Implementing EDF

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms

• EDF queueing is more complex

• Dynamic priorities → cannot use the “bitmask
trick”

• No O(1) complexity

• Can EDF be implemented with something better
than O(n) complexity?

• Yes we can!

• But an appropriate data structure is needed!

• Which data structure? Which are the requirements?



EDF Queues: Requirements

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms

• Data structure storing ordered keys, with efficient:

• Ordered Insertion (task wake-up)

• Selection of the first entry (scheduling)

• extraction of the first entry (dispatching)

• Efficient removal of non-first entries is not important

• Why removing non-executing tasks from the
queue?

• Efficient search of specific entries is not important

• Why should we need this??



Red/Black Trees

Real-Time Operating Systems and Middleware Implementing Scheduling Algorithms

• The deadline queue can be implemented using a
Red/Black tree

• Self-balancing tree, based on nodes colouring

• O(log(n)) on all the operations

• Not too bad, if n is not too large!

• ⇒ Red/Black trees make EDF implementable in
practice (without too much overhead)!


	Implementation of Fixed Priorities
	More Efficient Implementation
	Implementation of fixed priority - I
	Implementing EDF
	EDF Queues: Requirements
	Red/Black Trees

