Dynamic Priorities

Real Time Operating Systems and Middleware

Luca Abeni
abeni@dit.unitn.it
Dynamic Priorities

- RM and DM are optimal *fixed priority* assignments
- Maybe we can improve schedulability by using *dynamic priorities*?
 - Fixed priority scheduling: a task τ always has the same priority
 - Dynamic priority scheduling: τ’s priority can change during time...
 - Assumption: priorities change from job to job (a job $J_{i,j}$ always has the same priority $p_{h,k}$)
Earliest Deadline First

- Dynamic task priority / fixed job priority
 - Task τ_i’s priority can change $\rightarrow p_i$ is not constant
 - Job $J_{i,j}$’s priority does not change $\rightarrow p_{i,j}$ is constant

- Simplest idea: give priority to tasks with the earliest absolute deadline: $d_{i,j} < d_{h,k} \Rightarrow p_{i,j} > p_{h,k}$

- WARNING: absolute deadline, not relative deadline!

- Earliest Deadline First (EDF)
 - DM \rightarrow relative deadlines; EDF \rightarrow absolute deadlines
Yes we can! (of course)

- Consider a system of periodic tasks with relative deadline equal to the period.
- The system is schedulable with EDF if and only if

\[
\sum_i \frac{C_i}{T_i} \leq 1
\]

- \(U_{lub} = 1 \) !!! Optimal algorithm!!!

- If \(D_i \neq T_i \):

- TDA or RTA can be used... But can be complex!
An Example – RM

- $\tau_1 = (3, 8, 8), \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
• $\tau_1 = (3, 8, 8)$, $\tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
\(\tau_1 = (3, 8, 8), \tau_2 = (6, 11, 11) \Rightarrow U = 0.92 \)
An Example – RM

• $\tau_1 = (3, 8, 8), \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
• $\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
• \(\tau_1 = (3, 8, 8) \), \(\tau_2 = (6, 11, 11) \) \(\Rightarrow U = 0.92 \)
The Same Example – EDF

• $\tau_1 = (3, 8, 8)$, $\tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
The Same Example – EDF

- $\tau_1 = (3, 8, 8), \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
• $\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
The Same Example – EDF

- $\tau_1 = (3, 8, 8)$, $\tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
The Same Example – EDF

- $\tau_1 = (3, 8, 8)$, $\tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
The Same Example – EDF

- $\tau_1 = (3, 8, 8)$, $\tau_2 = (6, 11, 11) \Rightarrow U = 0.92$
Is EDF so Wonderful?

- First answer would be “yes”
- But it is not so well supported by mainline OS (or even RTOS)...
 - Why???
- Up to some time ago, no widely used RTOS provided EDF
 - But things are rapidly changing!
 - A scheduling policy based on EDF is in mainline Linux since 3.14!!!