Dynamic Priorities

Real Time Operating Systems and Middleware

Luca Abeni abeni@dit.unitn.it

- RM and DM are optimal *fixed priority* assignments
- Maybe we can improve schedulability by using dynamic priorities?
 - Fixed priority scheduling: a task τ always has the same priority
 - Dynamic priority scheduling: τ 's priority can change during time...
 - Assumption: priorities change from job to job (a job $J_{i,j}$ always has the same priority $p_{h,k}$)

- Dynamic task priority / fixed job priority
 - Task τ_i 's priority can change $\rightarrow p_i$ is not constant
 - Job $J_{i,j}$'s priority does not change $\rightarrow p_{i,j}$ is constant
- Simplest idea: give priority to tasks with the earliest absolute deadline: $d_{i,j} < d_{h,k} \Rightarrow p_{i,j} > p_{h,k}$
- WARNING: absolute deadline, not relative deadline!
 - Earliest Deadline First (EDF)
 - DM \rightarrow relative deadlines; EDF \rightarrow absolute deadlines

Real-Time Operating Systems and Middleware

- Yes we can! (of course)
 - Consider a system of periodic tasks with relative deadline equal to the period.
 - The system is schedulable with EDF if and only if

$$\sum_{i} \frac{C_i}{T_i} \le 1$$

- $U_{lub} = 1 \parallel !!$ Optimal algorithm !!!
- If $D_i \neq T_i$:

• TDA or RTA can be used... But can be complex! Real-Time Operating Systems and Middleware Dynamic Priorities

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

•
$$\tau_1 = (3, 8, 8), \ \tau_2 = (6, 11, 11) \Rightarrow U = 0.92$$

Real-Time Operating Systems and Middleware

Is EDF so Wonderful?

- First answer would be "yes"
- But it is not so well supported by mainline OS (or even RTOS)...
 - Why???
- Up to some time ago, no widely used RTOS provided EDF
 - But things are rapidly changing!
 - A scheduling policy based on EDF is in mainline Linux since 3.14!!!

Real-Time Operating Systems and Middleware