
Cross Compiling
Real Time Operating Systems and Middleware

Luca Abeni
luca.abeni@unitn.it

The Kernel

Real-Time Operating Systems and Middleware Real-Time Kernels

• Kernel → OS component interacting with hardware

• Runs in privileged mode (Kernel Space → KS)

• User Level ⇔ Kernel Level switch through
special CPU instructions (INT, TRAP, ...)

• User Level invokes system calls or IPCs

• Kernel Responsibilities

• Process management

• Memory management

• Device management

• System Calls

Level
User

Hardware

Level
Kernel

Applications

memory devicesCPU

Kernel

System Libraries

Real-Time Operating Systems and Middleware Real-Time Kernels

• Applications generally don’t invoke system calls
directly

• They generally use system libraries (like glibc),
which

• Provide a more advanced user interface
(example: fopen() vs open())

• Hide the US ⇔ KS switches

• Provide some kind of stable ABI (application
binary interface)

Static vs Shared Libraries - 1

Real-Time Operating Systems and Middleware Real-Time Kernels

• Libraries can be static or dynamic

• <libname>.a vs <libname>.so

• Static libraries (.a)

• Collections of object files (.o)

• Application linked to a static library ⇒ the
needed objects are included into the executable

• Only needed to compile the application

Static vs Shared Libraries - 2

Real-Time Operating Systems and Middleware Real-Time Kernels

• Dynamic libraries (.so , shared objects)

• Are not included in the executable

• Application linked to a dynamic library ⇒ only
the library symbols names are written in the
executable

• Actual linking is performed at loading time

• .so files are needed to execute the application

• Linking static libraries produces larger executables...

• ...But these executables are “self contained”

Embedded Development

Real-Time Operating Systems and Middleware Real-Time Kernels

• Embedded systems are generally based on low
power CPUs . . .

• . . .And have not much ram or big disks

• ⇒ not suitable for hosting development tools

• Development is often performed by using 2
different machines: host and guest

• Guest: the embedded machine; Host: the
machine used to compile

• Host and Guest often have different CPUs and
architectures

• ⇒ cross-compiling is needed

Cross-Compilers

Real-Time Operating Systems and Middleware Real-Time Kernels

• Cross Compiler: runs on the Host, but produces
binaries for the Target

• Separate the Host environment from the Target
environment

• Embedded systems: sometimes, scarce resources

• No disks / small (solid state) disks

• Reduced computational power

• ...

• In some cases, cross-compilation is the only way to
build programs!

The target hardware does not have the

Cross-Compiling Environments

Real-Time Operating Systems and Middleware Real-Time Kernels

• Cross-Compiling environment

• Cross-compiler (and some related utilities)

• libraries (at least system libraries)

• static or dynamic

• C compiler and C library: strictly interconnected

• ⇒ building (and using) a proper cross-compiling
environment is not easy

Cross-Compilers Internals - gcc

Real-Time Operating Systems and Middleware Real-Time Kernels

• gcc: Gnu Compiler Collection

• Compiler: high-level (C, C++, etc...) code →

assembly code (.s files, machine dependant)

• Assembler as : assembly → machine language
(.o files, binary)

• Linker ld : multiple .o files + libraries →

executable (ELF, COFF, PE, . . .) file

• ar , nm, objdump , . . .

• gcc -S : run only the compiler; gcc -c : run
compiler and assembler, . . .

Cross-Compilers - Dependencies

Real-Time Operating Systems and Middleware Real-Time Kernels

• Assembler, linker, and similar programs are part of
the binutils package

• gcc depends on binutils

• ld needs standard libraries to generate executables

• gcc depends on a standard C library

• But this library must be compiled using gcc...

• Circular dependency?

• Building a Cross-Compiler can be tricky...

Cross-Configuring GNU Packages

Real-Time Operating Systems and Middleware Real-Time Kernels

• gcc, binutils, etc... → GNU tools

• configure script generated by automake /
autoconf (--host= , --target= , . . .)

• Configuration Name (configuration triplet):
cpu-manufacturer-operating system

• Systems which support different kernels and OSs:
cpu-manufacturer-kernel-operating system

• Examples: mips-dec-ultrix ,
i586-pc-linux-gnu , arm-unknown-elf , ...

Configuration Names

Real-Time Operating Systems and Middleware Real-Time Kernels

• cpu : type of processor used on the system (tipically
‘i386’, or ‘sparc’, or specific variants like ‘mipsel’)

• manufacturer : freeform string indicating the
manufacturer of the system (often ‘unknown’, ‘pc’,
. . .)

• operating system : name of the OS (system
libraries matter)

• Some embedded systems do not run any OS. . .

• ⇒ use the object file format, such as ‘elf’ or ‘coff’

Kernel vs OS

Real-Time Operating Systems and Middleware Real-Time Kernels

• Sometimes, no 1 ↔ 1 correspondance between OS
and kernel

• This mainly happens on linux-based systems

• The configuration name can specify both kernel and
OS

• Example: ‘i586-pc-linux-gnulibc1’ vs
‘i586-pc-linux-gnu’

• The kernel (‘linux’) is separated from the OS

• The OS depends on the used system libraries
(‘gnu’ → glibc , ...)

Building a gcc Cross-Compiler - Step 1: binutils

Real-Time Operating Systems and Middleware Real-Time Kernels

• First of all, build binutils

./configure --target=arm-unknown-linux-gnu

--host=i686-host pc-linux-gnu --prefix=...

--disable-nls

• Generally, --host= is not needed (config.guess
can guess it)

Building a gcc Cross-Compiler - Step 2: system
headers

Real-Time Operating Systems and Middleware Real-Time Kernels

• Then, install some header files needed to build gcc

• Some headers provided by the Linux kernel (API for
syscalls)

• Other headers provided by the standard C library
(API for standard C functions)

• Sanitized kernel headers

• glibc headers

Building a gcc Cross-Compiler - Step 3: gcc

Real-Time Operating Systems and Middleware Real-Time Kernels

• Rember? Circular dependency with standard C
library...

• How to break it?

• gcc must be built 2 times

• First, to build glibc (no threads, no shared
libraries, etc...)

• Then, a full version after building glibc

• The “first gcc build” (stage1) can compile libraries,
but not applications

Building a gcc Cross-Compiler - Step 4: glibc

Real-Time Operating Systems and Middleware Real-Time Kernels

• After building gcc the first time, glibc is built

• Then, a fully working gcc (using the glibc we just
compiled) can be finally built

• Support for threads, the shared libraries we just
built, etc

• For non-x86 architectures, some patches are
sometimes needed

Helpful Scripts

Real-Time Operating Systems and Middleware Real-Time Kernels

• As seen, correctly building a cross-compiler can be
difficult, long, and boring...

• ... But there are scripts doing the dirty work for us!

• crosstool http://kegel.com/crosstool

• A slightly different (but more detailed) description
can be found on the eglibc web site:
www.eglibc.org

http://kegel.com/crosstool
www.eglibc.org

An Example: ARM Crosscompiler

Real-Time Operating Systems and Middleware Real-Time Kernels

• Download it from
www.dit.unitn.it/ ˜ abeni/Cross/cross.tgz

• Untar it in /tmp and properly set the path:

cd /tmp
tar xvzf cross.tgz #use the right path instead of cross.tgz
PATH=$PATH:/tmp/Cross/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/bin

• Ready to compile: try arm-unknown-linux-gnu-gcc -v

• It is an ARM crosscompiler built with crosstool

• gcc 4.1.0

• glibc 2.3.2

www.dit.unitn.it/~abeni/Cross/cross.tgz

The Crosscompiler

Real-Time Operating Systems and Middleware Real-Time Kernels

• The crosscompiler is installed in
/tmp/Cross/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux- gnu

• In particular, the .../bin directory contains gcc
and the binutils

• All the commands begin with
arm-unknown-linux-gnu-

• Compile a dynamic executable with
arm-unknown-linux-gcc hello.c

• Static executable: arm-unknown-linux-gcc
-static hello.c

Testing the Crosscompiler

Real-Time Operating Systems and Middleware Real-Time Kernels

• Working ARM cross-compiler

• Runs on Intel-based PCs

• Generates ARM executables

• So, we now have an ARM executable... How to run
it?

• Can I test the generated executable without using
an ARM board?

• ARM Emulator: Qemu!

• qemu-arm a.out

QEMU

Real-Time Operating Systems and Middleware Real-Time Kernels

• QEMU: generic (open source) emulator

• Can also do virtualization

• Generic: it supports different CPU models ARM

• Can emulate CPU only or a whole system

• QEMU as a CPU emulator: executes Linux
programs compiled for a different CPU. Example:
ARM → quemu-arm

• To execute a static ARM program, qemu-arm
<program name>

• What about dynamic executables?

QEMU and Dynamic Executables

Real-Time Operating Systems and Middleware Real-Time Kernels

• To run a dynamic executable, the system libraries
must be dynamically linked to it

• This happens at load time

• QEMU can load dynamic libraries, but you have to
provide a path to them

• -L option

• qemu-arm -L <path to libraries>
<program name>

qemu-arm -L \
/tmp/Cross/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/arm-unknown-linux-gnu \
/tmp/a.out

	The Kernel
	System Libraries
	Static vs Shared Libraries - 1
	Static vs Shared Libraries - 2
	Embedded Development
	Cross-Compilers
	Cross-Compiling Environments
	Cross-Compilers Internals - gcc
	Cross-Compilers - Dependencies
	Cross-Configuring GNU Packages
	Configuration Names
	Kernel vs OS
	Building a gcc Cross-Compiler - Step 1: binutils
	Building a gcc Cross-Compiler - Step 2: system headers
	Building a gcc Cross-Compiler - Step 3: gcc
	Building a gcc Cross-Compiler - Step 4: glibc
	Helpful Scripts
	An Example: ARM Crosscompiler
	The Crosscompiler
	Testing the Crosscompiler
	QEMU
	QEMU and Dynamic Executables

