Real-Time Scheduling Analysis

Real Time Operating Systems and Middleware

Luca Abeni luca.abeni@unitn.it

Response Time Analysis

- Necessary and sufficient test: compute the worst-case response time for every task
- For every task τ_i :
 - Compute worst case response time R_i for τ_i
 - Remember? $R_i = \max_{j} \{ \rho_{i,j} \}; \rho_{i,j} = f_{i,j} r_{i,j}$
 - If $R_i \leq D_i$, then the task is schedulable
 - otherwise, the task is not schedulable
- No assumption on the priority assignment
 - Algorithm valid for arbitrary priority assignments
 - Not only RM / DM...
- Periodic tasks with no offsets, or sporadic tasks

The Critical Instant

- Tasks ordered by decreasing priority ($i < j \rightarrow p_i > p_j$)
- No assumptions about tasks offsets
 - \Rightarrow Consider the worst possible offsets combination
 - A job $J_{i,j}$ released at the *critical instant* experiences the maximum response time for τ_i : $\forall k, \rho_{i,j} \ge \rho_{i,k}$
 - Simplified definition (jobs deadlines should be considered...)
 - **Theorem:** The critical instant for task τ_i occurs when job $J_{i,j}$ is released at the same time with a job in every high priority task
- If all the offsets are 0, the first job of every task is released at the critical instant!!!

Worst Case Response Time

- Worst case response time R_i for task τ_i depends on:
 - Its execution time...
 - ...And the execution time of higher priority tasks
 - Higher priority tasks can *preempt* task τ_i , and increase its response time

Computing the Response Time - I

$$R_i = C_i + \sum_{h=1}^{i-1} \left\lceil \frac{R_i}{T_h} \right\rceil C_h$$

• Urk!!! $R_i = f(R_i)$... How can we solve it?

- There is no closed-form expression for computing the worst case response time R_i
- We need an iterative method to solve the equation

Computing the Response Time - II

- Iterative solution
 - $R_i = \lim_{k \to \infty} R_i^{(k)}$
 - $R_i^{(k)}$: worst case response time for τ_i , at step k
- $R_i^{(0)}$: first estimation of the response time
 - We can start with $R_i^{(0)} = C_i$
 - $R_i^{(0)} = C_i + \sum_{h=1}^{i-1} C_h$ saves 1 step

$$R_{i}^{(0)} = C_{i}\left(+\sum_{h=1}^{i-1} C_{h}\right)$$
$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}}\right] C_{h}$$

Computing the Response Time - III

- Problem: are we sure that we find a valid solution?
- The iteration stops when:

•
$$R_i^{(k+1)} = R_i^{(k)}$$
 or

- $R_i^{(k)} > D_i$ (non schedulable);
- This is a standard method to solve non-linear equations in an iterative way
- If a solution exists (the system is not overloaded), $R_i^{(k)}$ converges to it
- Otherwise, the " $R_i^{(k)} > D_i$ " condition avoids infinite iterations

Task set:
$$\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$$

Real-Time Operating Systems and Middleware

Task set:
$$\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$$

Real-Time Operating Systems and Middleware

Task set:
$$\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$$

Real-Time Operating Systems and Middleware

Task set:
$$\tau_1 = (2, 5), \tau_2 = (2, 9), \tau_3 = (5, 20); U = 0.872$$

Real-Time Operating Systems and Middleware

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

$$\tau_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $\tau_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

$$\tau_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $\tau_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

$$au_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2,$$

 $au_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_{i}^{(k)} = C_{i} + \sum_{h=1}^{i-1} \left[\frac{R_{i}^{(k-1)}}{T_{h}} \right] C_{h}$$

Considerations

- The response time analysis is an efficient algorithm
 - In the worst case, the number of steps N for the algorithm to converge is exponential
 - Depends on the total number of jobs of higher priority tasks in the interval $[0, D_i]$:

$$N \propto \sum_{h=1}^{i-1} \left[\frac{D_h}{T_h} \right]$$

- If *s* is the minimum granularity of the time, then in the worst case $N = \frac{D_i}{s}$;
- However, such worst case is very rare: usually, the number of steps is low.

Real-Time Operating Systems and Middleware

Time Demand Analysis: the Idea

- Processor Demand approach has been proposed by Lehoczky and others in 1989
- Refined by Audsley and others in 1993 and by Baruah in 1990
- The basic idea is very simple: *in any interval, the computation demanded by all tasks in the set must never exceed the available time*
- The problem is: how to compute the time demanded by a task set T?
 - Remember: we have to look only at jobs released at the critical instant
 - Offsets = 0 ⇒ only consider the first job of each task...

The Processor Demand

- Given an interval $[t_1, t_2]$,
- let \mathcal{J}_{t_1,t_2} be the set of jobs started after t_1 and with deadline lower than or equal to t_2 :

$$\mathcal{J}_{t_1, t_2} = \{ J_{i,j} : r_{i,j} \ge t_1 \land d_{i,j} \le t_2 \}$$

• the processor demand in $[t_1, t_2]$ is defined as:

$$W(t_1, t_2) = \sum_{J_{i,j} \in \mathcal{J}_{t_1, t_2}} c_{i,j}$$

• Worst case: use C_i instead of $c_{i,j}$

Real-Time Operating Systems and Middleware

Computing the Processor Demand - 1

- Guaranteeing a task set \mathcal{T} based on $W(t_1, t_2)$ can take a loooong time
 - $\forall (t_1, t_2), W(t_1, t_2) \le t_2 t_1$
 - Need to check all the (t_1, t_2) combinations in a hyperperiod?
- But...
 - We only need to check the first job of every task $\tau_i!$
- $W_i(t_1, t_2)$: time demanded in $[t_1, t_2]$ by all tasks τ_j with $p_j \ge p_i \ (\Rightarrow j \le i)$

Real-Time Operating Systems and Middleware

Computing the Processor Demand - 2

- We can consider only $W_i(0,t)$
- For task τ_i , only check $W_i(0, t)$ for $0 \le t \le D_i$
- Change \forall into \exists : consider worst case for $W_i()$
 - Number of jobs in [0, t]: $\left|\frac{t}{T_i}\right|$
 - Use [] instead!
- We already have hints about computing an upper bound for $W_i(0, t)$...

$$W_i(0,t) = C_i + \sum_{h=1}^{i-1} \left\lceil \frac{t}{T_h} \right\rceil C_h$$

Real-Time Operating Systems and Middleware

TDA: The Guarantee

- Task τ_i is schedulable iff $\exists t : 0 \le t \le D_i \land W_i(0,t) \le t$
- A task set \mathcal{T} is schedulable iff

 $\forall \tau_i \in \mathcal{T}, \exists t : 0 \le t \le D_i \land W_i(0, t) \le t$

- Sometimes, different notations in literature:
 - $W_i(0,t) \to W_i(t) = \sum_{h=1}^i \left| \frac{t}{T_h} \right| C_h$ (this is equivalent, because $0 \le t \le T_i$)

TDA: Alternative Formulations

• Someone defines

$$L_i(t_1, t_2) = \frac{W_i(t_1, t_2)}{t_2 - t_1}$$

$$L_i = \min_{0 \le t \le D_i} L_i(0, t); L = \max_{\tau_i \in \mathcal{T}} L_i$$

• The guarantee tests then becomes

Task τ_i is schedulable iff $L_i \leq 1$ \mathcal{T} is schedulable iff $L \leq 1$

Real-Time Operating Systems and Middleware

TDA Simplifications

- The test might still be long (need to check many values of L(0,t) to find the minimum)...
- The number of points to check for computing W_i / L_i can be reduced
 - Scheduling points: $S_i = \{kT_h | h \le i; 1 \le k \le \left| \frac{T_i}{T_h} \right| \}$
 - (multiples of T_h for $h \leq i$)
 - $L_i = \min_{t \in S_i} L_i(0, t)$

Example - 1

- $\tau_1 = (20, 100), \tau_2 = (40, 150), \tau_3 = (100, 350)$
- τ_1 is schedulable: 20 < 100
- What about τ_2 ?
 - $S_2 = \{100, 150\}$
 - $W_2(0, 100) = 40 + 20 = 60 \le 100$: τ_2 is schedulable

Example - 2

- And now, τ_3 :
 - $S_3 = \{100, 150, 200, 300, 350\}$
 - $W_3(0, 100) = 100 + 20 + 40 = 160 > 100$
 - $W_3(0, 150) = 100 + 2 * 20 + 40 = 180 > 150$
 - $W_3(0, 200) = 100 + 2 * 20 + 2 * 40 = 220 > 200$
 - $W_3(0, 300) = 100 + 3 * 20 + 2 * 40 = 240 \le 300$: τ_3 is schedulable

Example - Continued 1

- But we already knew that the task set is schedulable: ²⁰/₁₀₀ + ⁴⁰/₁₅₀ + ¹⁰⁰/₃₅₀ = 0.2 + 0.26 + 0.2857 = 0.753 < 0.779

 Now, let's change C₁ to 40:
 - $\tau_1 = (40, 100), \tau_2 = (40, 150), \tau_3 = (100, 350)$

•
$$U = \frac{40}{100} + \frac{40}{150} + \frac{100}{350} = 0.953$$

- $U_{lub} \leq U \leq 1$: using utilisation-based analysis, we cannot say is \mathcal{T} is schedulable or not...
- τ_1 is schedulable: 40 < 100

Example - Continued 2

- τ_1 is schedulable, what about the other tasks?
- au_2 :
 - $W_2(0, 100) = 40 + 40 \le 100$: τ_2 is schedulable
- au_3 :
 - $W_3(0, 300) = 100 + 3 * 40 + 2 * 40 = 300 \le 300$: τ_3 is still schedulable!!!
- Note: to simplify, I directly checked the "right" scheduling point...

Example - Checking the Results

• TDA says that the task set is schedulable, but I do not believe it!!! (U = 0.953 looks very high)

Example - Checking the Results

- TDA says that the task set is schedulable, but I do not believe it!!! (U = 0.953 looks very high)
- So, here is the schedule...

Checking the Results - Response Time

- And what about using response time analysis?
- $\mathcal{T} = \{(40, 100), (40, 150), (100, 350)\}$

•
$$R_3^{(0)} = 100$$

• $R_3^{(1)} = 100 + \left\lceil \frac{100}{100} \right\rceil 40 + \left\lceil \frac{100}{150} \right\rceil 40 = 100 + 40 + 40 = 180$
• $R_3^{(2)} = 100 + \left\lceil \frac{180}{100} \right\rceil 40 + \left\lceil \frac{180}{150} \right\rceil 40 = 100 + 80 + 80 = 260$
• $R_3^{(3)} = 100 + \left\lceil \frac{260}{100} \right\rceil 40 + \left\lceil \frac{260}{150} \right\rceil 40 = 100 + 120 + 80 = 300$
• $R_3^{(4)} = 100 + \left\lceil \frac{300}{100} \right\rceil 40 + \left\lceil \frac{300}{150} \right\rceil 40 = 100 + 120 + 80 = 300$
• $R_3^{(4)} = R_3^{(3)} \Rightarrow$ stop. $R_3 = 300$

- $R_3 = 300 \le 350 \Rightarrow$ the system is schedulable.
- The previous result is confirmed...