Introduction to Linux Kernel Programming J

Luca Abeni, Claudio Scordino

£l

1/26

The Kernel Source Tree

Development

@ About 16,000 source files

@ Main directories in the kernel source:

arch/
Documentation/
drivers/

fs/

include/
kernel/

net/

Architecture-specific code
Kernel source documentation
Device drivers

File systems

Kernel headers

Core

Networking

2/26

Differences wrt normal user-space applications

Development @ Not a single entry point: a different entry point for any
type of interrupt recognized by the kernel
@ No memory protection
m No control over illegal memory access

(]

Synchronization and concurrency are major concerns

m Susceptible to race conditions on shared resources!
m Use spinlocks and semaphores.

@ No libraries to link to
m Never include the usual header files, like <stdio.h>

(]

A fault can crash the whole system

(]

No debuggers
Small stack: 4 or 8 KB

m Do not use large variables
m Allocate large structures at runtime (kmalloc)

No floating point arithmetic

3/26

Programming language
Development

@ Like all Unix-like OSs, Linux is coded mostly in C
@ No access to the C library

m No printf: use printk:
printk (KERN_ERR "This is an error!");

4/26

Programming language

Development

@ Not coded in ANSI C

m Both ISO C99 and GNU C extensions used
m 64-bit long long data type
m Inline functions to reduce overhead:
static inline void foo (...);
m Branch annotation:
if (likely(pippo)) {
/*...x/
}

4/26

Programming language (2)

Development

@ Few small critical functions coded in Assembly (around

10% of the code)
m Architecture-dependent code placed in linux/arch
m The symbolic link linux/include/asn identifies all
architecture-dependent header files
m Inline assembly (asm primitive)

5/26

Loadable Kernel Modules

Kernel modules

@ Linux provides the ability of inserting (and removing)
services provided by the kernel at runtime

@ Every piece of code that can be dynamically loaded
(and unloaded) is called Kernel Module

6/26

Loadable Kernel Modules (2)

Kernel modules

©

A kernel module provides a new service (or services)
available to users

@ Event-driven programming:

m Once inserted, a module just registers itself in order to

serve future requests
m The initialization function terminates immediately

Once a module is loaded and the new service registered
m The service can be used by all the processes, as long as
the module is in memory
m The module can access all the kernel's public symbols
@ After unloading a module, the service is no longer
available

In the 2.6 series, modules have extensions .ko

7/26

Loadable Kernel Modules (3)

@ The kernel core must be self-contained. Everything else
rermel modules can be written as a kernel module

@ A kernel module is desirable for:

m Device drivers
m Filesystems
m Network protocols

8/26

Loadable Kernel Modules (3)

Kernel modules

@ Modules can only use exported functions (a collection
of functions available to kernel developers). The
function must already be part of the kernel at the time
it is invoked.

@ A module can export symbols through the following
macros:

m EXPORT_SYMBOL (name) ;

m EXPORT_SYMBOL_GPL (name) ;
makes the symbol available only to GPL-licensed
modules

8/26

Why using kernel modules

Kernel modules

@ Not all kernel services of features are required every
time into the kernel: a module can be loaded only when
it is necessary, saving memory

@ Easier development: kernel modules can be loaded and
unloaded several times, allowing to test and debug the
code without rebooting the machine.

9/26

How to write a kernel module

Kernel modules

Ways to write a kernel module:

1. Insert the code into the Linux kernel main source tree

m Modify the Kconfig and the main Makefile
m Create a patch for each new kernel version

10/26

How to write a kernel module

Kernel modules

Ways to write a kernel module:

2. Write the code in a separate directory, without
modifying any file in the main source tree

m More flexible
m In the 2.6 series, the modules are linked against object
files in the main source tree:

= The kernel must be already configured and compiled

10/26

Loading/unloading a module

@ Only the superuser can load and unload modules

Kernel modules
@ insmod inserts a module and its data into the kernel.
@ The kernel function sys_init_module:
1. Allocates (through vmalloc) memory to hold the module
2. Copies the module into that memory region
3. Resolves kernel references in the module via the kernel
symbol table (works like the linker 1d)
4. Calls the module's initialization function
@ modprobe works as insmod, but it also checks module
dependencies. It can only load a module contained in
the /1ib/modules/ directory

@ rmmod removes a loaded module and all its services

@ 1smod lists modules currently loaded in the kernel
m Works through /proc/modules

11/26

The Makefile

Kernel modules

@ The Makefile uses the extended GNU make syntax

@ Structure of the Makefile:

Name of the module:
obj-m = mymodule.o

Source files:
example-objs = filel.o file2.o0

@ Command line:

make -C kernel_dir M=‘pwd‘ modules

12/26

Example 1: the include part

Kernel modules

@ We now see how to write a simple module that writes
“Hello World" at module insertion /removal

@ For a simple module we need to include at least the
following
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
that define some essential macros and function
prototypes.

13/26

Example 1: the init function

@ Function called when the module is inserted:

Kernel modules
static int __init hello_init(void)
{
printk (KERN_ALERT "Hello world!\n");
return 0O;

}

module_init(hello_init);
@ The function is defined static because it shouldn't be
visible outside of the file

@ The __init token tells the kernel that the function can
be dropped after the module is loaded

m Similar tag for data: __initdata

@ The module_init macro specifies which function must be
called when the module is inserted

14/26

Example 1: the cleanup function

@ The unregister function must remove all the resources
allocated by the init function so that the module can be
safely unloaded
static void __exit hello_exit(void)

{

Kernel modules

printk (KERN_ALERT "Goodbye, cruel world!\n");
}

module_exit (hello_exit);

@ The _exit token tells the compiler that the function will
be called only during the unloading stage (the compiler
puts this function in a special section of the ELF file)

@ The module exit macro specifies which function must be
called when the module is removed

@ It must release any resource and undo everything the
init function built up

@ If it is not defined, the kernel does not allow module
unloading

15/26

Other information

Kernel modules

@ Some other information should be specified:

® MODULE_AUTHOR("Claudio Scordino");

® MODULE_DESCRIPTION("Kernel Development Example");
® MODULE_VERSION("1.0");

@ License:

m MODULE_LICENSE("GPL");

m The kernel accepts also "GPL v2", "GPL and additional

rights", "Dual BSD/GPL", "Dual MPL/GPL" and
"Proprietary"

@ Convention: put all information at the end of the file

16/26

Module parameters

Kernel modules

@ Both insmod and modprobe accept parameters given at
loading time
) IQeqLHre #include <linux/moduleparam.h>
@ A module parameter is defined through a macro:
static int myvar = 13;
module_param(myvar, int, SIRUGO);
m All parameters should be given a default value
m The last argument is a permission bit-mask (see

linux/stat.h)
m The macro should be placed outside of any function

17/26

Module parameters (2)

Kernel modules

@ Supported types: bool, charp, int, long, short, uint,

ulong, ushort

@ A module “mod” can be loaded assigning a value to the
parameter myvar by doing:
insmod mod myvar=27

@ Another macro allows to accept array parameters:
module_param_array(name, type, num, permission);

m The module loader refuses to accept more values than
will fit in the array

18/26

Example: Kernel Linked Lists

Kernel Lists

@ Data structure that stores a certain amount of nodes

@ The nodes can be dynamically created, added and
removed at runtime

m Number of nodes unknown at compile time
m Different from array

@ For this reason, the nodes are linked together

m Each node contains at least one pointer to another
element

19/26

Singly linked lists

struct list_element {
int data;
Kernel Lists struct list_element *next;

};

@ Singly linked list:

next |-

next -

next

@ Circular singly linked list:

20/26

Doubly linked lists

struct list_element {
int data;
struct list_element *next;
Kernel Lists .
struct list_element *prev;

};
@ Doubly linked list:

prev <///r~ prev <////’*prev

Ve : Ve

next | next next

@ Circular doubly linked list:

next |~ next -/ next -

21/26

Kernel's linked list implementation

Kernel Lists

@ Circular doubly linked list
@ No head pointer: does not matter where you start...
m All individual nodes are called list heads

@ Declared in 1inux/1ist.h
@ Data structure:

struct list_head {
struct list_head* next;
struct list_head* prev;
};
@ No locking: your responsibility to implement a locking
scheme

22/26

Defining linked lists

1. Include the 1ist.n file:

Kernel Lists #include <linux/list.h>

23/26

Defining linked lists

1. Include the 1ist.n file:

Kernel Lists #include <linux/list.h>

2. Embed a 1ist head inside your structure:

struct my_node {
struct list_head klist;
/* Data */

};

23/26

Defining linked lists

1. Include the 1ist.n file:

Kernel Lists #include <linux/list.h>

2. Embed a 1ist head inside your structure:

struct my_node {
struct list_head klist;
/* Data */

};

3. Define a variable to access the list:
struct list_head my_list;

23/26

Defining linked lists

1. Include the 1ist.n file:

Kernel Lists #include <linux/list.h>

2. Embed a 1ist head inside your structure:

struct my_node {
struct list_head klist;
/* Data */

};

3. Define a variable to access the list:
struct list_head my_list;

4. Initialize the list:
INIT_LIST_HEAD (&my_list);

23/26

Using linked lists

@ Add a new node after the given list head:

struct my_node *q = kmalloc(sizeof (my_node));
i) (L list_add (&(q->klist), &my_list);

24/26

Using linked lists

Kernel Lists
@ Remove a node:

list_head *to_remove = gq->klist;
list_del (&to_remove);

24/26

Using linked lists

Kernel Lists

@ Traversing the list:

list_head *g;

list_for_each (g, &my_list) {
/* g points to a klist field inside
* the next my_node structure */

24/26

Using linked lists

Kernel Lists

@ Traversing the list:

list_head *g;

list_for_each (g, &my_list) {
/* g points to a klist field inside
* the next my_node structure */

@ Knowing the structure containing a klist* h:

struct my_node *f = list_entry(h, struct my_node, klist);

24/26

Using linked lists: Example

Kernel Lists How to remove from the linked list the node having value 7:

struct my_node {
struct list_head klist;
int value;

};

struct list_head my_list;
struct list_head *h;
list_for_each_safe(h, &my_list)

if ((list_entry(h, struct my_node, klist))->value == 7)
list_del(h);

25/26

Kernel Lists

Using linked lists (3)

)

Add a new node after the given list head:
list_add tail();

Delete a node and reinitialize it: list.del_init();

Move one node from one list to another: list.move();,

list_move_tail();

Check if a list is empty: 1list_empty();

Join two lists: 1ist_splice();

Iterate without prefetching: _1ist for_each();
Iterate backward: 1ist_for_each prev();

If your loop may delete nodes in the list:

list_for_each_safe();

26/26

	Development
	Kernel modules
	Kernel Lists

