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Interacting Tasks

Until now, we have considered only independent tasks
A job never blocks or suspends
A task only blocks on job termination

In real world, jobs might block for various reasons:
Tasks exchange data through shared memory →
mutual exclusion
A task might need to synchronize with other tasks
while waiting for some data
A job might need a hardware resource which is
currently not available
...
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Interacting Tasks - Example

Consider as an example three periodic tasks:
τ1 reads the data from the sensors and applies a
filter. The results of the filter are stored in memory
τ2 reads the filtered data and computes some control
law (updating the state and the outputs); both the
state and the outputs are stored in memory
Finally, τ3 reads the outputs from memory and writes
on the actuator device

All three tasks access data in the shared memory

Conflicts on accessing this data in concurrency could
make the data structures inconsistent
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Task Interaction - Paradigms

Interactions between tasks:
Private Resources - Client / Server paradigm
Shared Resources

Private Resources
A Resource Manager (server task) per resource
Interaction via IPC

Shared Resources
Must be accessed in mutual exclusion
Interaction via mutexes, semaphores, condition
variables, . . .

We will focus on shared resources (extensions to IPC
based communication is possible)
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Resources and Critical Sections

Shared data structure representing a resource (hw or
sw)

Piece of code accessing the data structure: critical
section

Critical sections on the same resource must be
executed in mutual exclusion
Therefore, each data structure should be protected
by a mutual exclusion mechanism;

In this lecture, we will study what happens when
resources are protected by mutual exclusion
semaphores (mutexes)
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Key Concepts

Task
Schedulable entity (thread or process)
Flow of execution
In OO terminology each task implements an active
object
Informally, it is an active entity that can perform
operations on private or shared data

Protected Objects
Encapsulating shared information (Resources)
Passive object (data) shared between different tasks
The execution of operations on protected objects is
mutually exclusive (this is why they are protected)
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Shared Resources - Definitions

Shared Resource Si

Used by multiple tasks
Protected by a mutex (mutual exclusion semaphore)
Si can indicate either the resource or the mutex

System / Application:
Set T of N periodic (or sporadic) tasks:
T = {τi : 1 ≤ i ≤ N}

Set S of M shared resources: S = {Si : 1 ≤ i ≤ M}

Task τi uses resource Sj if it accesses the resource
(in a critical section)

k-th critical section of τi on Sj: cski,j

Length of the longest critical section of τi on Sj: ξi,j
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Posix Example

1 pthread_mutex_t s;
2 ...
3 pthread_mutex_init(&s, NULL);
4 ...
5 void *tau1(void * arg) {
6 pthread_mutex_lock(&s);
7 <critical section>
8 pthread_mutex_unlock(&s);
9 };

10 ...
11 void *tau2(void * arg) {
12 pthread_mutex_lock(&s);
13 <critical section>
14 pthread_mutex_unlock(&s);
15 };
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Blocking Time

Mutual exclusion on a shared resource can cause
blocking time

When task τ1 tries to access a resource S already
held from task τ2, τ1 blocks
Blocking time: time between the instant when τ1 tries
to access S (and blocks) and the instant when τ2
releases S (and τ1 unblocks)

This blocking condition can be particularly bad in
priority scheduling if a high priority tasks wants to
access a resource that is held by a lower priority task

A low priority task executes, while a high priority one
is blocked...
...Schedulability guarantees can be compromised!

Real Time Operating Systems – p. 9



Blocking and Priority Inversion

Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2
L(S)

S

L(S)

S

U(S)

S

U(S)

From time 4 to 7, task τ1 is blocked by a lower priority
taskτ2; this is a priority inversion.

This priority inversion is not avoidable; in fact, τ1 must
wait for τ2 to leave the critical section.

However, in some cases, the priority inversion could be
too large.
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Example of Priority Inversion

Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

Here, priority inversion is very large: from 4 to 12.

Problem while τ1 is blocked, τ2 arrives and preempts τ3
before it can leave the critical section.

Other medium priority tasks could preempt τ3 as well...

Real Time Operating Systems – p. 11



What Happened on Mars?

This is not only a theoretical problem. It may happen in
real cases.
Most (in)famous example: Mars Pathfinder

A small robot, the Sojourner rover, was sent to Mars to explore the martian
environment and collect useful information. The on-board control software
consisted of many software threads, scheduled by a fixed priority scheduler. One
high priority thread and one low priority thread were using the same software data
structure through a shared semaphore. The semaphore was actually used by a
library that provided high level communication mechanisms among threads,
namely the pipe() mechanism. At some instant, it happened that the low priority
thread was interrupted by medium priority threads while blocking the high priority
thread on the semaphore.
At the time of the Mars Pathfinder mission, the problem was already known. The
first accounts of the problem and possible solutions date back to early ’70s.
However, the problem became widely known in the real-time community since the
seminal paper of Sha, Rajkumar and Lehoczky, who proposed the Priority
Inheritance Protocol and the Priority Ceiling Protocol to bound the time a real-time
task can be blocked on a mutex semaphore.
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More Info

A more complete (but maybe biased) description of the
incident can be found here:
http://www.cs.cmu.edu/~rajkumar/mars.html
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Dealing with Priority Inversion

Priority inversion can be reduced...
...But how?
By introducing an appropriate resource sharing
protocol (concurrency protocol)

Some protocols permit to find an upper bound for the
blocking time

Non Preemptive Protocol (NPP) / Highest Locking
Priority (HLP)
Priority Inheritance Protocol (PI)
Priority Ceiling Protocol (PC)
Immediate Priority Ceiling Protocol (Part of the
OSEK and POSIX standards)

mutexes (not generic semaphores) must be used
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Non Preemptive Protocol (NPP)

The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

Advantages: simplicity

Drawbacks: tasks which are not involved in a critical
section suffer blocking
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Non Preemptive Protocol (NPP)

The idea is very simple inhibit preemption when in a
critical section. How would you implement that?

Raise the task’s priority to the maximum available
priority when entering a critical section

Advantages: simplicity

Drawbacks: tasks which are not involved in a critical
section suffer blocking
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NPP Example

Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

U(S)

L(S)

S

U(S)
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Some Observations

The blocking (priority inversion) is bounded by the
length of the critical section of task τ3

Medium priority tasks (τ2) cannot delay τ1

τ2 has a blocking time, even if it does not use any
resource

Indirect blocking: due to the fact that τ2 is in the
middle between a higher priority task τ1 and a lower
priority task τ3 which use the same resource.
This blocking time must be computed and taken into
account in the formula as any other blocking time.

What’s the maximum blocking time Bi for τi?
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A Problem with NPP

Consider the following example, with p1 > p2 > p3 > p4.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4
L(S)

S
U(S)

L(S)
S

U(S)

τ1 misses its deadline (suffers a blocking time equal to
3) even though it does not use any resource!!

Solution: raise τ3 priority to the maximum between
tasks accessing the shared resource (τ2’ priority)

HLP
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HLP

So....

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4
L(S)

S S
U(S)

L(S)
S

U(S)

This time, everyone is happy

Problem: we must know in advance which task will
access the resource
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Blocking Time and Response Time

NPP introduces a blocking time on all tasks bounded by
the maximum lenght of a critical section used by lower
priority tasks

How does blocking time affect the response times?

Response Time Computation:

Ri = Ci +Bi +

i−1
∑

j=1

⌈

Ri

Tj

⌉

Cj

Ri is the response time of τi
Bi is the blocking time from lower priority tasks
∑i−1

h=1

⌈

Ri

Th

⌉

Ch is the preemption from higher priority
tasks
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Response Time Computation - I

Task Ci Ti ξi,1 Di

τ1 20 70 0 30
τ2 20 80 1 45
τ3 35 200 2 130
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Response Time Computation - II

Task Ci Ti ξi,1 Di Bi

τ1 20 70 0 30 2
τ2 20 80 1 45 2
τ3 35 200 2 130 0
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Response Time Computation - III

Task Ci Ti ξi,1 Di Bi Ri

τ1 20 70 0 30 2 20+2=22
τ2 20 80 1 45 2 20+20+2=42
τ3 35 200 2 130 0 35+2*20+2*20=115
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The Priority Inheritance protocol

Another possible solution to the priority inversion:
a low priority task τ3 blocking an higher priority task
τ1 inherits its priority
→ medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S
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The Priority Inheritance protocol

Another possible solution to the priority inversion:
a low priority task τ3 blocking an higher priority task
τ1 inherits its priority
→ medium priority tasks cannot preempt τ3
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The Priority Inheritance protocol

Another possible solution to the priority inversion:
a low priority task τ3 blocking an higher priority task
τ1 inherits its priority
→ medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S

Task τ3 inherits the priority of τ1
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The Priority Inheritance protocol

Another possible solution to the priority inversion:
a low priority task τ3 blocking an higher priority task
τ1 inherits its priority
→ medium priority tasks cannot preempt τ3

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S

Task τ3 inherits the priority of τ1
Task τ2 cannot preempt τ3 (p2 < p1)
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The Priority Inheritance protocol

Another possible solution to the priority inversion:
a low priority task τ3 blocking an higher priority task
τ1 inherits its priority
→ medium priority tasks cannot preempt τ3
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Another possible solution to the priority inversion:
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Some PI Properties

Summarising, the main rules are the following:
If a task τi blocks on a resource protected by a
mutex S, and the resource is locked by task τj, then
τj inherits the priority of τi
If τj itself blocks on another mutex by a task τk, then
τk inherits the priority of τi (multiple inheritance)
If τk is blocked, the chain of blocked tasks is followed
until a non-blocked task is found that inherits the
priority of τi
When a task unlocks a mutex, it returns to the
priority it had when locking it
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Maximum Blocking Time for PI

We only consider non nested critical sections...
In presence of multiple inheritance, the computation
of the blocking time becomes very complex
Non nested critical sections → multiple inheritance
cannot happen, and the computation of the blocking
time becomes simpler

Two important theorems:
Theorem 1 if PI is used, a job can be blocked only
once on each different mutex
Theorem 2 if PI is used, a job can be blocked by a
lower priority task for at most the duration of one
critical section

⇒ a job can be blocked more than once, but only once
per each resource and once by each lower priority task
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Blocking Time Computation

We must build a resource usage table
A task per row, in decreasing order of priority
A resource per column
Cell (i, j) contains ξi,j, i.e. the length of the longest critical section of

task τi on resource Sj , or 0 if the task does not use the resource

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the
rows below (tasks with lower priority)

A task can be blocked only on resources that it uses
directly, or used by higher priority tasks (indirect
blocking):

For each task, only consider columns on which it can
be blocked (used by itself or by higher priority tasks)
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Example - 1

S1 S2 S3 B

τ1 2 0 0 ?
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

Let’s start from B1

τ1 can be blocked only on S1. Therefore, we must
consider only the first column, and take the maximum,
which is 3. Therefore, B1 = 3.
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Example - 2

S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

τ2 can be blocked on S1 (indirect blocking) and on S2

Consider all cases where two distinct lower priority
tasks in {τ3, τ4, τ5} access S1 and S2, sum the two
contributions, and take the maximum;

τ4 on S1 and τ5 on S2: → 5

τ4 on S2 and τ5 on S1: → 4
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Example - 3

S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

τ3 can be blocked on all 3 resources

The possibilities are:
τ4 on S1 and τ5 on S2: → 5;
τ4 on S2 and τ5 on S1 or S3: → 4;
τ4 on S3 and τ5 on S1: → 2;
τ4 on S3 and τ5 on S2 or S3: → 3;
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Example - 4

S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 ?
τ5 1 2 1 ?

τ4 can be blocked on all 3 resources. We must consider
all columns; however, it can be blocked only by τ5.

The maximum is B4 = 2.

τ5 cannot be blocked by any other task (because it is
the lower priority task!); B5 = 0;
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Example: Final result

S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 2
τ5 1 2 1 0
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An example
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Example of blocking time computation

C T D ξ1,i ξ2,i

ES 5 50 6 0 0
IS 10 100 100 0 0
τ1 20 100 100 2 10
τ2 40 150 130 20 0
τ3 100 350 350 0 10
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Table of resource usage

ξ1,i ξ2,i Bi

ES 0 0 ?
IS 0 0 ?
τ1 2 10 ?
τ2 20 0 ?
τ3 0 10 ?
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Computation of the blocking time

ξ1,i ξ2,i Bi

ES 0 0 0
IS 0 0 0
τ1 2 10 ?
τ2 20 0 ?
τ3 0 10 0

Task ES and IS do not experience any blocking since
neither do they use shared resource (direct blocking)
nor are there tasks having higher priority that do so
(indirect blocking)

Task τ3 does not experience any blocking time either
(since it is the one having the lowest priority)
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Computation of the blocking time

ξ1,i ξ2,i Bi

ES 0 0 0
IS 0 0 0
τ1 2 10 30
τ2 20 0 ?
τ3 0 10 0

For task τ1 we have to consider both columns 1 and 2
since it uses both resources

The possibilities are:
τ2 on S1 and τ3 on S2: → 30;
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Computation of the blocking time

ξ1,i ξ2,i Bi

ES 0 0 0
IS 0 0 0
τ1 2 10 30
τ2 20 0 10
τ3 0 10 0

For task τ2 we have to consider column 2 since it is
associated to the only resource used by tasks having
both higher and lower priority than τ2 (τ2 itself uses
resource 1 which is not used by any other task with
lower priority)

The possibilities are:
τ3 on S2: → 10;
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The response times

C T D ξ1,i ξ2,i Bi Ri

ES 5 50 6 0 0 0 5+0+0=5
IS 10 100 100 0 0 0 10+0+5=15
τ1 20 100 100 2 10 30 20+30+20=70
τ2 40 150 130 20 0 10 40+10+40=90
τ3 100 350 350 0 10 0 100+0+200=300
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Response Time Analysis

We have seen the schedulability test based on
response time analysis

Ri = Ci +Bi +

i−1
∑

h=1

⌈

Ri

Th

⌉

Ch

There are also other options

For instance we can apply the following sufficient test:
The system is schedulable if

∀i, 1 ≤ i ≤ n,

i−1
∑

k=1

Ck

Tk
+

Ci +Bi

Ti
≤ i(21/i − 1)
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Time Demand Approach

In a task set T composed of independent and periodic
tasks, τi is schedulable (for all possible phasings) iff

∃0 ≤ t ≤ Di : Wi(0, t) = Ci +

i−1
∑

h=1

⌈

t

Th

⌉

Ch ≤ t

Introducing blocking times Bi, τi ∈ T is schedulable if
exists 0 ≤ t ≤ Di such that

Wi(0, t) = Ci +

i−1
∑

h=1

⌈

t

Th

⌉

Ch ≤ t− Bi
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Time Demand Approach - 2

As usual, we can define

Wi(t) = Ci +
∑i−1

h=1

⌈

t
Th

⌉

Ch

Li(t) =
Wi(t)

t

Li = min0≤t≤Di
Li(t) +

Bi

t

The task set is schedulable if ∀i, Li ≤ 1

Again, we can compute Li by only considering the
scheduling points
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