The Non-Preemptable Sections
Latency

Luca Abeni

luca.abeni@unitn.it

December 1, 2014

Latency

m Latency: measure of the difference between the theoretical and actual
schedule

[0 Task 7 expects to be scheduled at time ¢ ...
O ... but is scheduled at time ¢/
0 = Latency L =1t"—¢

m The latency L can be modelled as a blocking time = affects the
guarantee test

m If L is too high, only few task sets result to be schedulable

O The latency must be bounded: AL™** : L < L™%*
0 The latency bound L™%* cannot be too high

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 2 / 14

Sources of Latency

m A task 7; is a stream of jobs J; ; arriving at time r; ;
m Job J; ; is scheduled at time t’ > r; ;

O t' —r;; is given by the sum of various components:

1. J;;'s arrival is signalled at time r; ; + L*
2. Such event is served at time 7; ; + L' + L?
3. J;j is actually scheduled at r; ; + L' + L? + L

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 3 / 14

Analysis of the Various Sources

mN RN SR
m L3 is the scheduler latency

O Interference from higher priority tasks

O Already accounted by the guarantee tests — let's not consider it
m [is the non-preemptable section latency, called L™

[0 Due to non-preemptable sections in the kernel, which delays the
response to hardware interrupts

[0 It is composed by various parts: interrupt disabling, bottom halves
delaying, ...

m L' is due to the delayed interrupt generation

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 4 / 14

Interrupt Generation Latency

m Hardware interrupts are generated by external devices

m Sometimes, a device must generate an interrupt at time ¢ . ..
m ... but actually generates it at time t/ = ¢ + L™

m L is the Interrupt Generation Latency

1 It 1s due to hardware issues
O It is generally small compared to L™P

[0 Exception: if the device is a timer device, the interrupt generation
latency can be quite high

= Timer Resolution Latency Lt™me"

m The timer resolution latency L¥™¢" can often be much larger than the
non-preemptable section latency L"P

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 5 / 14

The Timer Resolution Latency

m Kernel timers are generally implemented by using a hardware device that
produces periodic interrupts

m Periodic timer interrupt — tick

m Example: periodic task (setitimer (), Posix timers,
clock nanosleep(), ...) 7; with period T;

m At the end of each job, 7; sleeps for the next activation
m Activations are triggered by the periodic interrupt

0 Periodic tick interrupt, with period 7%k
0 Every T%*, the kernel checks if the task must be woken up

O If T; is not multiple of T%* 7, experiences a timer resolution
latency

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 6 / 14

Non-Preemptable Section Latency

m [he non-preemptable section latency L"P is given by the sum of
different components
1. Interrupt disabling
2. Delayed interrupt service

3. Delayed scheduler invocation

m The first two are mechanisms used by the kernel to guarantee the
consistency of internal structures

m [he third mechanism is sometimes used to reduce the number of
preemptions and increase the system throughput

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 7 / 14

Disabling Interrupts

m Remember? Before checking if an interrupt fired, the CPU checks if

interrupts are enabled...
Process - .
I nterrupt i
2
Fetch | ncrement Execute i No
Counter

Interrupt
Fired?

m Every CPU has some protected instructions (STI/CLI on x86) for
enabling/disabling interrupts

0 Only the kernel (or code running in KS) can enable/disable
Interrupts

O Interrupts disabled for a time T — [P > Tk

m Interrupt disabling is used to enforce mutual exclusion between sections

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 8 / 14

Delayed Interrupt Service - 1

m When the interrupt fire, the ISR is executed, but the kernel can delay
interrupt service some more...

[0 ISRs are generally small, and do only few things

0 An ISR can set some kind of software flag, to notify that the
interrupt fired

00 Later, the kernel can check such flag and run a larger (and more
complex) interrupt handler

m Some sort of “software interrupts’ ...
m Advantages:

0 ISRs generally run with interrupts disabled
[0 But software interrupt handlers can re-enable hardware interrupts

00 Enabling/Disabling software interrupt handlers is simpler / cheaper

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 9 / 14

Delayed Interrupt Service - 2

m Software interrupt handlers are good for throughput...
m ...But can be bad for real-time / latency:

O Interrupt response latency is increased: L™ >> Tl

[0 Software interrupt handlers are often non-preemptable increasing
the latency for other tasks too...

m Large, non-schedulable, active entities executing inside the kernel...

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 10 / 14

Deferred Scheduling

m Scheduler: invoked only when returning from KS to US

m For efficiency reasons, the kernel might want to return to user tasks only
after performing a lot of activities
0 Try to reduce the number of KS < US switches
[0 Reduce the number of context switches

[0 Throughput vs low latency: opposite requirements

m S0, maybe the ISR runs at the correct time, the delayed interrupt handler
is executed immediately, but the scheduler is invoked after some time...

Latency
| us
.
i Event Delivery !
Event Time / |
: Handlers } Scheduler
| / :
FTG * KS

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 11 / 14

Latency in the Standard Kernel

100000 |

10000

1000 |

Latency (usec)

100 ||

10 |-

L LA

i i i
1000

70CEDCDQOANIO0 17000 20000

Elapsed Time (msec)

Real-Time Operating Systems and Middleware

The Non-Preemptable Sections Latency — 12 / 14

m L"P depends on some different factors

m In general, no hw reasons — it almost entirely depends on the kernel
structure

[0 Non-preemptable section latency is generally the result of the
strategy used by the kernel for ensuring mutual exclusion on its

Internal data structures

[0 To analyze / reduce L™, we need to understand such strategies

[1 Different kernels, based on different structures, work in different
ways
m Some of the problems:

O Interrupt Handling (Device Drivers)

[0 Management of the parallelism

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 13 / 14

Data Structures Consistency

m Hardware interrupt: breaks the regular execution flow
O If the CPU is executing in US, switch to KS
[0 If execution is already in KS, possible problems
m Example:

1. The kernel is updating a linked list
2. IRQ While the list is in an inconsistent state
3. Jump to the ISR, that needs to access the list...

m [he kernel must disable the interrupts while updating the list!

m Similar interrupt disabling is also used in spinlocks and mutex
implementations...

Real-Time Operating Systems and Middleware The Non-Preemptable Sections Latency — 14 / 14

	Latency
	Sources of Latency
	Analysis of the Various Sources
	Interrupt Generation Latency
	The Timer Resolution Latency
	Non-Preemptable Section Latency
	Disabling Interrupts
	Delayed Interrupt Service - 1
	Delayed Interrupt Service - 2
	Deferred Scheduling
	Latency in the Standard Kernel
	Summing Up
	Data Structures Consistency

