Sistemi Operativi 2
Kernel Locking

Luca Abeni

o

© o o @

Critical Sectionsin Kernel Code

Old Linux kernels used to be non-preemptable...
Kernel = Big critical section

Mutual exclusion was not a problem...

Then, SMPs and preemptable kernels changed
everything

» Multiple tasks can execute inside the kernel
simultaneously = mutual exclusion is an issue!

» Mutual exclusion can be enforced through mutexes

Mutexes are blocking synchronisation objects

» Atask trying to acquire a locked mutex is blocked. . .

s ...And the scheduler is invoked!

» Blocking is sometimes bad J

Sistemi Operativi 2 — p. 2

Blocking 1s Bad when...
f.’ Atomic Context T

» Code running in a proper “task” context can sleep
(so, the task can be blocked). ..

s ...But sometimes the code is not executing in a task
context (example: IRQ handlers)!

» In some other situations, a task cannot sleep even if
It has a proper context (example: interrupt disabled)
® Efficiency

s Sometimes, critical sections are very small — using
mutexes, a task would block for a very short time

» Busy-waiting can be more efficient, because it
reduces the number of context switches!

o |

Sistemi Operativi 2 — p. 3

Summing up...

- N

In some particular situations. ..

#® .. .We need a way to enforce mutual exclusion without
blocking any task
s This is only useful in kernel programming
» Remember: in general cases, busy-waiting is bad!

#® S50, the kernel provides a spinning lock mechanism
» To be used when sleeping/blocking is not an option
s Originally developed for multiprocessor systems

o |

Sistemi Operativi 2 — p. 4

Spinlocks- The Origin
-

lock: Spinning Lock
» Used to protect shared data structure in the kernel
» Behaviour: similar to mutex (locked / unlocked)
s But does not sleep!

| ock() on an unlocked spinlock: change its state

| ock() on a locked spinlock: until the mutex is
unlocked

» Only useful on multiprocessor systems
unl ock() on alocked spinlock: change its state
unl ock() on an unlocked spinlock: error!!!

Sistemi Operativi 2 — p. 5

= =
P O©OWOW~NOOU ~WNER P O WOWOW~NOOUA~WNER

Spinlocks - Implementation

-

int lock = 1;

void lock(int =*sl)

{
while (TestAndSet(sl, 0) ==0); A possible algorithm

J .
(using test and set)
void unl ock(int =*sl)
{
*sl = 1;
}
| ock:
decb %
jns 3
2. .)
crpb $0, %9 As_sembler Implemen
ez tation
OoC . .
3l (in Linux)
unibék:

nmovb $1, %0

Sistemi Operativi 2 — p. 6

Spinlocks - Constraints

- N

Trying to lock a locked spinlock results in spinning =
spinlocks must be locked for a very short time

|f an interrupt handler interrupts a task holding a
spinlock, deadlocks are possible...

7; gets a spinlock SL

An interrupt handler interrupts ...

...And tries to get the spinlock SL

= The interrupt handler spins waiting for SL
s But 7; cannot release it!!!

e o o ©

When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable interrupts

L s In this way, 7; cannot be interrupted when it holds SL!J

Sistemi Operativi 2 — p. 7

© o o o @

Defining a spinlock: spi nl ock_t ny_l ock;

Spinlocksin Linux

-

Initialising a spinlock: spi n_| ock_i ni t (&yl ock) ;

Acquiring a spinlock: spi n_| ock(&y | ock) ;

Releasing a spinlock: spi n_unl ock(&y _l ock) ;

With interrupt disabling:

e o o o o @
wu 0O u u u

S

0l N_
0l N_
0l N_

Dl N_un
0l Nn_un

0l N_un

oC
oC
oC

oC
oC
oC

K_I rg(&y _l ock) ;
K_bh(&y _| ock) ;
K_1rqgsave(&yl ock, flags);

K_I rq(&y _l ock) ;
K_bh(&y _| ock) ;

K_Arqgrestore(&ny.lock, flags);

|

Sistemi Operativi 2 — p. 8

Spinlocks - Evolution

-

On UP systems, traditional spinlocks are no-ops
s The i r g variations are translated incl i /st i
This works assuming only on execution flow in the
kernel = non-preemptable kernel

Kernel preemptablility changes things a little bit:

. , Initialised to 0: number of
spinlocks currently locked

s spin_l ock() Iincreases the preemption counter
s sSpi n_unl ock() decreases the preemption counter

» When the preemption counter returns to 0,
spi n_unl ock() calls schedul e()

Preemption can only happen on spi n_unl ock()
(interrupt handlers lock/unlock at least one spinlock...) J

Sistemi Operativi 2 — p. 9

Spinlocks and Kernel Preemption

In preemptable kernels, spinlocks’ behaviour changes a

little bit;

-

s spin_ ock() disables preemption

o Spin_unl oc
other spinloc

e spin_unl oc

K() might re-enable preemption (if no
K IS locked)

K() Is a preemption point

Spinlocks are not optimised away on UP anymore

Become similar
Protocol (NPP)

to mutexes with the Non-Preemptive

Again, they must be held for very short times!!!

Sistemi Operativi 2 — p. 10

Sleeping in Atomic Context

- N

We call atomic context a CPU context in which it Is not
possible to sleep, block the current task, or invoke the
scheduler

s Interrupt handlers
» Scheduler code
» Critical sections protected by spinlocks

» ...

What to do if | need to call a possibly-blocking function
from atomic context?
s Don’t do it!!!
s Try using the non-blocking version of the function...
s Defer the work, to execute it later in a proper

L context — workgueues J

Sistemi Operativi 2 — p. 11

Allow to schedule the execution of a function In the

Workqueues- 1

-

future

The function will execute In a task context

Lower priority than interrupt handlers, higher priority
than user processes

Using a workqueue:

»

o

»

iInclude <I| i nux/ wor kqueue. h>
Creating: wg = creat e.wor kqueue(nane)

Declaring the work to be done:
DECLARE_WORK(wor k, function, data) (or:
| NIl T"VWORK() + PREPARE_WORK()

Scheduling the work: queue_wor k(wg, wor k)
Destroying: dest r oy _wor kqueue(wq) J

Sistemi Operativi 2 — p. 12

Workqueues - 2
-

After some work is scheduled for execution on a
workgueue, the function will be called (in the future) in
the context of a kernel thread serving the workqueue

It is possible to force the execution of a workqueue (and
to wait for it) by using f | ush_wor kqueue(wq)

It is possible to schedule some work to be executed
after a timeout (queue_del ayed_wor k())

It is possible to cancel the execution of some work
(cancel _del ayed_wor k())

After using it, a workqueue can be destroyed
(dest r oy_wor kqueue())

Sistemi Operativi 2 — p. 13

	Critical Sections in Kernel Code
	Blocking is Bad when...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Implementation
	Spinlocks - Constraints
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context
	Workqueues - 1
	Workqueues - 2

