
Sistemi Operativi 2
Kernel Locking

Luca Abeni

Sistemi Operativi 2 – p. 1

Critical Sections in Kernel Code

Old Linux kernels used to be non-preemptable...

Kernel ⇒ Big critical section

Mutual exclusion was not a problem...

Then, SMPs and preemptable kernels changed
everything

Multiple tasks can execute inside the kernel
simultaneously ⇒ mutual exclusion is an issue!
Mutual exclusion can be enforced through mutexes

Mutexes are blocking synchronisation objects
A task trying to acquire a locked mutex is blocked. . .

. . .And the scheduler is invoked!
Blocking is sometimes bad

Sistemi Operativi 2 – p. 2

Blocking is Bad when...

Atomic Context

Code running in a proper “task” context can sleep
(so, the task can be blocked). . .
. . .But sometimes the code is not executing in a task
context (example: IRQ handlers)!
In some other situations, a task cannot sleep even if
it has a proper context (example: interrupt disabled)

Efficiency

Sometimes, critical sections are very small → using
mutexes, a task would block for a very short time
Busy-waiting can be more efficient, because it
reduces the number of context switches!

Sistemi Operativi 2 – p. 3

Summing up...

In some particular situations. . .

. . .We need a way to enforce mutual exclusion without
blocking any task

This is only useful in kernel programming
Remember: in general cases, busy-waiting is bad!

So, the kernel provides a spinning lock mechanism
To be used when sleeping/blocking is not an option
Originally developed for multiprocessor systems

Sistemi Operativi 2 – p. 4

Spinlocks - The Origin

spinlock: Spinning Lock
Used to protect shared data structure in the kernel
Behaviour: similar to mutex (locked / unlocked)
But does not sleep!

lock() on an unlocked spinlock: change its state

lock() on a locked spinlock: spin until the mutex is
unlocked

Only useful on multiprocessor systems

unlock() on a locked spinlock: change its state

unlock() on an unlocked spinlock: error!!!

Sistemi Operativi 2 – p. 5

Spinlocks - Implementation

1 int lock = 1;
2
3 void lock(int *sl)
4 {
5 while (TestAndSet(sl, 0) == 0);
6 }
7
8 void unlock(int *sl)
9 {

10 *sl = 1;
11 }

A possible algorithm
(using test and set)

1 lock:
2 decb %0
3 jns 3
4 2:
5 cmpb $0,%0
6 jle 2
7 jmp lock
8 3:
9 ...

10 unlock:
11 movb $1,%0

Assembler implemen-
tation
(in Linux)

Sistemi Operativi 2 – p. 6

Spinlocks - Constraints

Trying to lock a locked spinlock results in spinning ⇒

spinlocks must be locked for a very short time

If an interrupt handler interrupts a task holding a
spinlock, deadlocks are possible...

τi gets a spinlock SL

An interrupt handler interrupts τi...
...And tries to get the spinlock SL

⇒ The interrupt handler spins waiting for SL

But τi cannot release it!!!

When a spinlock is used to protect data structures
shared with interrupt handlers, the spinlock must
disable interrupts

In this way, τi cannot be interrupted when it holds SL!

Sistemi Operativi 2 – p. 7

Spinlocks in Linux

Defining a spinlock: spinlock t my lock;

Initialising a spinlock: spin lock init(&my lock);

Acquiring a spinlock: spin lock(&my lock);

Releasing a spinlock: spin unlock(&my lock);

With interrupt disabling:
spin lock irq(&my lock);

spin lock bh(&my lock);

spin lock irqsave(&my lock, flags);

spin unlock irq(&my lock);

spin unlock bh(&my lock);

spin unlock irqrestore(&my lock, flags);

Sistemi Operativi 2 – p. 8

Spinlocks - Evolution

On UP systems, traditional spinlocks are no-ops
The irq variations are translated in cli/sti

This works assuming only on execution flow in the
kernel ⇒ non-preemptable kernel

Kernel preemptability changes things a little bit:
Preemption counter, initialised to 0: number of
spinlocks currently locked
spin lock() increases the preemption counter
spin unlock() decreases the preemption counter
When the preemption counter returns to 0,
spin unlock() calls schedule()

Preemption can only happen on spin unlock()
(interrupt handlers lock/unlock at least one spinlock...)

Sistemi Operativi 2 – p. 9

Spinlocks and Kernel Preemption

In preemptable kernels, spinlocks’ behaviour changes a
little bit:

spin lock() disables preemption
spin unlock() might re-enable preemption (if no
other spinlock is locked)
spin unlock() is a preemption point

Spinlocks are not optimised away on UP anymore

Become similar to mutexes with the Non-Preemptive
Protocol (NPP)

Again, they must be held for very short times!!!

Sistemi Operativi 2 – p. 10

Sleeping in Atomic Context

We call atomic context a CPU context in which it is not
possible to sleep, block the current task, or invoke the
scheduler

Interrupt handlers
Scheduler code
Critical sections protected by spinlocks
. . .

What to do if I need to call a possibly-blocking function
from atomic context?

Don’t do it!!!
Try using the non-blocking version of the function...
Defer the work, to execute it later in a proper
context → workqueues

Sistemi Operativi 2 – p. 11

Workqueues - 1

Allow to schedule the execution of a function in the
future

The function will execute in a task context

Lower priority than interrupt handlers, higher priority
than user processes

Using a workqueue:
include <linux/workqueue.h>

Creating: wq = create workqueue(name)

Declaring the work to be done:
DECLARE WORK(work, function, data) (or:
INIT WORK() + PREPARE WORK()

Scheduling the work: queue work(wq, work)

Destroying: destroy workqueue(wq)

Sistemi Operativi 2 – p. 12

Workqueues - 2

After some work is scheduled for execution on a
workqueue, the function will be called (in the future) in
the context of a kernel thread serving the workqueue

It is possible to force the execution of a workqueue (and
to wait for it) by using flush workqueue(wq)

It is possible to schedule some work to be executed
after a timeout (queue delayed work())

It is possible to cancel the execution of some work
(cancel delayed work())

After using it, a workqueue can be destroyed
(destroy workqueue())

Sistemi Operativi 2 – p. 13

	Critical Sections in Kernel Code
	Blocking is Bad when...
	Summing up...
	Spinlocks - The Origin
	Spinlocks - Implementation
	Spinlocks - Constraints
	Spinlocks in Linux
	Spinlocks - Evolution
	Spinlocks and Kernel Preemption
	Sleeping in Atomic Context
	Workqueues - 1
	Workqueues - 2

