
Real Time Operating Systems
The Timer Latency

Luca Abeni

Real Time Operating Systems – p. 1



Latency

Latency: measure of the difference between the
theoretical and actual schedule

Task τ expects to be scheduled at time t . . .

. . . but is scheduled at time t′

⇒ Latency L = t′ − t

The latency L can be modelled as a blocking time ⇒

affects the guarantee test

If L is too high, only few task sets result to be
schedulable

The latency must be bounded: ∃Lmax : L < Lmax

The latency bound Lmax cannot be too high

Real Time Operating Systems – p. 2



Sources of Latency

A task τi is a stream of jobs Ji,j arriving at time ri,j

Job Ji,j is scheduled at time t′ > ri,j

t′ − ri,j is given by the sum of various components:
1. Ji,j ’s arrival is signalled at time ri,j + L1

2. Such event is served at time ri,j + L1 + L2

3. Ji,j is actually scheduled at ri,j + L1 + L2 + L3

L1 2 L3L

Real Time Operating Systems – p. 3



Analysis of the Various Sources

L = L1 + L2 + L3

L3 is the scheduler latency
Interference from higher priority tasks
Already accounted by the guarantee tests → let’s not
consider it

L2 is the non-preemptable section latency, called Lnp

Due to non-preemptable sections in the kernel,
which delays the response to hardware interrupts
It is composed by various parts: interrupt disabling,
bottom halves delaying, . . .

L1 is due to the delayed interrupt generation

Real Time Operating Systems – p. 4



Interrupt Generation Latency

Hardware interrupts are generated by external devices

Sometimes, a device must generate an interrupt at time
t . . .

. . . but actually generates it at time t′ = t + Lint

Lint is the Interrupt Generation Latency
It is due to hardware issues
It is generally small compared to Tnp

Exception: if the device is a timer device, the
interrupt generation latency can be quite high

Timer Resolution Latency Ltimer

The timer resolution latency Ltimer can often be much
larger than the non-preemptable section latency Lnp

Real Time Operating Systems – p. 5



The Timer Resolution Latency

Kernel timers are generally implemented by using a
hardware device that produces periodic interrupts

Periodic timer interrupt → tick

Example: periodic task (setitimer(), Posix timers,
clock nanosleep(), . . .) τi with period Ti

At the end of each job, τi sleeps for the next activation

Activations are triggered by the periodic interrupt

Periodic tick interrupt, with period T tick

Every T tick, the kernel checks if the task must be
woken up

If Ti is not multiple of T tick, τi experiences a timer
resolution latency

Real Time Operating Systems – p. 6



The Periodic Tick

Traditional operating systems: timer device
programmed to generate a periodic interrupt

Example: in a PC, the Programmable Interval Timer
(PIT) is programmed in periodic mode

At every tick the execution enter kernel space

The kernel executes and can
Wake up tasks
Adjust tasks priorities
Run the scheduler, when returning to user space →

possible preemption

The timer interrupt period is a trade-off between
responsiveness (low latency) and throughput (low
overhead)

Real Time Operating Systems – p. 7



Tick Tradeoff

Large T tick → large timer resolution latency

Small T tick → high number of interrupts
More switches between US and KS
Tasks are interrupted more often
⇒ Larger overhead

For non real-time systems, it is possible to find a
reasonable tradeoff

Linux 2.4: 10ms (HZ = 100)
Linux 2.6: HZ = 100, 250, or 1000
Other systems: T tick = 1/1024

Real Time Operating Systems – p. 8



Timer Resolution Latency

Experienced by all tasks that want to sleep for a
specified time T

T tick

timerL timerL

τi must wake up at time ri,j = jTi

But is woken up at time t′ =
⌈ ri,j

T tick

⌉

T tick

So, the timer resolution latency is bounded:

Ltimer = t′ − ri,j =
⌈ ri,j

T tick

⌉

T tick
− ri,j =

=
(⌈ ri,j

T tick

⌉

−
ri,j

T tick

)

T tick ≤ T tick

Real Time Operating Systems – p. 9



Problems with Periodic Ticks

Reducing T tick below 1ms is generally not acceptable. . .

. . .So, periodic tasks can expect a blocking time due to
Ltimer up to 1ms

How large is the effect on the schedulability tests?

Additional problems:

Tasks’ periods are rounded to multiples of T tick

Limit on the minimum task period: ∀i, Ti ≥ T tick

A lot of useless timer interrupts might be generated

T tick

Real Time Operating Systems – p. 10



Timers and Clocks

Remember?
Timer: generate an event at a specified time t

Clock: keep track of the current system time

A timer can be used to wake up a periodic task τ , a
clock can be used to read the system time
(gettimeofday())

Timer Resolution: minimum interval at which a periodic
timer can fire

If periodic ticks are used, the timer resolution is T tick

Clock Resolution: minimum difference between two
different times returned by the clock

What’s the expected clock resolution?

Real Time Operating Systems – p. 11



Clock Resolution

Traditional systems use a “tick counter” to keep track of
the time

Very fast clock: return the number of ticks (jiffies in
Linux) from the system boot

Clock Resolution: T tick

Modern PCs also provide higher resolution time
sources...

For example, the TSC (TimeStamp Counter) on x86
High-Resolution clock: use the TSC (or higher
resolution time source) for computing the time since
the last timer tick...

Summary: High-Resolution clocks are easy!
Every modern OS kernel provide them

Real Time Operating Systems – p. 12



Clock Resolution vs Timer Resolution

Even using a “traditional” periodic timer tick, it is easy to
provide high-resolution clocks

Time can be easily read with a high accuracy

On the other hand, timer resolution is limited by the
system tick T tick (= 1 / HZ)

It is impossible to generate events at arbitrary
instants in time, without latencies

Real Time Operating Systems – p. 13



Timer Devices

The timer device (example: the PIT - i8254 - on PCs)
generally provides two operational modes: periodic and
one-shot

Programmed writing a value C in a counter register

The counter register is decremented at a fixed rate

When the counter is 0, an interrupt is generated
If the device is programmed in periodic mode, the
counter register is automatically reset to the
programmed value
If the device is programmed in one-shot mode, the
kernel has to explicitly reprogram the device (setting
the counter register to a new value)

Real Time Operating Systems – p. 14



Using the One-Shot Mode

The periodic mode is easier to use! This is why most
kernels use it

When using one-shot mode, the timer interrupt handler
must:
1. Acknowledge the interrupt handler, as usual
2. Check if a timer expired, and do its usual stuff...
3. Compute when the next timer must fire
4. Reprogram the timer device to generate an interrupt

at the correct time

Steps 3 and 4 are particularly critical and difficult

Real Time Operating Systems – p. 15



Reprogramming the Timer Device - 1

When the kernel reprograms the timer device (step 4), it
must know the current time...

...But the last known time is the time when the interrupt
fired (before step 1)...

Example:
A timer interrupt fires at time t1
The interrupt handler starts (execution enters KS) at
time t′

1

Before returning to US, the timer must be
reprogrammed, at time t′′

1

Next interrupt must fire at time t2; the counter
register is loaded with t2 − t1

Next interrupt will fire at t2 + (t′′
1
− t1)

Real Time Operating Systems – p. 16



Reprogramming the Timer Device - 2

The error described previously accumulates

⇒ There is the risk to have a drift between real time and
system time

A free run counter which is not stopped at time t1 is
needed

The counter is synchronised with the timer device ⇒

the value of the counter at time t1 is known

This permits to know the time t′′
1
⇒ the new counter

register value can be computed correctly

On a PC, the second PIT counter, or the TSC, or the
APIC timer can be used as a free run counter

Final note: reprogramming the PIC is an expensive
operation ⇒ it is better to use other timer devices

Real Time Operating Systems – p. 17



High Resolution Timers

Serious real-time kernels implement High-Resolution
Timers programming the device in one-shot mode

Already implemented in RT-Mach
Also implemented in RTLinux, Resource Kernels,
RTAI, SHaRK, etc...

General-Purpose kernels are more concerned about
stability and overhead

Some techniques have been proposed to reduce the
overhead

Soft Timers
Firm Timers

HRT just entered the Linux kernel (they will be in 2.6.21)

Real Time Operating Systems – p. 18



HRT and Timer Ticks

Compatibility with “traditional” kernels:
The tick event can be emulated through
high-resolution timers
⇒ Timer device programmed to generate interrupts
both:

When needed to serve a timer, and
At tick boundaries

...But the “tick” concept is now useless
Tickless (or NO HZ) system
Good for saving power

In some lucky situations, average of 1 timer
interrupt per second!

Real Time Operating Systems – p. 19



Some Notes on Linux Timers

Terminology:
Timer → Clock Event Source

Traditional architecture:
Clocks and clock event sources are “scorrelated”
Implemented in architecture code
(linux/arch/xxx/kernel/...) ⇒ lot of code
duplication

The (architecture dependend) clock event source code
provides periodic ticks invoking generic
(linux/kernel) code that:

Performs process execution time accounting
Increase the system jiffies
Handles system timers

Real Time Operating Systems – p. 20



Linux Timers Handling

System timers stored in a timer wheel structure...
Optimized for insertion / extraction (O(1))
Scales well with the number of timers

Periodic check for expired timers can be inefficient
Structure based on a set of arrays
The first timers to expire are in the base array
When a time expire it might be necessary to move
timers from an array to the previous one (timers
cascading)

See linux/kernel/timer.c

Cascading works well when a lot of timers expire
together (timers clustering - on a tick boundary)

Real Time Operating Systems – p. 21



Efficient High-Resolution Timers

Timer wheel → inefficient in storing / handling
high-resolution timers

High resolution timers tend to expire “too often” (no
clusterin)

Some form of clustering is needed for supporting
efficient structures

Dedicated real-time systems do not care, but Linux
must have a scalable timers subsystem
Early high-resolution timers implementations on
Linux (KURT, Montavista high-res timers, etc...)
failed on this

A distinction between timers that need high resolution
and timers that can be clustered helps...

Real Time Operating Systems – p. 22



Timers and Timeouts

Most of the system timers really are timeouts
Used to detect anomalies and error conditions
Do not fire in general
Must be possible to efficiently insert and remove
them from the timer list
Do not need high resolution (can be clustered)

Other timers need high resolution
They generally expire
No need to efficiently remove them from the timer list

Real Time Operating Systems – p. 23



HRTimers in Linux

hrtimers: Rework the timer wheel to allow efficient
handling of high-resolution timers

GTOD (Generic Time of Day): rework the clock
subsystem moving most of the code from
architecture-dependent to generic code

Remove code duplication
Remove dependency on periodic tick

clockevents: generic (non arch-dependent)
infrastructure for handling clock event sources

Remove code duplication
Make it possible to reprogram the timer device

Real Time Operating Systems – p. 24


	Latency
	Sources of Latency
	Analysis of the Various Sources
	Interrupt Generation Latency
	The Timer Resolution Latency
	The Periodic Tick
	Tick Tradeoff
	Timer Resolution Latency
	Problems with Periodic Ticks
	Timers and Clocks
	Clock Resolution
	Clock Resolution vs Timer Resolution
	Timer Devices
	Using the One-Shot Mode
	Reprogramming the Timer Device - 1
	Reprogramming the Timer Device - 2
	High Resolution Timers
	HRT and Timer Ticks
	Some Notes on Linux Timers
	Linux Timers Handling
	Efficient High-Resolution Timers
	Timers and Timeouts
	HRTimers in Linux

