
Real Time Operating Systems
RootFS Creation: Summing Up

Luca Abeni

Real Time Operating Systems – p.

System Boot

System boot → the CPU starts executing from a
well-known address

ROM address: BIOS → read the first sector on the boot
device, and executes it

Bootloader (GRUB, LILO, U-Boot, . . .)
In general, load a kernel and an “intial ram disk”
The initial fs image isn’t always needed (example:
netboot)

Kernel: from arm-test-*.tar.gz

Initial filesystem?
Loaded in RAM without the kernel help
Generally contains the boot scripts and binaries

Real Time Operating Systems – p.

Initial Filesystem

Old (2.4) kernels: Init Ram Disk (initrd); New (2.6)
kernels: Init Ram Filesystem (initramfs)

Generally used for modularized disk and FS drivers
Example: if IDE drivers and Ext2 FS are modules
(not inside the kernel), how can the kernel load them
from disk?
Solution: boot drivers can be on initrd / initramfs

The bootloader loads it from disk with the kernel
The kernel creates a “fake” fs based on it
Modules are loaded from it

Embedded systems can use initial FS for all the binaries

Qemu does not need a bootloader to load kernel and
initial FS (-kernel and -initrd)

Real Time Operating Systems – p.

Init Ram Filesystem

Used in 2.6 kernels

It is only a RAM FS: no real filesystem metadata on a
storage medium

All the files that must populate the FS are stored in a
cpio package (similar to tar or zip file)

The bootloader loads the cpio file in ram

At boot time, the kernel “uncompresses” it, creating the
RAM FS, and populating it with the files contained in the
archive

The cpio archive can be created by using the cpio -o
-H newc command (see man cpio)

Full command line: find . | cpio -o -H newc |
gzip > <file name>

Real Time Operating Systems – p.

How to Populate an Init Filesystem

Some executables in /bin and /sbin

Configuration files in /etc

Dynamically linked binaries → shared objects in /lib

The kernel starts /init as an init process
If a real “init” program is used ⇒ /etc/inittab

Your inittab might reference programs like getty
that you need to provide

Executables for /bin and /sbin can be provided by
busybox

Kernel → Linux
User Space (init filesystem) → busybox

Real Time Operating Systems – p.

Init Ram Disk

Only kind of init filesystem supported in old (2.4) kernels

A Ram Disk device is used as a block device for the init
filesystem

Difference respect to initramfs: there are FS
metadata in the block device
Real filesystem: FAT, ext2, ext3, reiserfs, . . .

An initrd can be created by:
1. Creating an empty file (something like dd

if=/dev/zero of= ...)
2. Creating a filesystem on it (by using mkfs.* ...)
3. Mounting the FS with a loop device (mount -o

loop ...)
4. Writing the files in it

Real Time Operating Systems – p.

Creating an InitRD

An initrd can be created similarly to an initramfs...

...But you generally need to be root
Only the root can mount the ram disk

Moreover, some space is wasted by the FS metadata in
the initrd image

The “Ram Disk” block device must be enabled in the
kernel

As an alternative, e2fstools (filesistem access
implemented in user space) can be used to fill the initrd

No need to be root

Real Time Operating Systems – p.

	System Boot
	Initial Filesystem
	Init Ram Filesystem
	How to Populate an Init Filesystem
	Init Ram Disk
	Creating an InitRD

