- N

Real Time Operating Systems and
Middleware

Real-Time Programming I nterfaces

Luca Abeni

abeni @it.unitn.it

Needsfor a Real-Time Interface

- N

Real-Time applications might need to:
» Implement a periodic / sporadic behaviour

» Schedule themselves with fixed priorities (RM, DM,
etc...)

» Disable paging for their memory (or disable

mechanisms that introduce unpredictabllities)
Which Application Programming Interface (API) Is

needed?

s Which are the requirements for real-time
applications?

s For example: is the standard Unix APl enough?

» How should we extend it to support real-time

L applications? J

Real Time Operating Systems and Middleware — p. 2

A Real-Time API
- N

API: Application programming Interface
» Source code interface
» Provides functions, data structures, macros, ...
s Specified in a programming language
s Weuse C
Of course, we want to use a standard API

» A program written by using a standard API can be
easily ported to new architectures (often, a simple
recompilation is needed)

o Refrasing our previous question: is any standard API
capable to support real-time applications?

o |

Real Time Operating Systems and Middleware — p. 3

POSI X
- N

POSIX: portable operating system Interface

s Family of IEEE / ISO / IEC standards defining the
API, services, and standard applications provided by
a unix like OS

s Original standard: IEEE 1003.1-1988; today, more
than 15 standards

s Interaction with “Single UNIX Specification” =
iInformation available at

Real-Time POSIX: POSIX.1b, Real-time extensions
s Priority Scheduling
» Clocks and Timers, Real-Time Signals

L » ... J

Real Time Operating Systems and Middleware — p. 4

http://opengroup.org/onlinepubs/009695399

|mplementing Periodic Tasks

- N

#® Clocks and Timers can be used for implementing
peridic tasks

1 voi d *Peri odi cTask(void *arg)
2 {

3 <initialization>;

4 <start periodic tinmer, period = T>
5 while (cond) {

6 <read sensors>;

7 <updat e out put s>;

8 <updat e state vari abl es>;
9 <wai t next activation>;
10 }

11 }

How can it be implemented using the C language?

Which kind of API is needed to fill the following blocks:
s <start periodic tiner>
L s <walt next activation> J

Real Time Operating Systems and Middleware — p. 5

Sleeping for the Next Job

B o
TR N T I A = I .

0 2 4 6 8 10 12 14 16 18 20

Firstidea: on job termination, sleep until the next
release time

& <wait next activation>:
» Read current time
s 0 = next activation time - current time
s usl eep(9)

voi d wait_next _activation(void);

{
getti meof day(&t v, NULL);

d =nt - (tv.tv_sec * 1000000 + tv.tv_usec);
nt += period; usleep(d);

}

|

Real Time Operating Systems and Middleware — p. 6

OOk WDN PR

Problemswith Relative Sleeps

. N

reemption can happen inwai t _next _acti vati on()

O R .

o

0 2 4 6 8 10
o |f preemption happens between get ti neof day() and
usl eep() ...
... The task ends up sleeping for the wrong amount of
time!!!
(R s ™| 1 .
0 2 4 6 8 10 0 2 4 6 8 10

® Correctly sleeps for 2ms # Sleeps for 2ms; should
sleep for 0.5ms

o |

Real Time Operating Systems and Middleware — p. 7

Using Periodic Signals
B -

The “relative sleep” problem can be solved by a call
iImplementing a periodic behaviour

#® Unix systems provide a system call for setting up a
periodic timer

setitimer(int which, const struct i1tinerval =val ue,
struct i1timerval =*oval ue)

s | TI MER.REAL.: timer fires after a specified real time.
SI GALRMis sent to the process

s | TI MER.VI RTUAL: timer fires after the process
consumes a specified amount of time

s | TI MER.PROF: process time + system calls
® <start periodic tiner>canusesetitinmer()

|

Real Time Operating Systems and Middleware — p. 8

Using Periodic Signals - setitimer ()

o

-

1 #define wait _next _activation pause

2

3 static void sighand(int s)

4 {

5 }

6

7 int start _periodic tinmer(uint64_t offs, int period)
8 {

9 struct itinmerval t;

10

11 t.it _value.tv_sec = offs / 1000000;

12 t.it _value.tv_usec = offs % 1000000;

13 t.it _interval.tv_sec = period / 1000000;
14 t.it _interval.tv_usec = period % 1000000;
15

16 si gnal (SI GALRM si ghand) ;

17

18 return setitinmer(l Tl MER REAL, &t, NULL);
19 }

Tryww. dit.unitn.it/~abeni/RTOS/ periodic-1.c

o |

Real Time Operating Systems and Middleware —p. 9

www.dit.unitn.it/~abeni/RTOS/periodic-1.c

Enhancements

- N

#® The previous example uses an empty handler for
S| GALRM

This can be avoided by using si gwai t ()
Nt sigwalt(const sigset t xset, Iint *sig)

» Select a pending signal from set
s Cleart

» Return the signal number in si g
»

If no signal in set is pending, the thread is
suspended

o |

Real Time Operating Systems and Middleware — p. 10

setitimer () + sigwait()

void wait_next activation(voi d)

{

}

I nt dunmy;
sigwait (&sigset, &lummy);

Int start_periodic tinmer(uint64_t offs, int period)

{

struct itinerval t;

t.it _value.tv_sec = offs / 1000000;
t.it_value.tv_usec = offs % 1000000;
t.it _interval.tv_sec = period / 1000000;
t.it _interval.tv_usec = period % 1000000;

si genpt yset (&si gset) ;
si gaddset (&si gset, S| GALRM ;
si gprocmask(SI G_BLOCK, &sigset, NULL);

return setitinmer(l Tl MER REAL, &, NULL);

|

Real Time Operating Systems and Middleware — p. 11

Enhancements

- N

Periodic timers have a big problem:

s “Timers will never expire before the requested time,
Instead expiring some short, constant time
afterwards, dependent on the system timer
resolution”

o TIry
ww, dit.unitn.it/~abeni/RTOS/ periodic-2.c
s The period is 6ms instead of 5ms!!!
s HZ = 1000 = up to 1ms error in itimer (accumulates)

Solution: decrease peri od by half jiffy
Int start_periodic tinmer(uint64 t offs, int period)

{

struct itinerval t;

period -= 500;
t.it _value.tv_sec = offs / 1000000;

Real Time Operating Systems and Middleware — p. 12

1
2
3
4
5
6
7

www.dit.unitn.it/~abeni/RTOS/periodic-2.c

Clocks& Timers

-

Let’s look at the first setiti ner () parameter:
s | TI MER.REAL

s | TI MER.VI RTUAL

s | TI MNER.PROF

It selects the timer: every process has 3 interval timers

timer: abstraction modelling an entity which can
generate events (interrupts, or signal, or asyncrhonous

calls, or...)

clock: abstraction modelling an entity which provides
the current time

» Clock: “what time is it?”
s Timer: “wake me up at time ¢” J

Real Time Operating Systems and Middleware — p. 13

POSI X Clocks & Timers
-

f.o The traditional Unix API provides each process with
three interval timers, connected to three different clocks

s Real time
o Process time
s Profiling

= only one real-time timer per process!!!

POSIX (Portable Operating System Interface):

» Different clocks (must provide at least
CLOCK_REALTI ME, can provide CLOCK_MONOTONI C)

» Multiple timers per process (each process can
dynamically allocate and start timers)

» A timer firing generates an asyncrhonous event
L which is configurable by the program J

Real Time Operating Systems and Middleware — p. 14

POSIX Timers
- N

POSIX timers are per process
#® A process can create a timer with t i ner _cr eat e()

int tinmer _create(clockid t c id, struct sigevent *e, tiner t *t id)

» C_i d specifies the clock to use as a timing base

» e describes the asynchronous notification to occur
when the timer fires

o On success, the ID of the created timer is returned In
t.id

A timer can be armed (started) withti ner _setti me()

int timer_settinme(tinmer_t timerid, int flags,
const struct itinerspec *v, struct itinerspec *ov)

= flags: TIMERABSTI ME |

Real Time Operating Systems and Middleware — p. 15

POSIX Timers

- N

#® POSIX Clocks and POSIX Timers are part of RT-POSIX

To use them in real programs, | i brt has to be linked
1. Get
www. dit.unitn.it/~abeni/RTCS/ periodic-3.cC
2. gcc -Wall periodic-3.c -Irt -0 ptest
3. The -1 rt option links librt, that provides
timer create(),timer_settine(), etc...

On some distributions, libc does not properly support
these “recent” calls = we can work around this problem
by providing missing prototypes, etc... (see periodic-3.c)

o |

Real Time Operating Systems and Middleware — p. 16

www.dit.unitn.it/~abeni/RTOS/periodic-3.c

POSIX Timers & Periodic Tasks
-

Int start_periodic tinmer(uint64 t offs, int period)

{

struct itinerspec t;

struct sigevent sigev;
timer _t tinmer;

const int signal = S| GALRM
i nt res;

.it_value.tv_sec = offs / 1000000;
.it_value.tv_nsec = (offs % 1000000) =* 1000;

it _interval.tv_sec = period / 1000000;

it _interval.tv_nsec = (period % 1000000) * 1000;

~ ~ ~ ~-

si genpt yset (&si gset); sigaddset(&sigset, signal);
si gprocmask(SI G_ BLOCK, &sigset, NULL);

nmenset (&si gev, 0, sizeof(struct sigevent));
sigev.sigev_notify = SI GEV_SI GNAL; sigev.sigev_signo = signal;
res = tinmer_create(CLOCK MONOTONI C, &sigev, &tiner);
If (res < 0) {
return res;
}

return tinmer_settinme(tiner, 0, &, NULL);

Real Time Operating Systems and Middleware — p. 17

Using Absolute Time
B -

#® POSIX clocks and timers provide Absolute Time
» The “relative sleeping problem” can be easily solved

» Instead of reading the current time and computing ¢
based on it, wai t _next _acti vati on() can directly
wait for the absolute arrival time of the next job

#® The cl ock_nanosl| eep() function must be used

i nt cl ock _nanosl eep(clockid t c_id, int flags,
const struct tinmespec *rqtp,
struct tinespec *rntp)

s The TI MER_ABSTI ME flag must be set

» The next activation time must be explicitly computed
andsetinrqtp

L s Inthis case, the r nt p parameter is not important

|

Real Time Operating Systems and Middleware — p. 18

| mplementation with clock nanosleep

o

0O~NO O WDN P

B

static struct tinespec r;
static int period;

static void wait_next_activation(void)

{
cl ock_nanosl eep(CLOCK _REALTI ME, TI MER ABSTI ME, &r, NULL);
ti mespec_add us(&, period);
}
int start_periodic_tinmer(uint64_t offs, int t)
{
cl ock_getti me(CLOCK_REALTI ME, &r);
ti mespec_add us(&, offs);
period = t;
return O;
}

® cl ock_gettine is used to initialize the arrival time
#® The example code uses global variables r (next arrival

time) and peri od. Do not do it in real code! J

Real Time Operating Systems and Middleware — p. 19

Some Final Notes
-

Usual example; periodic tasks implemented by sleeping

fo an absolute time:

ww. dit.unitn. 1t/ ~abeni/RTOS periodic-4.cC

» Exercize: how can we remove global variables?

Summing up, periodic tasks can be implemented by

» Using periodic timers

s Sleeping for an absolute time

Timers often have a limited resolution (generally

multiple of a system tick)

s In system’s periodic timers (itimer(), etc...) the error
often sums up

In modern systems, clock resolution is generally not a

problem o

Real Time Operating Systems and Middleware — p. 20

www.dit.unitn.it/~abeni/RTOS/periodic-4.c

Exercize: Cyclic Executive

- N

Implement a simple cyclic executive

» Three tasks, with periods 77 = 50ms, T5 = 100ms,
and 73 = 150ms

» Tasks’ bodies are In
www. dit.unitn.it/~abeni /RTGS/ cyclic test.c

» Use the mechanism you prefer for implementing the
periodic event (minor cycle)

Some hints:

» Compute the minor cycle

» Compute the major cycle

» S0, we need a periodic event every ... ms

s What should be done when this timer fires?

~® Done? So, try 7| = 60ms, Th = 80ms, and T3 = 120ms

Real Time Operating Systems and Middleware — p. 21

www.dit.unitn.it/~abeni/RTOS/cyclic_test.c

Remember?

A I 40Hz | 25 ms A

B 20Hz | 50 ms T

10Hz |100 ms

=gcd (minor cycle)
=lcm (major cycle)

C,+C,<A
||_ C, +C.<A

guarantee:

Real Time Operating Systems and Middleware — p. 22

| mplementation

—

&

i

=,

1

minor

cycle

Real Time Operating Systems and Middleware — p. 23

	Needs for a Real-Time Interface
	A Real-Time API
	POSIX
	Implementing Periodic Tasks
	Sleeping for the Next Job
	Problems with Relative Sleeps
	Using Periodic Signals
	Using Periodic Signals - setitimer()
	Enhancements
	setitimer()
+ sigwait()
	Enhancements
	Clocks & Timers
	POSIX Clocks & Timers
	POSIX Timers
	POSIX Timers
	POSIX Timers & Periodic Tasks
	Using Absolute Time
	Implementation with clock_nanosleep
	Some Final Notes
	Exercize: Cyclic Executive
	Remember?
	Implementation

