Real Time Operating Systems and Middleware

Some Exercises about Task Schedulability

Luca Abeni
abeni@dit.unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale
Scuola Superiore Sant’Anna
Pisa -Italy
Exercise

Given the following task set T:

<table>
<thead>
<tr>
<th>Task</th>
<th>C_i</th>
<th>D_i</th>
<th>T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>τ_2</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>τ_3</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>τ_4</td>
<td>3</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Compute the response time for all the tasks if priorities are assigned according to RM, or DM

Solution: If RM is used,

$$R(\tau_1) = 1 \quad R(\tau_2) = 3 \quad R(\tau_3) = 7 \quad R(\tau_4) = 18$$

If DM is used,

$$R(\tau_1) = 1 \quad R(\tau_2) = 7 \quad R(\tau_3) = 4 \quad R(\tau_4) = 18$$
Solution - I

\[R_1 = 1 \]

\[R_2^{(0)} = 2 \quad R_2^{(1)} = 2 + \left\lceil \frac{2}{4} \right\rceil \cdot 1 = 3 \]
\[R_2^{(2)} = 2 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 = 3 \]

\[R_3^{(0)} = 3 \quad R_3^{(1)} = 3 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 + \left\lceil \frac{3}{9} \right\rceil \cdot 2 = 6 \]
\[R_3^{(2)} = 3 + \left\lceil \frac{6}{4} \right\rceil \cdot 1 + \left\lceil \frac{6}{9} \right\rceil \cdot 2 = 7 \quad R_3^{(3)} = 3 + \left\lceil \frac{7}{4} \right\rceil \cdot 1 + \left\lceil \frac{7}{9} \right\rceil \cdot 2 = 7 \]

\[R_4^{(0)} = 3 \]
\[R_4^{(1)} = 3 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 + \left\lceil \frac{3}{9} \right\rceil \cdot 2 + \left\lceil \frac{3}{12} \right\rceil \cdot 3 = 9 \]
\[R_4^{(2)} = 3 + \left\lceil \frac{9}{4} \right\rceil \cdot 1 + \left\lceil \frac{9}{9} \right\rceil \cdot 2 + \left\lceil \frac{9}{12} \right\rceil \cdot 3 = 10 \]
\[R_4^{(3)} = 3 + \left\lceil \frac{10}{4} \right\rceil \cdot 1 + \left\lceil \frac{10}{9} \right\rceil \cdot 2 + \left\lceil \frac{10}{12} \right\rceil \cdot 3 = 13 \]
Solution - II

\[R_4^{(4)} = 3 + \left\lfloor \frac{13}{4} \right\rfloor \cdot 1 + \left\lfloor \frac{13}{9} \right\rfloor \cdot 2 + \left\lfloor \frac{13}{12} \right\rfloor \cdot 3 = 17 \]
\[R_4^{(5)} = 3 + \left\lfloor \frac{17}{4} \right\rfloor \cdot 1 + \left\lfloor \frac{17}{9} \right\rfloor \cdot 2 + \left\lfloor \frac{17}{12} \right\rfloor \cdot 3 = 18 \]
\[R_4^{(6)} = 3 + \left\lfloor \frac{18}{4} \right\rfloor \cdot 1 + \left\lfloor \frac{18}{9} \right\rfloor \cdot 2 + \left\lfloor \frac{18}{12} \right\rfloor \cdot 3 = 18 \]

What happens if DM is used?
Left as a simple exercise for the reader...
Wait next week for the solution!!!
Exercise

Given the non periodic task τ_1 defined as follows:

- If $j \% 2 == 0$, then $r_{1,j} = 8 \cdot \frac{j}{2}$;
- If $j \% 2 == 1$, then $r_{1,j} = 3 + 8 \cdot \left\lfloor \frac{j}{2} \right\rfloor$;
- $\forall j, c_{1,j} = 2$;
- The priority of task τ_1 is $p_1 = 3$.

The task set \mathcal{T} is composed by τ_1, $\tau_2 = (2, 12, 12)$, and $\tau_3 = (3, 25, 25)$, with $p_2 = 2$ and $p_3 = 1$. Compute the worst case response times for τ_2 and τ_3.

Real Time Operating Systems and Middleware – p. 5
The arrival pattern for task τ_1 is:

Since τ_1 is the highest priority task in the system, its response time is equal to $C_1 = 2$ for all its jobs. Now the problem is computing the “interference” from τ_1 to τ_2 and τ_3.
The equation used for computing the response time must be extended a little bit...

\[R_i^{(k)} = C_i + \sum_{h=1}^{i-1} N_{\text{inst}}(R_i^{(k-1)})C_h \]

where \(N_{\text{inst}}(t) \) is the number of instances of task \(\tau_h \) arrived in \([0, t]\)

For periodic tasks, we already know that \(N_{\text{inst}}(t) = \left\lceil \frac{t}{T_h} \right\rceil \)

For \(\tau_1 \), we have

\[N_{\text{inst}}_1(t) = \left\lfloor \frac{t}{8} \right\rfloor + \left\lfloor \frac{\max(0, t - 3)}{8} \right\rfloor \]

The first term is for \(j \% 2 = 0 \); the second term is for \(j \% 2 = 1 \)
Applying the equation presented above, we have: τ_2:

\[
\begin{align*}
R_2^{(0)} &= 2 + 2 = 4 \\
R_2^{(1)} &= 2 + 2 \cdot 2 = 6 \\
R_2^{(2)} &= 2 + 2 \cdot 2 = 6
\end{align*}
\]

τ_3:

\[
\begin{align*}
R_3^{(0)} &= 3 + 2 + 2 = 7 \\
R_3^{(1)} &= 3 + 2 \cdot 2 + 1 \cdot 2 = 9 \\
R_3^{(2)} &= 3 + 3 \cdot 2 + 1 \cdot 2 = 11 \\
R_3^{(3)} &= 3 + 3 \cdot 2 + 1 \cdot 2 = 11
\end{align*}
\]
A periodic task $\tau'_1 = (2, 3)$ consumes more time than $\tau_1 \Rightarrow$ the response times for τ_2 and τ_3 computed using τ'_1 are pessimistic bounds...

$$R^{(0)}_2 = 2 + 2 = 4 \quad R^{(1)}_2 = 2 + \left\lceil \frac{4}{2} \right\rceil \cdot 2 = 6$$
$$R^{(2)}_2 = 2 + \left\lceil \frac{6}{2} \right\rceil \cdot 2 = 6$$

$$R^{(0)}_3 = 3 + 2 + 2 = 7 \quad R^{(1)}_3 = 3 + \left\lceil \frac{7}{3} \right\rceil \cdot 2 + \left\lceil \frac{7}{12} \right\rceil \cdot 2 = 11$$
$$R^{(2)}_3 = 3 + \left\lceil \frac{11}{3} \right\rceil \cdot 2 + \left\lceil \frac{11}{12} \right\rceil \cdot 2 = 13 \quad R^{(3)}_3 = 3 + \left\lceil \frac{13}{3} \right\rceil \cdot 2 + \left\lceil \frac{13}{12} \right\rceil \cdot 2 = 17$$
$$R^{(4)}_3 = 3 + \left\lceil \frac{17}{3} \right\rceil \cdot 2 + \left\lceil \frac{17}{12} \right\rceil \cdot 2 = 19 \quad R^{(3)}_3 = 3 + \left\lceil \frac{19}{3} \right\rceil \cdot 2 + \left\lceil \frac{19}{12} \right\rceil \cdot 2 = 21$$
$$R^{(3)}_3 = 3 + \left\lceil \frac{21}{3} \right\rceil \cdot 2 + \left\lceil \frac{21}{12} \right\rceil \cdot 2 = 21$$
By the way, this is the resulting schedule:
This would have been the schedule of the resulting task set:

\[
\tau_1, \tau_2, \tau_3
\]