Real Time Operating Systems and Middleware

Some Exercizes about Task Schedulability

Luca Abeni

abeni@dit.unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale Scuola Superiore Sant'Anna

Pisa -Italy

Exercise

Given the following task set \mathcal{T} :

Task	C_i	D_i	T_i
$ au_1$	1	4	4
$ au_2$	2	9	9
$ au_3$	3	6	12
$ au_4$	3	20	20

Compute the response time for all the tasks if priorities are assigned according to RM, or DM

Solution: If RM is used,

$$R(\tau_1) = 1$$
 $R(\tau_2) = 3$ $R(\tau_3) = 7$ $R(\tau_4) = 18$

If DM is used,

$$R(\tau_1) = 1$$
 $R(\tau_2) = 7$ $R(\tau_3) = 4$ $R(\tau_4) = 18$

Solution - I

 $R_1 = 1$

$$R_2^{(0)} = 2 \qquad R_2^{(1)} = 2 + \left\lceil \frac{2}{4} \right\rceil \cdot 1 = 3$$
$$R_2^{(2)} = 2 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 = 3$$

$$R_{3}^{(0)} = 3 \qquad \qquad R_{3}^{(1)} = 3 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 + \left\lceil \frac{3}{9} \right\rceil \cdot 2 = 6 R_{3}^{(2)} = 3 + \left\lceil \frac{6}{4} \right\rceil \cdot 1 + \left\lceil \frac{6}{9} \right\rceil \cdot 2 = 7 \qquad \qquad R_{3}^{(3)} = 3 + \left\lceil \frac{7}{4} \right\rceil \cdot 1 + \left\lceil \frac{7}{9} \right\rceil \cdot 2 = 7$$

$$R_{4}^{(0)} = 3$$

$$R_{4}^{(1)} = 3 + \left\lceil \frac{3}{4} \right\rceil \cdot 1 + \left\lceil \frac{3}{9} \right\rceil \cdot 2 + \left\lceil \frac{3}{12} \right\rceil \cdot 3 = 9$$

$$R_{4}^{(2)} = 3 + \left\lceil \frac{9}{4} \right\rceil \cdot 1 + \left\lceil \frac{9}{9} \right\rceil \cdot 2 + \left\lceil \frac{9}{12} \right\rceil \cdot 3 = 10$$

$$R_{4}^{(3)} = 3 + \left\lceil \frac{10}{4} \right\rceil \cdot 1 + \left\lceil \frac{10}{9} \right\rceil \cdot 2 + \left\lceil \frac{10}{12} \right\rceil \cdot 3 = 13$$

Solution - II

$$R_{4}^{(4)} = 3 + \left\lceil \frac{13}{4} \right\rceil \cdot 1 + \left\lceil \frac{13}{9} \right\rceil \cdot 2 + \left\lceil \frac{13}{12} \right\rceil \cdot 3 = 17$$

$$R_{4}^{(5)} = 3 + \left\lceil \frac{17}{4} \right\rceil \cdot 1 + \left\lceil \frac{17}{9} \right\rceil \cdot 2 + \left\lceil \frac{17}{12} \right\rceil \cdot 3 = 18$$

$$R_{4}^{(6)} = 3 + \left\lceil \frac{18}{4} \right\rceil \cdot 1 + \left\lceil \frac{18}{9} \right\rceil \cdot 2 + \left\lceil \frac{18}{12} \right\rceil \cdot 3 = 18$$

What happens if DM is used? Left as a simple exercise for the reader... Wait next week for the solution!!!

Exercise

Given the non periodic task τ_1 defined as follows:

• If
$$j\%2 == 0$$
, then $r_{1,j} = 8 \cdot \frac{j}{2}$;

• If
$$j\%2 == 1$$
, then $r_{1,j} = 3 + 8 \cdot \lfloor \frac{j}{2} \rfloor$;

•
$$\forall j, c_{1,j} = 2;$$

• The priority of task
$$\tau_1$$
 is $p_1 = 3$.

The task set T is composed by τ_1 , $\tau_2 = (2, 12, 12)$, and $\tau_3 = (3, 25, 25)$, with $p_2 = 2$ and $p_3 = 1$. Compute the worst case response times for τ_2 and τ_3 .

Solution - I

The arrival pattern for task τ_1 is:

Since τ_1 is the highest priority task in the system, its response time is equal to $C_1 = 2$ for all its jobs. Now the problem is computing the "interference" from τ_1 to τ_2 and τ_3 .

Solution - II

The equation used for computing the response time must be extended a little bit...

$$R_i^{(k)} = C_i + \sum_{h=1}^{i-1} Ninst_h(R_i^{(k-1)})C_h$$

where $Ninst_h(t)$ is the number of instances of task τ_h arrived in [0, t]For periodic tasks, we already know that $Ninst_h(t) = \left\lceil \frac{t}{T_h} \right\rceil$ For τ_1 , we have

$$Ninst_1(t) = \left\lceil \frac{t}{8} \right\rceil + \left\lceil \frac{\max(0, t-3)}{8} \right\rceil$$

The first term is for j%2 == 0; the second term is for j%2 == 1

Solution - III

Applying the equation presented above, we have: τ_2 :

$$R_2^{(0)} = 2 + 2 = 4$$
 $R_2^{(1)} = 2 + 2 \cdot 2 = 6$
 $R_2^{(2)} = 2 + 2 \cdot 2 = 6$

 au_3 !

$$R_3^{(0)} = 3 + 2 + 2 = 7 \qquad R_3^{(1)} = 3 + 2 \cdot 2 + 1 \cdot 2 = 9 R_3^{(2)} = 3 + 3 \cdot 2 + 1 \cdot 2 = 11 \qquad R_3^{(3)} = 3 + 3 \cdot 2 + 1 \cdot 2 = 11$$

Alternative Solution

A periodic task $\tau'_1 = (2,3)$ consumes more time than $\tau_1 \Rightarrow$ the response times for τ_2 and τ_3 computed using τ'_1 are pessimistic bounds...

$$R_2^{(0)} = 2 + 2 = 4 \qquad R_2^{(1)} = 2 + \left\lceil \frac{4}{2} \right\rceil \cdot 2 = 6$$
$$R_2^{(2)} = 2 + \left\lceil \frac{6}{2} \right\rceil \cdot 2 = 6$$

Schedule

Schedule'

