
Real Time Operating Systems
Building a Test Filesystem

Luca Abeni

Real Time Operating Systems – p. 1

Testing CrossCompiled Binaries

We know:
How to compile an ARM executable
How to execute it by using Qemu

Remember: for dynamic executables, we need the
-L option to tell qemu where shared libraries are

But how to build a bootable filesystem for an embedded
device?

We need at least some basic directories:
/etc: contains some boot scripts and configuration
files
/lib: needed if we use dynamic executables.
Contains shared objects
/bin, /sbin: contain the executable files

Real Time Operating Systems – p. 2

Filesystems in Embedded Devices

First problem: how to generate executables for all the
commands in /bin and /sbin?

Second problem: embedded devices generally do not
have hard disks...

The filesystem is saved in flash disks... Smaller than
regular disks
The filesystem is mostly read-only...

Solutions:
BusyBox (www.busybox.net) implements all the
commands we need (and more!)
Use a ram FS. Not a real filesystem... Only a
collection of files read by linux on boot and saved in
a “fake” filesystem.

Real Time Operating Systems – p. 3

www.busybox.net

Compiling BusyBox

1. Download busybox-1.3.2.tar.gz and untar it

2. Be sure that the compiler is in your path (export
PATH=...)

3. make ARCH=arm
CROSS COMPILE=arm-unknown-linux-gnu-
menuconfig

Enable mount, mkdir, mdev, ls, echo, ash...

4. make ARCH=arm
CROSS COMPILE=arm-unknown-linux-gnu-

5. make ARCH=arm
CROSS COMPILE=arm-unknown-linux-gnu-
install

Real Time Operating Systems – p. 4

Simple etc Scripts

Write this in install/etc/init.d/rcS:
#! /bin/ash

mkdir -p /proc
mount -t proc proc /proc
mkdir -p /sys
mount -t sysfs sysfs /sys
mkdir -p /dev/pts
mount -t devpts devpts /dev/pts
echo /sbin/mdev > /proc/sys/kernel/hotplug
mdev -s
hostname TEST
ifconfig lo 127.0.0.1 up
/bin/ash

Write install/etc/passwd:
root::0:0:root:/root:/bin/ash

Real Time Operating Systems – p. 5

Last Steps

Copy the dynamic libraries in the target fs: cp -a
.../arm-unknown-linux-gnu/lib install

ln -s /etc/init.d/rcS install/init

cd install

find . | cpio -o -H newc | gzip >
../ramfs.img

To test with qemu, we need an ARM kernel...

Get the
http://www.qemu.org/arm-test-0.2.tar.gz
package from the qemu web site

Real Time Operating Systems – p. 6

http://www.qemu.org/arm-test-0.2.tar.gz

Testing the Image

Unpack arm-test-0.2.tar.gz somewhere: tar
xvzf arm-test-0.2.tar.gz

Run qemu-system-arm with the kernel from
arm-test-0.2.tar.gz:
qemu-system-arm -kernel arm-test/zImage.integrator -initrd

.../busybox-1.3.2/ramfs.img

Note: "-initrd <your image>"

You can use -nographic -append
"console=ttyAMA0" to run in text mode

Exercize: can you repeat everything for x86?

Real Time Operating Systems – p. 7

Obtaining a Kernel

We got zImage.integrator from a precompiled
package

How to compile it?
Need to compile the linux kernel from sources
ARM target → cross-compilation is needed
It is very important to properly compile the kernel

A big amount of disk space is needed → not possible
with a 100MB quota

Preliminary steps:
Download the linux kernel source from
http://www.kernel.org: linux-2.6.x.tar.bz2
Uncompress the tarball: tar xvjf
linux-2.6.x.tar.bz2

Real Time Operating Systems – p. 8

http://www.kernel.org

Compiling the Linux Kernel

cd .../linux-2.6.x

Download the kernel configuration file from
www.dit.unitn.it/~abeni/RTOS/arm-linux-config,
and copy it in .config

make ARCH=arm
CROSS COMPILE=arm-unknown-linux-gnu-
oldconfig

make ARCH=arm
CROSS COMPILE=arm-unknown-linux-gnu-

The compiled kernel is now in
arch/arm/boot/zImage

Real Time Operating Systems – p. 9

www.dit.unitn.it/~abeni/RTOS/arm-linux-config

	Testing CrossCompiled Binaries
	Filesystems in Embedded Devices
	Compiling BusyBox
	Simple etc Scripts
	Last Steps
	Testing the Image
	Obtaining a Kernel
	Compiling the Linux Kernel

