
C / C++ Coding Rules

Luca Abeni

luca.abeni@unitn.it

March 3, 2008

Abstract

This short document collects some simple and stupid coding rules for
writing understandable C or C++ code, and has been written to help the
students of the SO2 and RTOS courses (following these rules is recom-
mended when submitting a project for the SO2 or RTOS exam).

Please write me an email if you have comments, questions, etc...

1 Introduction

Before starting, a word of warning: note that this is an informal document,
presenting a lot of “rules of the thumb” that should be respected when writing
good C / C++ code, but every rule has its exceptions. So, the rules presented
here should be respected in general, but there are cases in which violating them
can be reasonable. Whenever you think you find one of those situations, you
should:

• double think about the code, and see if there really are not better solutions

• ask someone experienced (do not hesitate to send me an email: if you ask
reasonable questions in an understandable way, you’ll surely get an helpful
answer)

• if breaking a rule is really the right thing to do, document this fact, ex-
plaining why this violation is needed

From this short introduction, we can derive the first coding rule:

Coding Rule 1 Whenever you are breaking a coding rule (except this one),
put a short comment in the code explaining why the rule’s violation cannot be
avoided

Note that rule’s violations must be very infrequent.

1

2 Editing the Source Code

The code you write must be easy to read and to understand (I will have to
review it for evaluating your project... Writing understandable code is in your
interest).

So, first of all you must properly indent the code; you can use the indentation
style that you prefer (you are not forced to follow a specific indentation style),
but the indentation must be consistent (in general, something like indent -kr

<file>.c will do a reasonable job). Pay attention to the fact that some brain-
damaged text editors end up by mixing tabs and spaces, resulting in code that
is wrongly indented when edited with another program.

Finally, note that lines longer than 80 characters make the code more difficult
to read, so you should rarely use them.

Coding Rule 2 Indent the code consistently. Running indent on your code is
a good idea, and avoiding to mix tabs and spaces in the code is strongly suggested

as an extreme consequence of this rule, some software projects forbid tabs in
the source code.

Coding Rule 3 Do not use lines longer than 80 characters in your code

As a final suggestion, you can open your source files with the vim editor (this
is what I will use when I will review your project), and check if the code looks
good.

3 Compiling

First of all, always use a proper Makefile to compile your program.
Then, note that modern C and C++ compilers are generally very good in

detecting potential problems and bugs in the code, and can generate helpful
warnings. Such warnings are not fatal for the program compilation, but must
be taken very seriously:

Coding Rule 4 Always enable as many warnings as possible, and ensure that
no warnings are produced during the compilation

If you are developing under Linux, the above rule means:

• always use the -Wall gcc’s switch

• if the gcc’s standard output is redirected to /dev/null, then the compi-
lation should generate no output

(in other words: the CFLAGS variable in your Makefile must contain -Wall, and
the make > /dev/null command must generate no output).

2

4 Code Modularisation

When developing a complex software project, it is important to split the code
in different source files or software modules, to maintain the size and the scope
of each module reasonable. In particular, C projects are composed by .c files
(containing source code) and .h files (describing software interfaces):

• each .c file implements a software module and is compiled into a .o object
file1

• the various modules are then linked together with some libraries to gener-
ate an executable file

Each software module contains data (variables) and code (functions), and
not all of such functions and variables can be accessed from other modules: the
set of symbols that can be accessed from outside a module (exported symbols)
defines its interface, which is described in a header file (.h).

Figure 4 presents a very simple program composed by 2 separate modules
(the main module main.o and a module funcs.o containing some helper func-
tions). This is a very simple example, but it is already possible to note that:

1. global symbols that are not part of the interface (in this case, the status

variable) must be defined as static

2. each module generally includes the header defining its interface (funcs.c
includes funcs.h)

3. if a module uses services provided by a different module (in this case,
main.o uses function f(), which is defined in funcs.o), it must include
the header file defining the used interface (main.c includes funcs.h)

4. the declaration of symbols that are part of the interface must be in the
header file. The declaration of a function is its prototype (example: int

f(int input);), and the declaration of a variable is equal to the definition
+ the extern keyword (example: extern int debug;)

Note that in real life things are more complex because of “inline” functions
and static local variables, but such constructs are considered advanced topics
(use them only when you know what you are doing!), and will not be
considered in this document. Anyway, the previous considerations result in the
following rules:

Coding Rule 5 Never write function prototypes or extern declarations in .c

files (they must be in .h files)

1Note that the decomposition of the source code in modules is not arbitrary, but must be
performed to group similar functionalities in a single file. However, this discussion is out of
the scope of this document

3

Coding Rule 6 Always include all the needed header files. This means that
you should never see anything like warning: implicit declaration of function

‘...’

Coding Rule 7 Mark as many symbols as possible static. This means that if
a global variable or a function can be marked static, then it must be static.

This decreases the namespace pollution, and helps finding errors and cleaning
up the code (if a static symbol is not used in a module, the compiler will generate
a warning).

5 Final Remarks

The C and C++ standards provide various constructs that, although valid
from a syntactical point of view, should be used with extreme caution. The
(in)famous goto keyword is a good example: it is a perfectly legal construct,
but can lead to spaghetti programming. Hence, the following coding rule2:

Coding Rule 8 Never use goto statements (unless you really know what you
are doing)

Another example is the possibility to mix code and variable declarations,
initially introduced in the C++ and then in the C99 standard: the usefulness of
mixing code and variable declarations is debatable, and separating variable dec-
larations from code improves the source readability. So, students are requested
to respect the following rule:

Coding Rule 9 Variable declarations must be at the beginning of a block (be-
tween the ‘{’ and the first instruction)

This means that the code shown in Figure 2 is ok, whereas the code in Figure 1
is not.

As a suggestion, an empty line can be introduced after variable declarations
to separate them from the real code.

Also note that the C and C++ languages allow statements like for (int i

= 0; i < 10; i++), but some compilers get this feature wrong. So, do not use
it (otherwise you might obtain code that is not compatible with some very well
known commercial products).

2goto statements are often useful in handling error paths, but their usage is only suggested
to experienced programmers (who do not need these notes anyway)

4

/∗∗/
/∗ funcs . h : i n t e r f a c e d e f i n i t i o n f o r funcs . c ∗/
/∗∗/
extern i n t debug ;
i n t f (i n t input) ;
/∗ . . . ∗/

/∗∗/
/∗ funcs . c : some he lpe r f unc t i on s ∗/
/∗∗/
#inc lude ” funcs . h”

s t a t i c i n t s t a t e ;
i n t debug ;

i n t f (i n t input)
{

s t a t e = s t a t e + input / 2 ;

r e turn s t a t e + 5 ;
}
/∗ . . . ∗/

/∗∗/
/∗ main . c : main program f i l e ∗/
/∗∗/
#inc lude <s t d i o . h>
#inc lude ” funcs . h”

i n t main (i n t argc , char ∗argv [])
{

i n t in , out ;

/∗ . . . ∗/
out = f (in) ;
/∗ . . . ∗/

}
/∗ . . . ∗/

5

i n t main (i n t argc , char ∗argv [])
{

p r i n t f (” He l lo !\n ”) ;
i n t done = 0 ;
whi l e (! done) {

p r i n t f (” Looping . . . \ n ”) ;
FILE ∗ f ;
f = fopen (. . .) ;

/ ∗ . . . ∗ /
}

}

Figure 1: Example of mixed code and variable declarations.

i n t main (i n t argc , char ∗argv [])
{

i n t done = 0 ;

p r i n t f (” He l lo !\n ”) ;
whi l e (! done) {

FILE ∗ f ;

p r i n t f (” Looping . . . \ n ”) ;
f = fopen (. . .) ;

/ ∗ . . . ∗ /
}

}

Figure 2: Example of correct variable declarations.

6

