
Real Time Operating Systems and
Middleware

Real-Time Scheduling Analysis

Luca Abeni

abeni@dit.unitn.it

Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale

Scuola Superiore Sant’Anna

Pisa -Italy

Real Time Operating Systems and Middleware – p. 1



Response Time Analysis

Necessary and sufficient test: compute the worst-case
response time for every task

For every task τi:
Compute the worst case response time Ri for task τi

If Ri ≤ Di, then the task is schedulable
otherwise, the task is not schedulable

To compute Ri, no assumption on the priority
assignment is needed

The algorithm described in the next slides is valid for an
arbitrary priority assignment

The algorithm assumes periodic tasks with no offsets,
or sporadic tasks

Real Time Operating Systems and Middleware – p. 2



The Critical Instant

Tasks ordered by decreasing priority (i < j → pi > pj)

No assumptions about tasks offsets
⇒ consider the worst possible offsets combination
critical instant: a job Ji,j released at the critical
instant (for task τi) has the maximum response time
respect to all the other jobs in τi: ∀k, ρi,j ≥ ρi,k

This is a simplified definition (jobs deadlines
should be considered...)

Theorem: The critical instant for task τi occurs when
job Ji,j is released at the same time with a job in
every high priority task

If all the offsets are 0, the first job of every task is released at
the critical instant!!!

Real Time Operating Systems and Middleware – p. 3



Worst Case Response Time

To compute the worst case response time Ri for task τi:
We have to consider its computation time. . .

. . .And the computation time of the higher priority
tasks
Higher priority tasks can preempt task τi, and
increment its response time

0 2 4 6 8 10 12 14 16 18

τ1

τ2

τ3

Ri = Ci +
∑i−1

h=1

⌈

Ri

Th

⌉

Ch

Real Time Operating Systems and Middleware – p. 4



Computing the Response Time - I

Ri = Ci +
i−1
∑

h=1

⌈

Ri

Th

⌉

Ch

Urk!!! Ri = f(Ri)... How can we solve it?

There is no closed-form expression for computing the
worst case response time Ri

We need an iterative method to solve the equation

Real Time Operating Systems and Middleware – p. 5



Computing the Response Time - II

Iterative solution

Ri = limk→∞ R
(k)
i

R
(k)
i : worst case response time for τi, at step k

R
(0)
i : first estimation of the response time

We can start with R
(0)
i = Ci

R
(0)
i = Ci +

∑i−1
h=1 Ch saves 1 step

R
(0)
i = Ci(+

i−1
∑

h=1

Ch)

R
(k)
i = Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

Real Time Operating Systems and Middleware – p. 6



Computing the Response Time - III

Problem: are we sure that we find a valid solution?

The iteration stops when:

R
(k+1)
i = R

(k)
i or

R
(k)
i > Di (non schedulable);

This is a standard method to solve non-linear equations
in an iterative way

If a solution exists (the system is not overloaded), R
(k)
i

converges to it

Otherwise, the “R(k)
i > Di” condition avoids infinite

iterations

Real Time Operating Systems and Middleware – p. 7



Example

Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 9

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 8



Example

Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(1)
3 = C3 + 2 · C1 + 1 · C2 = 11

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 8



Example

Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(2)
3 = C3 + 3 · C1 + 2 · C2 = 15

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 8



Example

Consider the following task set: τ1 = (2, 5), τ2 = (2, 9),
τ3 = (5, 20); U = 0.872

R
(k)
i = Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(3)
3 = C3 + 3 · C1 + 2 · C2 = 15 = R

(2)
3

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 8



Another Example with DM

The method is valid for different priority assignments and deadlines
different from periods
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2, τ3 = (3, 10, 10), p3 = 1;
U = 0.72

R
(k)
i

= Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(0)
3 = C3 + 1 · C1 + 1 · C2 = 8

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 9



Another Example with DM

The method is valid for different priority assignments and deadlines
different from periods
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2, τ3 = (3, 10, 10), p3 = 1;
U = 0.72

R
(k)
i

= Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(1)
3 = C3 + 2 · C1 + 1 · C2 = 9

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 9



Another Example with DM

The method is valid for different priority assignments and deadlines
different from periods
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2, τ3 = (3, 10, 10), p3 = 1;
U = 0.72

R
(k)
i

= Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(2)
3 = C3 + 3 · C1 + 1 · C2 = 10

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 9



Another Example with DM

The method is valid for different priority assignments and deadlines
different from periods
τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2, τ3 = (3, 10, 10), p3 = 1;
U = 0.72

R
(k)
i

= Ci +

i−1
∑

h=1

⌈

R
(k−1)
i

Th

⌉

Ch

R
(3)
3 = C3 + 3 · C1 + 1 · C2 = 10 = R

(2)
3

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 9



Considerations

The response time analysis is an efficient algorithm
In the worst case, the number of steps N for the
algorithm to converge is exponential

It depends on the total number of jobs of higher
priority tasks that may be contained in the interval
[0, Di]:

N ∝

i−1
∑

h=1

⌈

Dh

Th

⌉

If s is the minimum granularity of the time, then in
the worst case N = Di

s
;

However, such worst case is very rare: usually, the
number of steps is low.

Real Time Operating Systems and Middleware – p. 10



Processor Demand Approach

Real Time Operating Systems and Middleware – p. 11



The Idea

Processor Demand approach has been proposed by
Lehoczky and others in 1989

Refined by Audsley and others in 1993 and by Baruah
in 1990

The basic idea is very simple: in any interval, the
computation demanded by all tasks in the set must
never exceed the available time

The problem is: how to compute the time demanded by
a task set T ?

Remember: we have to look only at jobs released at
the critical instant
Offsets = 0 ⇒ only consider the first job of each
task...

Real Time Operating Systems and Middleware – p. 12



The Processor Demand

Given an interval [t1, t2],

let Jt1,t2 be the set of jobs started after t1 and with
deadline lower than or equal to t2:

Jt1,t2 = {Ji,j : ri,j ≥ t1 ∧ di,j ≤ t2}

the processor demand in [t1, t2] is defined as:

W (t1, t2) =
∑

Ji,j∈Jt1,t2

ci,j

Worst case: use Ci instead of ci,j

Real Time Operating Systems and Middleware – p. 13



Computing the Processor Demand

Guaranteeing a task set T based on W (t1, t2) can take
a loooong time (need to check all the (t1, t2)
combinations in a hyperperiod?), but...

...We only need to check the first job Ji,1 of every task τi!

Let’s define Wi(t1, t2) as the time demanded in [t1, t2] by
all the tasks τj with pj ≥ pi (⇒ j ≤ i)

We can consider only Wi(0, t)

For guaranteeing task τi, we must check Wi(0, t) only
for 0 ≤ t ≤ Di

We already have some hints about computing Wi(0, t)...

Wi(0, t) = Ci +
i−1
∑

h=1

⌈

t

Th

⌉

Ch

Real Time Operating Systems and Middleware – p. 14



TDA: The Guarantee

Task τi is schedulable iff ∃t : 0 ≤ t ≤ Di ∧ Wi(0, t) ≤ t

A task set T is schedulable iff

∀τi ∈ T ,∃t : 0 ≤ t ≤ Di ∧ Wi(0, t) ≤ t

Some notes:

Sometimes, Wi(0, t) → Wi(t) =
∑i

h=1

⌈

t
Th

⌉

Ch (this is

equivalent, because 0 ≤ t ≤ Ti)
It is sometimes useful to define

Li(t1, t2) =
Wi(t1, t2)

t2 − t1

Li = min
0≤t≤Di

Li(0, t); L = max
τi∈T

Li

Real Time Operating Systems and Middleware – p. 15



TDA Simplifications

By using the Li and L definitions shown above, the
guarantee test becomes

Task τi is schedulable iff Li ≤ 1

T is schedulable iff L ≤ 1

Computing Li might still be long (need to check many
values of L(0, t) to find the minimum)...

The number of points to check for computing Li can
be reduced

Scheduling points: Si = {kTh|h ≤ i; 1 ≤ k ≤
⌊

Ti

Th

⌋

}

(multiples of Th for h ≤ i)
Li = mint∈Si

Li(0, t)

Real Time Operating Systems and Middleware – p. 16



Example

τ1 = (20, 100), τ2 = (40, 150), τ3 = (100, 350)

τ1 is schedulable: 20 < 100

What about τ2?
S2 = {100, 150}

W2(0, 100) = 40 + 20 = 60 ≤ 100: τ2 is schedulable

And now, τ3:
S3 = {100, 150, 200, 300, 350}

W3(0, 100) = 100 + 20 + 40 = 160 > 100

W3(0, 150) = 100 + 2 ∗ 20 + 40 = 180 > 150

W3(0, 200) = 100 + 2 ∗ 20 + 2 ∗ 40 = 220 > 200

W3(0, 300) = 100 + 3 ∗ 20 + 2 ∗ 40 = 240 ≤ 300: τ3 is
schedulable

Real Time Operating Systems and Middleware – p. 17



Example - Continued

But we already knew that the task set is schedulable:
20
100 + 40

150 + 100
350 = 0.2 + 0.26 + 0.2857 = 0.753 < 0.779

Now, let’s change C1 to 40:
τ1 = (40, 100), τ2 = (40, 150), τ3 = (100, 350)

U = 40
100 + 40

150 + 100
350 = 0.953

Ulub ≤ U ≤ 1: using utilisation-based analysis, we
cannot say is T is schedulable or not...

τ1 is schedulable: 40 < 100

W2(0, 100) = 40 + 40 ≤ 100: τ2 is schedulable

W3(0, 300) = 100 + 3 ∗ 40 + 2 ∗ 40 = 300 ≤ 300: τ3 is still
schedulable!!!

Real Time Operating Systems and Middleware – p. 18



Example - Checking the Results

TDA says that the task set is schedulable, but I do not
believe it!!! (U = 0.953 looks very high)

Real Time Operating Systems and Middleware – p. 19



Example - Checking the Results

TDA says that the task set is schedulable, but I do not
believe it!!! (U = 0.953 looks very high)

So, here is the schedule...

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

Real Time Operating Systems and Middleware – p. 19



Checking the Results - Response Time

And what about using response time analysis?

T = {(40, 100), (40, 150), (100, 350)}

R
(0)
3 = 100

R
(1)
3 = 100 +

⌈

100
100

⌉

40 +
⌈

100
150

⌉

40 = 100 + 40 + 40 = 180

R
(2)
3 = 100 +

⌈

180
100

⌉

40 +
⌈

180
150

⌉

40 = 100 + 80 + 80 = 260

R
(3)
3 = 100 +

⌈

260
100

⌉

40 +
⌈

260
150

⌉

40 = 100 + 120 + 80 = 300

R
(4)
3 = 100 +

⌈

300
100

⌉

40 +
⌈

300
150

⌉

40 = 100 + 120 + 80 = 300

R
(4)
3 = R

(3)
3 ⇒ stop. R3 = 300

R3 = 300 ≤ 350 ⇒ the system is schedulable.

The previous result is confirmed...

Real Time Operating Systems and Middleware – p. 20


	Response Time Analysis
	The Critical Instant
	Worst Case Response Time
	Computing the Response Time - I
	Computing the Response Time - II
	Computing the Response Time - III
	Example
	Example
	Example
	Example

	Another Example with DM
	Another Example with DM
	Another Example with DM
	Another Example with DM

	Considerations
	Processor Demand Approach
	The Idea
	The Processor Demand
	Computing the Processor Demand
	TDA: The Guarantee
	TDA Simplifications
	Example
	Example - Continued
	Example - Checking the Results
	Example - Checking the Results

	Checking the Results - Response Time

