
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

June 23rd, 2016

769857918

[COPY WITH SOLUTIONS]

i



23.06.2016: 769857918 1

1 Spin

Write a Promela model for an industrial multi-agent system composed by three processes: a “pro-
ducer”, a “labourer” and a “transporter”, the latter acting as an intermediary among the two.

• the producer sends a “BROKEN” item to the “labourer” through the “transporter”, and then
waits to receive the item back. The item can be received “BROKEN” if the “labourer” was
unable to fix it, or “REPAIRED” otherwise. The “producer” separately counts the number
of items that could be repaired and those that could not. After creating and receiving back
100 items, it checks that the number of repaired items is larger than the number of items that
could not be repaired (through an assertion), and terminates.

• the transporter waits for receiving an item from either the “producer” or the “labourer”.
Whenever it receives an item from one agent, it forwards it to the other one.

• the labourer waits for receiving an item from the “transporter”, after which it makes an
attempt to repair it before sending it back. The chance that the item is correctly repaired is
≥ 2/3.

Model the system and use spin to check whether the assertion is verified. If not, include the
trail file with your solution.

1



23.06.2016: 769857918 2

Solution:

mtype = { BROKEN, REPAIRED };

chan p_t = [0] of { mtype };

chan t_l = [0] of { mtype };

active proctype producer() {

mtype item;

byte cc = 100;

byte repaired, thrown;

do

:: cc > 0 ->

p_t!BROKEN;

p_t?item;

if

:: item == BROKEN -> thrown = thrown + 1;

:: item == REPAIRED -> repaired = repaired + 1;

fi;

cc = cc - 1;

:: else -> break;

od

printf("Repaired: %d -- Thrown: %d\n", repaired, thrown);

assert(repaired > thrown);

}

active proctype transporter() {

mtype item;

end:

do

:: p_t?item -> t_l!item;

:: t_l?item -> p_t!item;

od;

}

active proctype labourer() {

end:

do

:: t_l?BROKEN ->

if

:: t_l!BROKEN;

:: t_l!REPAIRED;

:: t_l!REPAIRED;

fi

od;

}

2



23.06.2016: 769857918 3

2 nuXmv

Model a rechargeable cleaning robot which task is to move around a 10 × 10 room and clean it.
Use variables “x” and “y”, ranging from 0 to 9, to keep track of the position of the robot and define
“pos” to be equal y · 10 + x. Use a variable “state” with values in { MOVE, CHECK, CHARGE,
CLEAN, OFF } to keep track of the next action taken by the robot, and a variable “budget” in
{ 0..100 } to trace its remaining power. At the beginning, the robot is in state “CHECK” and all
other variables are 0.

The robot changes state according to this ordered set of rules:

• if the robot is in “pos” 0 and the budget is smaller than 100, then the next state is “CHARGE”

• if the budget is 0, then the next state is “OFF”

• if the robot is in state “CHARGE” or “MOVE”, then the next state is “CHECK”

• if the robot is in state “CHECK”, then the next state is either “CLEAN” or “MOVE”

• otherwise, the next state is “MOVE”.

The budget is decreased by a single unit each time the robot is in state “MOVE” or “CLEAN”
(and budget > 0), and restored to 100 if the robot is in “CHARGE” state. Otherwise, the budget
doesn’t change.

Encode, using the constraint-style, the following constraints:

• if the state is different than “MOVE”, then the position of the robot never changes.

• if the state is equal to “MOVE”, then the robot moves by a single square in one of the cardinal
directions: it increases or decreases either “x” or “y”, but not both at the same time.

Encode the following properties, and verify with nuXmv that the last 4 are TRUE:

• in all possible executions, the robot changes position infinitely many times

• it’s definitely the case that sooner or later the robot exhausts its budget, turns OFF and stops
moving

• it is never the case that the robot’s action is either “MOVE” or “CLEAN” and the available
budget is zero

• if the robot charges infinitely often, then it changes position infinitely many times

• there exists an execution in which the robot cleans every cell that it visits

• if the robot is in “pos” 0, then it is necessarily always the case that in the future it will occupy
a different position

• the robot does not move along the diagonals

3



23.06.2016: 769857918 4

Solution:

MODULE main()

VAR

x : 0..9;

y : 0..9;

state : { MOVE, CHECK, CHARGE, CLEAN, OFF };

budget : 0..100;

cleaned : boolean; -- support variable

prev : 0..99; -- support variable

DEFINE

pos := y * 10 + x;

INIT

x = 0 & y = 0 & state = CHECK & budget = 0 & cleaned = FALSE & prev = 1;

ASSIGN

next(state) := case

pos = 0 & budget < 100 : CHARGE;

budget = 0 : OFF;

state = CHARGE | state = MOVE : CHECK;

state = CHECK : { CLEAN, MOVE };

TRUE : MOVE;

esac;

next(budget) := case

(state = MOVE | state = CLEAN)

& budget > 0 : budget - 1;

state = CHARGE : 100;

TRUE : budget;

esac;

next(cleaned) := case

state = MOVE : FALSE;

state = CLEAN : TRUE;

TRUE : cleaned;

esac;

next(prev) := pos;

TRANS

state != MOVE -> (x = next(x) & y = next(y));

TRANS

state = MOVE -> (next(x) = x + 1 |

4



23.06.2016: 769857918 5

next(x) = x - 1 |

next(y) = y + 1 |

next(y) = y - 1);

TRANS

next(x) != x -> next(y) = y;

TRANS

next(y) != y -> next(x) = x;

-- in all possible executions, the robot changes position infinitely many times

CTLSPEC AG AF state = MOVE;

-- it’s definitively the case that sooner or later

-- the robot exhausts its budget, turns OFF and stops moving

CTLSPEC AF AG budget = 0;

CTLSPEC AF AG state = OFF;

CTLSPEC AF AG state != MOVE;

-- it is never the case that the robot’s action is either MOVE or CLEAN

-- and the available budget is zero

CTLSPEC AG ((state = MOVE | state = CLEAN) -> budget > 0);

-- if the robot charges infinitely often, then

-- it changes position infinitely many times

CTLSPEC AG AF (state = CHARGE) -> AG AF (state = MOVE);

-- there exists an execution in which the robot cleans

-- every cell it visits

CTLSPEC

EG ((state=MOVE -> cleaned) & (state=OFF -> cleaned))

& AG (pos != prev -> AF (state=MOVE | state = OFF));

-- if the robot is in position 0, then it is necessarily always the case that

-- in the future it occupies a different position

CTLSPEC AG (pos = 0 -> AF pos != 0);

-- the robot does not move along the diagonal

INVARSPEC x = next(x) | y = next(y);

5


