
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

September 07th, 2015

769857918

[COPY WITH SOLUTIONS]

i

07.09.2015: 769857918 1

Implement a 4-bit shifter with alternating behaviour. Use a variable “out” to represent the
value of the shifter. Use four boolean variables “b0”, “b1”, “b2”, “b3” to represent the bits of the
shifter, from the least-significative to the most-significative one. Use a variable “d”, with values in
the set {L, R}, to keep track of the current shift direction.
Initially, the shift direction is set to R, “b” is TRUE and all other bits are FALSE.
Implement, using the assignment-style approach, the following transitions:

• “d” is set to R if “b1” is TRUE, is set to L if “b2” is TRUE and keeps its value otherwise.

• “b0” is set to FALSE if d=R, is set to TRUE if d=L&b1 and keeps its value otherwise.

• “b1” is set to TRUE if (d=L&b2)|(d=R&b0), is set to FALSE if “b1” is TRUE and keeps its value
otherwise.

• “b2” is set to TRUE if (d=L&b3)|(d=R&b1), is set to FALSE if “b2” is TRUE and keeps its value
otherwise.

• “b3” is set to FALSE if d=L, is set to TRUE if (d=R&b2) and keeps its value otherwise.

Check that the simulation returns the sequence of values 1, 2, 4, 8, 4, 2, 1, 2, ... for the
output variable “out”.
Model the 4-bit shifter, Express the following properties, and have nuXmv verify that all properties
are TRUE.

• it is always the case that at least one bit changes value at each transition

• it is always the case that if d is R and a bit bi is TRUE, then bi+1 will be TRUE at the next state

• it is always the case that if d is L and a bit bi+1 is TRUE, then bi will be TRUE at the next state

• it always the case that if b0 is TRUE then d is R and if b3 is TRUE then d is L

• infinitely often the value of the shifter is 8

1

07.09.2015: 769857918 2

Solution:

MODULE main

VAR

b0: boolean; b1: boolean; b2: boolean;

b3: boolean; d: {L, R};

DEFINE

out := toint(b0) + 2*toint(b1) + 4*toint(b2) + 8*toint(b3);

ASSIGN

init(b0) := TRUE; init(b1) := FALSE; init(b2) := FALSE;

init(b3) := FALSE; init(d) := R;

next(d) := case

b1 : R;

b2 : L;

TRUE : d;

esac;

next(b0) := case

d = R : FALSE;

d=L&b1 : TRUE;

TRUE : b0;

esac;

next(b1) := case

d = L & b2 : TRUE;

d = R & b0 : TRUE;

b1 : FALSE;

TRUE : b1;

esac;

next(b2) := case

d = L & b3 : TRUE;

d = R & b1 : TRUE;

b2 : FALSE;

TRUE : b2;

esac;

next(b3) := case

d = L : FALSE;

d = R & b2 : TRUE;

TRUE : b3;

esac;

-- it is always the case that at least one bit changes value at each

-- transition

CTLSPEC AG (

(b0<->!AX b0)|

2

07.09.2015: 769857918 3

(b1<->!AX b1)|

(b2<->!AX b2)|

(b3<->!AX b3)

)

-- it is always the case that if a d is R and a bit b_i is true,

-- then b_(i+1) will be true at the next state

CTLSPEC AG (

((d=R&b0)->AX b1)&

((d=R&b1)->AX b2)&

((d=R&b2)->AX b3)

)

-- it is always the case that if a d is L and a bit b_(i+1) is true,

-- then b_(i) will be true at the next state

CTLSPEC AG (

((d=L&b1)->AX b0)&

((d=L&b2)->AX b1)&

((d=L&b3)->AX b2)

)

-- it always the case that if b0 is true then d is R and if

-- b3 is true then d is L

CTLSPEC AG ((b0 -> d=R) & (b3 -> d=L))

-- infinitely often the value of the counter is 8

LTLSPEC G F (out = 8)

3

07.09.2015: 769857918 4

1 Spin

Write a Promela program that runs 10 processes of type P, each of which accesses a shared critical
section. Use lock and counter as global variables, respectively initialized to false and 0. The pseudo-
code of the P process, based on the well-known TestAndSet() mutual-exclusion mechanism, is the
following:

P() {
bool tmp ;
whi l e (t rue) {

whi le (t rue) {
atomic { tmp = lock ; l o ck = true ; }
i f (! tmp) break ;

}

// c r i t i c a l s e c t i o n
counter++;
a s s e r t (counter == 1) ;
counter−−;

// e x i t i n g . . .
l o ck = f a l s e ;

// non−c r i t i c a l s e c t i o n
}

}

Verify that the critical section is not accessed by more than one process at the same time by
generating a verifier from the Promela program:

˜$ sp in −a <f i l e name >.pml
˜$ gcc pan . c
˜$. / a . out

4

07.09.2015: 769857918 5

Solution:

bool lock = false;

int counter = 0;

active [10] proctype P()

{

bool tmp;

do

:: true ->

do

:: atomic {tmp = lock; lock = true;} ->

if

:: tmp;

:: else -> break;

fi;

od;

// critical section

counter++;

printf("Process %d in critical section.\n", _pid);

assert(counter == 1);

counter--;

// exiting...

lock = false;

// non-critical section

od;

}

5

