
nuXmv: Exercises - Part A∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/trentin

Formal Methods Lab Class, May 25, 2018

(compiled on 18/05/2018 at 10:18)

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/18

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 1 / 16

http://disi.unitn.it/trentin


Contents

1 Exercises
Dining Philosophers
Insertion Sort
Cleaning Robot

2 Optional Exercises
Simplified Needham-Schroeder Protocol

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 2 / 16



Exercise: Dining Philosophers [1/2]

Five philosophers sit around a circular table and spend their life
alternatively thinking and eating. Each philosopher has a large plate of
noodles and a fork on either side of the plate. The right fork of each
philosopher is the left fork of his neighbor. Noodles are so slippery that a
philosopher needs two forks to eat it. When a philosopher gets hungry,
he tries to pick up his left and right fork, one at a time. If successful in
acquiring two forks, he eats for a while (preventing both of his neighbors
from eating), then puts down the forks, and continues to think.

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 3 / 16



Exercise: Dining Philosophers [2/2]

Exercise:

1 Implement in SMV a system that encodes the philosophers problem.
Assume that when a philosopher gets hungry, he tries to pick up his
left fork first and then the right one.
Hint: you might consider an altruist philosopher, which can resign
his fork in a deadlock situation.

2 Verify the correctness of the system, by specifiying and checking the
following properties:

Never two neighboring philosophers eat at the same time.
No more than two philosophers can eat at the same time.
Somebody eats infinitely often.
If every philosopher holds his left fork, sooner or later somebody will
get the opportunity to eat.

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 4 / 16



Contents

1 Exercises
Dining Philosophers
Insertion Sort
Cleaning Robot

2 Optional Exercises
Simplified Needham-Schroeder Protocol

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 5 / 16



Exercise: Insertion Sort [1/2]

Exercise:
encode the following code in nuXmv:

void isort(arr) {

// init: i = 1, j = 1;

l1: while (i < 5) {

l2: j = i;

l3: while (j > 0 & array[j] < array[j-1]) {

l4: swap(array[j], array[j-1]);

l5: j--;

}

l6: i++;

}

l7: // done!

}

set arr equal to { 9, 7, 5, 3, 1 }
verify the following properties:

the algorithm always terminates
eventually in the future, the array will be sorted forever
the algorithm is not done (pc = l7) until the array is sorted

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 6 / 16



Exercise: Insertion Sort [2/2]

Hints:

use ‘pc’ to keep track of the possible state values { l1, l2, l3,

l4, l5, l6, l7 }
declare ‘i’ in 1..5, initialize 1

declare ‘j’ in 0..4, initialize 1

ensure that the content of ‘arr‘ does never change when ‘pc != l4’

ensure that the content of ‘arr‘ that is not involved in a ‘swap’
operation does not change even when ‘pc = l4’

(easier?) encode the constraints over ‘arr’ with constraint-style
modelling

(easier?) encode the evolution of ‘pc’, ‘i’ and ‘j’ with
assignment-style modelling

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 7 / 16



Contents

1 Exercises
Dining Philosophers
Insertion Sort
Cleaning Robot

2 Optional Exercises
Simplified Needham-Schroeder Protocol

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 8 / 16



Exercise: Cleaning Robot [1/3]

Exercise: model a rechargeable cleaning robot which task is to move
around a 10× 10 room and clean it.

The robot state is so composed:

variables “x” and “y”, ranging from 0 to 9, which keeps track of the
robot’s position

variable “state”, with values in { MOVE, CHECK, CHARGE, CLEAN,
OFF }, which keeps track of the next action taken by the robot

variable “budget” in { 0..100 } which signals the remaining power

output variable “pos”, defined to be equal y · 10 + x

At the beginning, the robot is in state “CHECK” and all other vars are 0.

The budget is decreased by a single unit each time the robot is in state
“MOVE” or “CLEAN” (and budget > 0), and restored to 100 if the robot
is in “CHARGE” state. Otherwise, the budget doesn’t change.

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 9 / 16



Exercise: Cleaning Robot [2/3]

The robot changes state according to this ordered set of rules:

if the robot is in “pos” 0 and the budget is smaller than 100, then the
next state is “CHARGE”

if the budget is 0, then the next state is “OFF”

if the robot is in state “CHARGE” or “MOVE”, then the next state is
“CHECK”

if the robot is in state “CHECK”, then the next state is either
“CLEAN” or “MOVE”

otherwise, the next state is “MOVE”.

Encode, using the constraint-style (easier!), the following constraints:

if the state is different than “MOVE”, then the position of the robot
never changes.

if the state is equal to “MOVE”, then the robot moves by a single
square in one of the cardinal directions: it increases or decreases
either “x” or “y”, but not both at the same time.
Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 10 / 16



Exercise: Cleaning Robot [3/3]

Encode and verify the following properties:

in all possible executions, the robot changes position infinitely many
times (false)

it’s definitely the case that sooner or later the robot exhausts its
budget, turns OFF and stops moving (false)

it is never the case that the robot’s action is either “MOVE” or
“CLEAN” and the available budget is zero (false)

if the robot charges infinitely often, then it changes position infinitely
many times (true)

there exists an execution in which the robot cleans every cell that it
visits (true)

if the robot is in “pos” 0, then it is necessarily always the case that in
the future it will occupy a different position (true)

the robot does not move along the diagonals (true)

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 11 / 16



Exercises Solutions

will be uploaded on course website within a couple of days

send me an email if you need help or you just want to propose your
own solution for a review

learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 12 / 16



Contents

1 Exercises
Dining Philosophers
Insertion Sort
Cleaning Robot

2 Optional Exercises
Simplified Needham-Schroeder Protocol

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 13 / 16



Optional Exercise: Needham-Schroeder Protocol [1/3]

Exercise: consider the following, simplified, public-key
Needham-Schroeder protocol:

A initiates the protocol by sending a nonce NA and its identity IA
(both encrypted with B’s public key) to B. Using its private key, B
deciphers the message and retrieves A’s identity.

B sends his nonce NB and A’s nonce NA (both encrypted with A’s
public key) back to A. Using its private key, A decodes the message
and checks that its nonce is returned.

A returns B’s nonce NB (encrypted with B’s public key) back to B.
Using its private key, B decodes the message and checks that its
nonce is returned.

In this protocol, the sequence of messages being exchanged is:

A =⇒ B : {NA, IA}KB

B =⇒ A : {NA,NB}KA

A =⇒ B : {NB}KB

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 14 / 16



Optional Exercise: Needham-Schroeder Protocol [2/3]

A known man-in-the-middle attack exists for this protocol:

A =⇒ E : {NA, IA}KE
(A wants to talk with E)

E =⇒ B : {NA, IA}KB
(E wants to convince B that it is A)

B =⇒ E : {NA,NB}KA
(B returns nonces encrypted by KA)

E =⇒ A : {NA,NB}KA
(E forwards the encrypted message to A)

A =⇒ E : {NB}KE
(A confirms it is talking to E)

E =⇒ B : {NB}KB
(E returns B’s nonce back)

To prevent this attack, the original protocol was patched as follows:

A =⇒ B : {NA, IA}KB

B =⇒ A : {NA,NB , IB}KA
(B also sends its identity back to A)

A =⇒ B : {NB}KB

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 15 / 16



Optional Exercise: Needham-Schroeder Protocol [3/3]

Goals:

Model an instance of the Needham-Schroeder protocol in which
Alice initiates communication with Bob and the protocol is
successfully completed. Write a CTL property s.t. its counterexample
is an execution trace which witnesses this successful attempt.

Extend the previous model with the addition of a malicious user,
namely Eve, which implements a modified version of the protocol so
as to perform the man-in-the-middle attack. Write a CTL property
s.t. its counterexample is an execution trace which witnesses this
successful attack.

Extend the previous model with the suggested patch for the
Needham-Schroeder protocol. Write a CTL property which verifies
that the man-in-the-middle attack can no longer be successfully
performed, plus an additional CTL property s.t. its counterexample is
a failed attack attempt.

Patrick Trentin (DISI) nuXmv: Exercises - Part A May 25, 2018 16 / 16


	Exercises
	Dining Philosophers
	Insertion Sort
	Cleaning Robot

	Optional Exercises
	Simplified Needham-Schroeder Protocol


