
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

February 11th, 2016

769857918

[COPY WITH SOLUTIONS]

i



11.02.2016: 769857918 1

1 nuXmv

Implement a 4-bit counter that counts all odd numbers starting from 1 (e.g. 1, 3, 5, 7, 9, 11, 13,
15, 1, 3, ...) when the “reset” input is FALSE. The counter shall always be immediately set to 1
when the “reset” input is TRUE. Use a variable “out” to represent the output of the counter. Use
four boolean variables “b0”, “b1”, “b2”, “b3” to represent the bits of the counter, from the least-
significative to the most-significative ones. Notice that, assuming reset == FALSE, the following is
true:

• “b0” is always TRUE

• “b1” changes value at each transition

• “b2” changes value only when “b1” is TRUE

• “b3” changes value only when both “b1” and “b2” are TRUE

b3 b2 b1 b0 out
0 0 0 1 1
0 0 1 1 3
0 1 0 1 5
0 1 1 1 7
1 0 0 1 9
1 0 1 1 11
1 1 0 1 13
1 1 1 1 15

Figure 1: bits evolution at each transition

Model the 4-bit counter, express the following properties, and have nuXmv verify them or provide
a counter-example.

• CTL Properties:

– it is never the case that “b0” is FALSE

– it is necesarily always the case that when reset is true or the number is 15, then necessarily
at the next step the value of the counter is 1

– it is always the case that if reset is FALSE, then the next value of b1 is !b1

– it is always the case that, if both b1 and b2 are TRUE, then the next value of b3 is equal
to !b3

• LTL Properties:

– infinitely often the value of the counter is 1

– infinitely often the value of the counter is 3

– if reset is always FALSE, then infinitely often the value of the counter is 3

1



11.02.2016: 769857918 2

Solution:

MODULE main

VAR

b0: boolean;

b1: boolean;

b2: boolean;

b3: boolean;

reset: boolean;

DEFINE

out := toint(b0) + 2*toint(b1) + 4*toint(b2) + 8*toint(b3);

ASSIGN

init(b0) := TRUE;

init(b1) := FALSE;

init(b2) := FALSE;

init(b3) := FALSE;

next(b0) := TRUE;

next(b1) := case

reset : FALSE;

TRUE : !b1;

esac;

next(b2) := case

reset : FALSE;

b1 : !b2;

TRUE : b2;

esac;

next(b3) := case

reset : FALSE;

b1 & b2 : !b3;

TRUE : b3;

esac;

-- it is never the case that the counter is even

CTLSPEC AG !(b0 = FALSE)

-- it is necesarily always the case that when reset is true or the number

-- is 15, then necessarily at the next step the value of the counter is 1

CTLSPEC AG ((reset | out=15) -> AX (out=1))

-- it is always the case that if reset is FALSE, then the next value of b1 is !b1

CTLSPEC AG ((!reset&b1 -> AX !b1) &

(!reset&!b1 -> AX b1))

2



11.02.2016: 769857918 3

-- it is always the case that, if both b1 and b2 are TRUE,

-- then the next value of b3 is equal to !b3

CTLSPEC AG ((b1&b2&b3 -> AX !b3) &

(b1&b2&!b3 -> AX b3))

-- infinitely often the value of the counter is 1

LTLSPEC G F (out = 1)

-- infinitely often the value of the counter is 3

LTLSPEC G F (out = 3)

-- if reset is always false, then infinitely often the value of the counter is 3

LTLSPEC (G !reset) -> (G F (out = 3))

3



11.02.2016: 769857918 4

2 Spin

Write a promela program defining a process ‘‘fact(n, p)’’ to calculate recursively the factorial
of ‘‘n’’, communicating the result via a channel message to its parent process ‘‘p’’. In the
init function, use that process to compute ‘‘fact(k)’’ and verify that it is greater than 2k for
k > 3. (e.g., try with k = 10).

4



11.02.2016: 769857918 5

Solution:

proctype fact(int n; chan p)

{

int result;

chan child = [1] of { int };

if

:: (n <= 1) -> p!1

:: (n >= 2) ->

run fact(n-1, child);

child?result;

p!n*result

fi

}

init

{

int result;

chan child = [1] of { int };

run fact(10, child);

child?result;

printf("result: %d\n", result);

}

5


