Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Universita di Trento, Italy

February 11", 2016

[COPY WITH SOLUTIONS]

769857918

11.02.2016: 769857918 1

1 nuXmv

Implement a 4-bit counter that counts all odd numbers starting from 1 (e.g. 1, 3, 5, 7, 9, 11, 183,

15, 1, 8, ...) when the “reset” input is FALSE. The counter shall always be immediately set to 1
when the “reset” input is TRUE. Use a variable “out” to represent the output of the counter. Use
four boolean variables “b0”, “b1”, “b2”, “b3” to represent the bits of the counter, from the least-
significative to the most-significative ones. Notice that, assuming reset == FALSE, the following is
true:

e “b0” is always TRUE

e “b1” changes value at each transition

e “b2” changes value only when “b1” is TRUE

e “b3” changes value only when both “b1” and “b2” are TRUE

b3 b2 bl b0 | out
0O 0 0 1 1
0O 0 1 1 3
0O 1 0 1 5
0o 1 1 1 7
1 0 0 1 9
1 0 1 1 11
1 1 0 1 13
1 1 1 1 15

Figure 1: bits evolution at each transition

Model the 4-bit counter, express the following properties, and have nuXmv verify them or provide
a counter-example.

e CTL Properties:

o ITL

it is never the case that “b0” is FALSE

it is necesarily always the case that when reset is true or the number is 15, then necessarily
at the next step the value of the counter is 1

it is always the case that if reset is FALSE, then the next value of bl is bl
it is always the case that, if both b1 and b2 are TRUE, then the next value of b3 is equal
to 'b3

Properties:

infinitely often the value of the counter is 1
infinitely often the value of the counter is 3

if reset is always FALSE, then infinitely often the value of the counter is 3

11.02.2016: 769857918 2

Solution:

MODULE main

VAR
bO: boolean;
bl: boolean;
b2: boolean;
b3: boolean;
reset: boolean;

DEFINE
out := toint(b0) + 2*xtoint(bl) + 4*xtoint(b2) + 8xtoint(b3);

ASSIGN
init(b0) := TRUE;
init(b1l) := FALSE;
init(b2) := FALSE;
init(b3) := FALSE;

next (b0) := TRUE;

next(bl) := case
reset : FALSE;
TRUE : !Dbi;

esac;

next(b2) := case
reset : FALSE;
bl : 1b2;
TRUE : b2;

esac;

next(b3) := case
reset : FALSE;
bl & b2 : !b3;
TRUE : b3;

esac;

—-- it is never the case that the counter is even
CTLSPEC AG !'(b0O = FALSE)

-—- it is necesarily always the case that when reset is true or the number
-— is 15, then necessarily at the next step the value of the counter is 1
CTLSPEC AG ((reset | out=15) -> AX (out=1))

-- 1t is always the case that if reset is FALSE, then the next value of bl is !bl
CTLSPEC AG ((!reset&bl -> AX !bl) &
(!reset&!bl -> AX bl))

11.02.2016: 769857918

-- 1t is always the case that, if both bl and b2 are TRUE,
—-- then the next value of b3 is equal to !b3
CTLSPEC AG ((b1&b2&b3 -> AX !'D3) &

(b1&b2&!'b3 -> AX b3))

-- infinitely often the value of the counter is 1
LTLSPEC G F (out = 1)

-- infinitely often the value of the counter is 3
LTLSPEC G F (out = 3)

-- 1if reset is always false, then infinitely often the value of the counter is 3
LTLSPEC (G 'reset) -> (G F (out = 3))

11.02.2016: 769857918 4

2 Spin

Write a promela program defining a process ¢ ‘fact(n, p)’’ to calculate recursively the factorial
of “‘n’’, communicating the result via a channel message to its parent process ¢ ‘p’’. In the
init function, use that process to compute ¢ ‘fact(k)’’ and verify that it is greater than 2* for
k> 3. (e.g., try with k£ = 10).

11.02.2016: 769857918

Solution:

proctype fact(int n; chan p)
{
int result;
chan child = [1] of { int };

if
i (nm<=1) > p't
(n > 2) —>
run fact(n-1, child);
child?result;
p!n*result
fi
}
init
{

int result;

chan child = [1] of { int };
run fact(10, child);
child?result;

printf ("result: %d\n", result);

