
Course “Formal Methods”
Lab Test

Roberto Sebastiani
DISI, Università di Trento, Italy

May 27th, 2016

769857918

[COPY WITH SOLUTIONS]

i

27.05.2016: 769857918 1

1 nuXmv

Encode the following implementation of Insertion Sort for arrays of length 5 in nuXmv:

void isort(arr) {

// init: i = 1, j = 1;

l1: while (i < 5) {

l2: j = i;

l3: while (j > 0 & array[j] < array[j-1]) {

l4: swap(array[j], array[j-1]);

l5: j--;

}

l6: i++;

}

l7: // done!

Hints:

• use ‘pc’ to keep track of the possible state values { l1, l2, l3, l4, l5, l6, l7 }

• declare ‘i’ in 1..5, initialize 1

• declare ‘j’ in 0..4, initialize 1

• ensure that the content of ‘arr‘ does never change when ‘pc != l4’

• ensure that the content of ‘arr‘ that is not involved in a ‘swap’ operation does not change
even when ‘pc = l4’

• (easier?) encode the constraints over ‘arr’ with constrained-style modelling

• (easier?) encode the evolution of ‘pc’, ‘i’ and ‘j’ with assignment-style modelling

Add the following code to initialize the system

MODULE main

VAR

arr : array 0..4 of 1..10;

sorter : isort(arr);

INIT

arr[0] = 9 & arr[1] = 7 & arr[2] = 5 &

arr[3] = 3 & arr[4] = 1;

and verify that all the following properties are found TRUE by nuXmv:

• the algorithm always terminates

• eventually in the future, the array will be sorted forever

• the algorithm is not done (pc = l7) until the array is sorted

1

27.05.2016: 769857918 2

Solution:

MODULE main

VAR

arr : array 0..4 of 1..10;

sorter : isort(arr);

INIT

arr[0] = 9 & arr[1] = 7 & arr[2] = 5 &

arr[3] = 3 & arr[4] = 1;

MODULE isort(arr)

VAR

pc : { l1, l2, l3, l4, l5, l6, l7 };

i : 1..5; j : 0..4;

ASSIGN

init(pc) := l1;

init(i) := 1;

init(j) := 1;

next(i) := case

pc = l6 & i < 5 : i + 1;

TRUE : i;

esac;

next(j) := case

pc = l2 & i != 5 : i;

pc = l5 & j > 0 : j - 1;

TRUE : j;

esac;

DEFINE

done := pc = l7;

-- FSM

TRANS

pc = l1 -> ((i < 5 -> next(pc) = l2) &

(i >= 5 -> next(pc) = l7))

TRANS

pc = l2 -> next(pc) = l3

TRANS

pc = l3 -> ((((j = 1 & arr[1] < arr[0]) | (j = 2 & arr[2] < arr[1]) |

(j = 3 & arr[3] < arr[2]) | (j = 4 & arr[4] < arr[3])

) -> next(pc) = l4

) & (j <= 0 |

2

27.05.2016: 769857918 3

((j = 1 & arr[1] >= arr[0]) | (j = 2 & arr[2] >= arr[1]) |

(j = 3 & arr[3] >= arr[2]) | (j = 4 & arr[4] >= arr[3])

) -> next(pc) = l6

))

TRANS

pc = l4 -> (next(pc) = l5

& (j = 1 -> next(arr[0]) = arr[1] & next(arr[1]) = arr[0])

& (j = 2 -> next(arr[1]) = arr[2] & next(arr[2]) = arr[1])

& (j = 3 -> next(arr[2]) = arr[3] & next(arr[3]) = arr[2])

& (j = 4 -> next(arr[3]) = arr[4] & next(arr[4]) = arr[3])

& (j != 1 -> next(arr[0]) = arr[0])

& (j != 1 & j != 2 -> next(arr[1]) = arr[1])

& (j != 2 & j != 3 -> next(arr[2]) = arr[2])

& (j != 3 & j != 4 -> next(arr[3]) = arr[3])

& (j != 4 -> next(arr[4]) = arr[4])

)

TRANS

pc = l5 -> next(pc) = l3

TRANS

pc = l6 -> next(pc) = l1

TRANS

pc = l7 -> next(pc) = l7

-- prevent content of array to change non-deterministically

TRANS

pc != l4 -> (next(arr[0]) = arr[0]

& next(arr[1]) = arr[1]

& next(arr[2]) = arr[2]

& next(arr[3]) = arr[3]

& next(arr[4]) = arr[4])

-- The algorithm always terminates

CTLSPEC AF AG done

-- Eventually in the future, the array will be sorted forever

CTLSPEC AF AG (arr[0] <= arr[1] & arr[1] <= arr[2] &

arr[2] <= arr[3] & arr[3] <= arr[4])

-- The algorithm is not done until the array is sorted

CTLSPEC A[!done U (arr[0] <= arr[1] & arr[1] <= arr[2] &

arr[2] <= arr[3] & arr[3] <= arr[4])]

3

27.05.2016: 769857918 4

2 Spin

Write a Promela model for the “Prisoners’ Dilemma”. Two prisoners processes independently send
a CONFESS or DENY message through a pair of synchronous channels to a policeman process.
Each prisoner chooses the content of his message in a random fashion and independently from the
other. The policeman receives the messages, decides an adequate penalty and sends back to each
prisoner a SENTENCE message with the number of years he is supposed to spend in detention, using
the same channel from which he received the initial message. The penalty is decided as follows:

• if both confess, then both spend 5 years each in prison.

• if one confesses and the other denies, then the former is free while the latter spends 20 years
in prison.

• if both deny, then both spend 1 year each in prison.

Simulate the model and (visually) verify that it matches the description.
(optional) what is the best strategy for the prisoners?

4

27.05.2016: 769857918 5

Solution:

mtype { SENTENCE, DENY, CONFESS };

chan rooms[2] = [0] of { mtype, byte };

proctype prisoner(byte i)

{

mtype v;

byte years;

if

:: rooms[i] ! CONFESS, 0 ->

printf("Prisoner %d confessed.\n", i);

:: rooms[i] ! DENY, 0;

printf("Prisoner %d denied.\n", i);

fi;

rooms[i] ? SENTENCE, years;

printf("Prisoner %d was sentenced to %d years of detention.\n", i, years);

}

proctype policeman()

{

mtype m1, m2;

byte v1, v2;

rooms[0] ? m1, 0;

rooms[1] ? m2, 0;

if

:: m1 == CONFESS && m2 == CONFESS ->

v1 = 5; v2 = 5;

:: m1 == CONFESS && m2 == DENY ->

v1 = 0; v2 = 20;

:: m1 == DENY && m2 == CONFESS ->

v1 = 20; v2 = 0;

:: m1 == DENY && m2 == DENY ->

v1 = 1; v2 = 1;

fi

atomic {

printf("Sentence decided.\n")

rooms[0] ! SENTENCE, v1;

rooms[1] ! SENTENCE, v2;

}

}

init {

run policeman(2); run prisoner(0); run prisoner(1);

}

5

