SPIN: Overview of PROMELA*

Patrick Trentin
patrick.trentin@unitn.it
http://disi.unitn.it/~trentin

Formal Methods Lab Class, Mar 04, 2016

UNIVERSITA DEGLI STUDI DI
TRENTO

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,
Thi Thieu Hoa Le, Alessandra Giordani, Patrick Trentin for FM lab 2005/15

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 1/12

http://disi.unitn.it/~trentin

@ ProMELA overview
@ Processes
o Data objects
@ Message Channels

Patrick Trentin (DISI) : Overview of PROMELA

Mar 04, 2016

2/

PROMELA

PROMELA is not a programming language,
but rather a meta-language for building verification models.

@ The design of PROMELA is focused on the interaction among
processes at the system level;
@ Provides:

e non-deterministic control structures,

e primitives for process creation,

e primitives for interprocess communication.
o Misses:

o functions with return values,

o expressions with side-effects,
o data and functions pointers.

Patrick Trentin (DISI)

SPIN: Overview of PROMELA Mar 04, 2016

Types of objects

Three basic types of objects:
@ processes
o data objects

@ message channels

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 4 /12

/

Contents

@ ProMELA overview
@ Processes

Patrick Trentin (DISI) : Overview of PROMELA Mar 04, 2016

Process Initialization [1/3]

e init is always the first process initialized (if declared);

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [1/3]

e init is always the first process initialized (if declared);
@ active: process created at initialization phase (right after init)

active [2] proctype you_run() {
printf("my pid is: %d\n", _pid)

}

5 /12

SPIN: Overview of PROMELA Mar 04, 2016

Patrick Trentin (DISI)

Process Initialization [1/3]

e init is always the first process initialized (if declared);
@ active: process created at initialization phase (right after init)
active [2] proctype you_run() {
printf ("my pid is: %d\n", _pid)
}
@ run: process created when instruction is processed
proctype you_run(byte x) {
printf("x = %d, pid = %d\n", x, _pid);
run you_run(x + 1) // recursive call!

}
init {
run you_run(0);

}
note: run allows for input parameters!

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [2/3]

@ No parameter can be given to in%t nor to active processes.

active proctype proc(byte x) { o “$ spin test.pml
printf("x = %d\n", x); x=0
}

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [2/3]

@ No parameter can be given to in%t nor to active processes.

active proctype proc(byte x) { o “$ spin test.pml
printf("x = %d\n", x); x=0

}

If present, active process parameters default to 0.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [2/3]

@ No parameter can be given to in%t nor to active processes.

active proctype proc(byte x) { o ~$ spin test.pml
printf("x = %d\n", x); x=0

}
If present, active process parameters default to 0.

@ A process does not necessarily start right after being created

proctype proc(byte x) { o “$ spin test.pml
printf("x = %d\n", x); x =0

} x=1

init {

o ~$ spin test.pml

run proc(0); %=1

run proc(1);

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [3/3]

@ Only a limited number of processes (255) can be created:

proctype proc(byte x) { o “$ spin test.pml
printf("x = %d\n", x); x=0
run proc(x + 1) x =1
¥ x =2
init { ce
run proc(0); spin: too many processes (255 max)
} timeout

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Initialization [3/3]

@ Only a limited number of processes (255) can be created:

proctype proc(byte x) { o “$ spin test.pml
printf("x = %d\n", x); x=0
run proc(x + 1) x =1
¥ x =2
init { ce
run proc(0); spin: too many processes (255 max)
} timeout

@ A process “terminates’ when it reaches the end of its code.

@ A process “dies” when it has terminated and all processes created
after it have died.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 5/12

Process Execution [1/2]

Processes execute concurrently with all other processes.

Processes are scheduled non-deterministically.

@ Processes are interleaved: statements of different processes do not
occur at the same time (except for synchronous channels).

@ Each process may have several different possible actions enabled at
each point of execution: only one choice is made
(non-deterministically).

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 6 /12

Process Execution [2/2]

@ Each process has its own local state:

o process counter _pid (location within the proctype);
o value of the local variables.

@ A process communicates with other processes:

o using global (shared) variables (might need synchronization!);
e using channels.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016

Statements [1/2]

@ each statement is atomic

o Every statement is either executable or blocked.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 7/12

Statements [1/2]

@ each statement is atomic

o Every statement is either executable or blocked.

o Always executable:

e print statements
@ assignments

o skip

o assert
[}
o

break

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 7/12

@ each statement is atomic

o Every statement is either executable or blocked.

o Always executable:

print statements
assignments
skip

assert

break

@ Not always executable:
o the run statement is executable only if there are less than 255
processes alive;
o expressions

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 7/12

Statements [2/2]

@ An expression is executable iff it evaluates to true (i.e. non-zero).

o (5 < 30): always executable;
o (x < 30): blocks if x is not less than 30;
e (x + 30): blocks if x is equal to -30;

@ Busy-Waiting: the expression (a == b); is equivalent to:
while (a != b) { skip }; /* C-code */

@ Expressions must be side-effect free
(e.g. b = c++ is not valid).

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016

@ ProMELA overview

o Data objects

Patrick Trentin (DISI) : Overview of PROMELA Mar 04, 2016

Type Typical Range
bit 0,1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short —215 2151
int -3t 2311
unsigned 0..2"-1

@ A byte can be printed as a character with the %c format specifier;

@ There are no floats and no strings;

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 9/12

Typical declarations

bit x, y; /* two single bits, initially 0 */
bool turn = true; /* boolean value, initially true */
byte al12]; /* all elements initialized to 0 */
byte al[3] = {°h’,’i’,°\0’}; /* byte array emulating a string */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67 */
unsigned v : 5; /* unsigned stored in 5 bits */
unsigned w : 3 = 5; /* value range 0..7, initially 5 */

@ All variables are initialized by default to 0.

@ Array indexes starts at 0.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 9/12

Data structures

o A run statement accepts a list @ Multi-dimensional arrays are not
of variables or structures, but no supported, although there are
array. indirect ways:
typedef Record {

byte al3]; typedef Array {
int x; byte el[4]
bit b };
}; Array al[4];
proctype run_me(Record r) {
r.x = 12
}
init {
Record test;
run run_me(test)
}

Note: but array can still be
enclosed in data structures

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016

Variable Scope

@ Spin (old versions): only two levels of scope
o global scope: declaration outside all process bodies.
o local scope: declaration within a process body.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 9/

/

Variable Scope

@ Spin (old versions): only two levels of scope
o global scope: declaration outside all process bodies.
o local scope: declaration within a process body.

@ Spin (versions 6+): added block-level scope

init {

int x;

{ /* y declared in nested block */
int y;
printf("x = %d, y = %d\n", x, y);
X++;
yH+;

}

/* Spin Version 6 (or newer): y is not in scope,
/* 0lder: y remains in scope */
printf("x = %d, y = %d\n", x, y);

}

Note: since Spin version 2.0, variable declarations are not implicitly
moved to the beginning of a block

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016

Contents

@ ProMELA overview

@ Message Channels

Patrick Trentin (DISI) : Overview of PROMELA Mar 04, 2016 10 /

Message Channels

o A channel is a FIFO (first-in first-out) message queue.

@ A channel can be used to exchange messages among processes.

@ Two types:

o buffered channels,
o synchronous channels (aka rendezvous ports)

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Buffered Channels

@ Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan gname = [16] of { short, byte, bool }

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Buffered Channels

@ Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:
chan gname = [16] of { short, byte, bool }

@ A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.

Mar 04, 2016 11 /12

Patrick Trentin (DISI) SPIN: Overview of PROMELA

Buffered Channels

@ Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan gname = [16] of { short, byte, bool }
@ A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.
o Useful pre-defined functions: len, empty, nempty, full, nfull:

len(gname) ;

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Buffered Channels

@ Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan gname = [16] of { short, byte, bool }
@ A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.
o Useful pre-defined functions: len, empty, nempty, full, nfull:
len(gname) ;
o Message Send:
gname!exprl,expr2, expr3

The process blocks if the channel is full.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Buffered Channels

@ Declaration of a channel storing up to 16 messages, each consisting of
3 fields of the listed types:

chan gname = [16] of { short, byte, bool }
@ A message can contain any pre-defined or user-defined type.
Note: array must be enclosed within user-defined types.
o Useful pre-defined functions: len, empty, nempty, full, nfull:
len(gname) ;
o Message Send:
gname!exprl,expr2, expr3
The process blocks if the channel is full.
o Message Receive:

gname?varl,var2,var3

The process blocks if the channel is empty.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Alternative use of Buffered Channels

@ An alternative syntax for message send/receive involves brackets:
gname ! expri (expr2, expr3)
gname?varl (var2,var3)
It can be used to highlight that the first message field is interpreted
as 'message type’.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Alternative use of Buffered Channels

@ An alternative syntax for message send/receive involves brackets:

gname ! expri (expr2, expr3)
gname?varl (var2,var3)

It can be used to highlight that the first message field is interpreted
as 'message type’.

o If - at the receiving side - some parameter is set to a constant value:

gname?constl,var2,var3

then the process blocks if the channel is empty or the input message
field does not match the fixed constant value.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Synchronous Channels

@ A synchronous channel (aka rendezvous port) has size zero.
chan port = [0] of { byte }

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Synchronous Channels

@ A synchronous channel (aka rendezvous port) has size zero.
chan port = [0] of { byte }

@ Messages can be exchanged, but not stored!

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

Synchronous Channels

@ A synchronous channel (aka rendezvous port) has size zero.

chan port = [0] of

{ byte

@ Messages can be exchanged, but not stored!

@ Synchronous execution: a process executes a send at the same time
another process executes a receive (as a single atomic operation).

mtype = {msgtypel};

active proctype B() {

chan name = [0] of {mtype, bytel};

active proctype AQ) {

byte x = 124;

printf("Send %d\n", x);

name 'msgtype (x) ;
x = 121

printf ("Send %d\n", x);

name 'msgtype (x) ;

byte y;

name?msgtype (y) ;

printf ("Received %d\n", y);
name?msgtype (y) ;

printf ("Received %d\n", y);

Patrick Trentin (DISI)

SPIN: Overview of PROMELA

Mar 04, 2016 11 /12

Channels of channels

@ Message parameters are always passed by value.

@ We can also pass the value of a channel from a process to another.

mtype = { msgtype };
chan glob = [0] of { chan };

active proctype A() {
chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */
loc?msgtype(121) /* read 121 from channel loc */
}
active proctype B() {
chan who;
glob?who; /* receive channel loc from glob */
who!msgtype(121) /* write 121 on channel loc */
}

Q: what if B sends 122 on channel loc?

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016

Channels of channels

@ Message parameters are always passed by value.

@ We can also pass the value of a channel from a process to another.

mtype = { msgtype };
chan glob = [0] of { chan };

active proctype A() {
chan loc = [0] of { mtype, byte };

glob!loc; /* send channel loc through glob */
loc?msgtype(121) /* read 121 from channel loc */
}
active proctype B() {
chan who;
glob?who; /* receive channel loc from glob */
who!msgtype(121) /* write 121 on channel loc */
}

Q: what if B sends 122 on channel loc? both A and B are forever blocked

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 11 /12

© Exercises

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 12 /

Basic verification

chan com = [0] of { byte };
byte value;
proctype p() {

byte i;
do
¢ if
:: i1 >= 5 -> break
: else -> printf("Doing something else\n"); i ++
fi
: com ? value; printf("p received: %d\n",value)
od;
... /* fill in for formal verification */
}
init {
run p(Q);
end: com ! 100;
}

Q: is it possible that process p does not read from the channel at all?

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 12/

Basic verification

chan com = [0] of { byte };
byte value;
proctype p() {

byte i;
do
¢ if
:: i1 >= 5 -> break
: else -> printf("Doing something else\n"); i ++
fi
: com ? value; printf("p received: %d\n",value)
od;
... /* fill in for formal verification */
}
init {
run p(Q);
end: com ! 100;
}

Q: is it possible that process p does not read from the channel at all? Yes

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 12/

Exercises

o Ex. 1: write a PROMELA model that sums up an array of integers.

o declare and (non-deterministically) initialize an integer array with
values in [0, 9].

e add a loop that sums even elements and subtracts odd elements.

o visually check that it is correct.

e Q: why is it not possible to initialize the array with any random integer
value?

@ Ex. 2: declare a synchronous channel and create two processes:

o The first process sends the characters 'a’ through 'z’ onto the channel.

e The second process reads the values of the channel and outputs them
as characters.

o Check if sooner or later the second process will read the letter 'z'.

o Ex. 3: replace the synchronous channel with a buffered channel and
check how the behaviour changes.

Patrick Trentin (DISI) SPIN: Overview of PROMELA Mar 04, 2016 12 / 12

	Promela overview
	Processes
	Data objects
	Message Channels

	Exercises

