
1 Introduction

Introduction

• NuSMV is a symbolic model checker developed by FBK-IRST.

• The NuSMV project aims at the development of a state-of-the-art model
checker that:

– is robust, open and customizable;

– can be applied in technology transfer projects;

– can be used as research tool in different domains.

• NuSMV is OpenSource:

– developed by a distributed community,

– “Free Software” license.

• NuSMV home page:

– http://nusmv.fbk.eu/

2 Simulation

Interactive shell

• “NuSMV -int” activates an interactive shell

• “set input file filename” sets the input model.

• “go” reads and initializes NuSMV for verification or simulation.

• “pick state [-v]” picks a state from the set of initial state.

– “-v” prints the chosen state.

• “simulate [-p | -v] [-r | -i] steps” generates a sequence of at most
steps states starting from the current state.

– “-p” and “-v” print the generated trace. “-p” prints only the changed
state variables. “-v” prints all the state variables.

– “-r” at every step picks the next state randomly.

– “-i” at every step picks the next state interactively.

Inspecting traces

• “goto state state label” makes state label the current state.

• “show traces [-v] [trace number]” shows the trace identified by trace number

or the most recently generated trace if trace number is omitted.

– “-v” prints prints all the state variables.

2

3 Modeling

3.1 Basic Definitions

The first SMV program

MODULE main

VAR

b0 : boolean;

ASSIGN

init(b0) := 0;

next(b0) := !b0;

b0!b0

0 1

An SMV program consists of:

• Declarations of the state variables (b0 in the example); the state variables
determine the state space of the model.

• Assignments that define the valid initial states (init(b0):=0).

• Assignments that define the transition relation (next(b0):=!b0).

Declaring state variables

The SMV language provides booleans, enumerative, bounded integers and
words as data types:

boolean: x : boolean;

enumerative: st : {ready, busy, waiting, stopped};

bounded integers (intervals): n : 1..8;

words: w : word[8];

Arrays

The SMV language provides also the possibility to define arrays.

VAR

x : array 0..10 of boolean;

y : array 2..4 of 0..10;

z : array 0..10 of array 0..5 of {red, green, orange};

ASSIGN

init(x[5]) := 1;

init(y[2]) := {0,2,4,6,8,10};

init(z[3][2]) := {green, orange};

Remarks:

• Array indexes in SMV must be constants;

3

Adding a state variable

MODULE main

VAR

b0 : boolean;

b1 : boolean;

ASSIGN

init(b0) := 0;

next(b0) := !b0;
b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

Remarks:

• The new state space is the cartesian product of the ranges of the variables.

• Synchronous composition between the “subsystems” for b0 and b1.

!b1

b1

Declaring the set of initial states

• For each variable, we constrain the values that it can assume in the initial

states.

init(<variable>) := <simple_expression> ;

• <simple expression> must evaluate to values in the domain of <variable>.

• If the initial value for a variable is not specified, then the variable can
initially assume any value in its domain.

Declaring the set of initial states

MODULE main

VAR

b0 : boolean;

b1 : boolean;

ASSIGN

init(b0) := 0;

next(b0) := !b0;

init(b1) := 0;

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

4

Expressions

• Arithmetic operators: + - * / mod - (unary)

• Comparison operators: = != > < <= >=

• Logic operators: & | xor ! (not) -> <->

• Conditional expression:

case

c1 : e1;

c2 : e2;

...

1 : en;

esac

if c1 then e1 else if c2 then e2 else if . . . else
en

• Set operators: {v1,v2,...,vn} (enumeration) in (set inclusion) union

(set union)

Expressions

• Expressions in SMV do not necessarily evaluate to one value. In general,
they can represent a set of possible values.

init(var) := {a,b,c} union {x,y,z} ;

• The meaning of := in assignments is that the lhs can assume non-deterministically
a value in the set of values represented by the rhs.

• A constant c is considered as a syntactic abbreviation for {c} (the single-
ton containing c).

Declaring the transition relation

• The transition relation is specified by constraining the values that variables
can assume in the next state.

next(<variable>) := <next_expression> ;

• <next expression> must evaluate to values in the domain of <variable>.

• <next expression> depends on “current” and “next” variables:

next(a) := { a, a+1 } ;

next(b) := b + (next(a) - a) ;

• If no next() assignment is specified for a variable, then the variable can
evolve non deterministically, i.e. it is unconstrained.

Unconstrained variables can be used to model non-deterministic inputs to
the system.

5

Declaring the transition relation

MODULE main

VAR

b0 : boolean;

b1 : boolean;

ASSIGN

init(b0) := 0;

next(b0) := !b0;

init(b1) := 0;

next(b1) := ((!b0 & b1) | (b0 & !b1));

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

0 1

2 3

Specifying normal assignments

• Normal assignments constrain the current value of a variable to the current
values of other variables.

• They can be used to model outputs of the system.

<variable> := <simple_expression> ;

• <simple expression> must evaluate to values in the domain of the <variable>.

Specifying normal assignments

MODULE main

VAR

b0 : boolean;

b1 : boolean;

out : 0..3;

ASSIGN

init(b0) := 0;

next(b0) := !b0;

init(b1) := 0;

next(b1) := ((!b0 & b1) | (b0 & !b1));

out := b0 + 2*b1;

0 1

2 3

6

Restrictions on the ASSIGN

In order for an SMV program to be implementable, assignments have the
following restrictions:

• Double assignments rule – Each variable may be assigned only once in the
program.

• Circular dependencies rule – A variable cannot have “cycles” in its depen-
dency graph that are not broken by delays.

If an SMV program does not respect these restrictions, an error is reported
by NuSMV.

Double assignments rule

Each variable may be assigned only once in the program.

init(status) := ready;

init(status) := busy;

next(status) := ready;

next(status) := busy;

status := ready;

status := busy;

init(status) := ready;

status := busy;

next(status) := ready;

status := busy;

ILLEGAL!

ILLEGAL!

ILLEGAL!

ILLEGAL!

ILLEGAL!

Circular dependencies rule

A variable cannot have “cycles” in its dependency graph that are

not broken by delays.

x := (x + 1) mod 2;

x := (y + 1) mod 2;

y := (x + 1) mod 2;

next(x) := x & next(x);

next(x) := x & next(y);

next(y) := y & next(x);

next(x) := x & next(y);

next(y) := y & x;

ILLEGAL!

ILLEGAL!

ILLEGAL!

ILLEGAL!

LEGAL!

7

The DEFINE declaration

• DEFINE declarations can be used to define abbreviations.

• An alternative to normal assignments.

• Syntax:

DEFINE <id> := <simple_expression> ;

• They are similar to macro definitions.[6mm]

• No new state variable is created for defined symbols (hence, no added
complexity to model checking).[6mm]

• Each occurrence of a defined symbol is replaced with the body of the
definition.

The DEFINE declaration

MODULE main

VAR

b0 : boolean;

b1 : boolean;

ASSIGN

init(b0) := 0;

next(b0) := !b0;

init(b1) := 0;

next(b1) := ((!b0 & b1) | (b0 & !b1));

DEFINE

out := b0 + 2*b1;

Example: A modulo 4 counter with reset

The counter can be reset by an external “uncontrollable” signal.

8

MODULE main

VAR

b0 : boolean; b1 : boolean; reset : boolean;

ASSIGN

init(b0) := 0; init(b1) := 0;

next(b0) := case

reset = 1 : 0;

reset = 0 : !b0;

esac;

next(b1) := case

reset : 0;

1 : ((!b0 & b1) | (b0 & !b1));

esac;

DEFINE

out := b0 + 2*b1;

2

0 1

3

3.2 Modules

Modules

An SMV program can consist of one or more module declarations.
MODULE mod

VAR out: 0..9;

ASSIGN next(out) :=

(out + 1) mod 10;

MODULE main

VAR m1 : mod; m2 : mod;

sum: 0..18;

ASSIGN sum := m1.out + m2.out;

m2m1

main

• Modules are instantiated in other modules. The instantiation is performed
inside the VAR declaration of the parent module.

• In each SMV specification there must be a module main.

• All the variables declared in a module instance are referred to via the dot
notation (e.g., m1.out, m2.out).

Module parameters

Module declarations may be parametric.
MODULE mod(in)

VAR out: 0..9;

...

MODULE main

VAR m1 : mod(m2.out);

m2 : mod(m1.out);

...

m2m1

main

out in

in out

9

• Formal parameters (in) are substituted with the actual parameters (m2.out,
m1.out) when the module is instantiated.

• Actual parameters can be any legal expression.

• Actual parameters are passed by reference.

Example: The modulo 4 counter revisited

MODULE counter_cell(tick)

VAR

value : boolean;

done : boolean;

ASSIGN

init(value) := 0;

next(value) := case

tick = 0 : value;

tick = 1 : (value + 1) mod 2;

esac;

done := tick & (((value + 1) mod 2) = 0);

Remarks: tick is the formal parameter of module counter cell.

Example: The modulo 4 counter revisited

MODULE main

VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.done);

out : 0..3;

ASSIGN

out := bit0.value + 2*bit1.value;

Remarks:

• Module counter cell is instantiated two times.

• In the instance bit0, the formal parameter tick is replaced with the actual
parameter 1.

• When a module is instantiated, all variables/symbols defined in it are
preceded by the module instance name, so that they are unique to the
instance.

10

Module hierarchies

MODULE counter_4(tick)

VAR

bit0 : counter_cell(tick);

bit1 : counter_cell(bit0.done);

out : 0..3; done : boolean;

ASSIGN out:= bit0.value + 2*bit1.value;

DEFINE done := bit1.done;

MODULE counter_64(tick) -- A counter modulo 64

VAR

b0 : counter_4(tick);

b1 : counter_4(b0.done);

b2 : counter_4(b1.done);

out : 0..63;

ASSIGN out := b0.out + 4*b1.out + 16*b2.out;

The modulo 4 counter with reset revisited

MODULE counter_cell(tick, reset)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value):=

case

reset = 1 : 0;

1 : case

tick = 0 : value;

tick = 1 : (value + 1) mod 2;

esac;

esac;

DEFINE

done := tick & (((value + 1) mod 2) = 0);

The modulo 4 counter with reset revisited

MODULE counter_4(tick, reset)

VAR

bit0 : counter_cell(tick, reset);

bit1 : counter_cell(bit0.done, reset);

DEFINE

out := bit0.value + 2*bit1.value;

done := bit1.done;

11

MODULE main

VAR

reset : boolean;

c : counter_4(1, reset);

DEFINE

out := c.out;

Records

Records can be defined as modules without parameters and assignments.

MODULE point

VAR x: -10..10;

y: -10..10;

MODULE circle

VAR center: point;

radius: 0..10;

MODULE main

VAR c: circle;

ASSIGN

init(c.center.x) := 0;

init(c.center.y) := 0;

init(c.radius) := 5;

3.3 Constraint style

The constraint style of model specification

MODULE main

VAR request : boolean; state : {ready,busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & request : busy;

1 : {ready,busy};

esac;

Every program can be alternatively defined in a constraint style:

MODULE main

VAR request : boolean;

state : {ready,busy};

INIT state = ready

TRANS (state = ready & request) -> next(state) = busy

The constraint style of model specification

• The SMV language allows for specifying the model by defining constraints
on:

12

– the states: INVAR <simple expression>

– the initial states: INIT <simple expression>

– the transitions: TRANS <next expression>

• There can be zero, one, or more constraints in each module, and con-
straints can be mixed with assignments.

• Any propositional formula is allowed in constraints.

• INVAR p is equivalent to INIT p and TRANS next(p), but is more efficient.

• Risk of defining inconsistent models (INIT p & !p).

Assignments versus constraints

• Any ASSIGN-based specification can be easily rewritten as an equivalent
constraint-based specification:

ASSIGN

init(state):={ready,busy}; INIT state in {ready,busy}

next(state):=ready; TRANS next(state)=ready

out:=b0+2*b1; INVAR out=b0+2*b1

• The converse is not true: the following constraint

TRANS

next(b0) + 2*next(b1) + 4*next(b2) =

(b0 + 2*b1 + 4*b2 + tick) mod 8

cannot be easily rewritten in terms of ASSIGNs.

Assignments versus constraints

• Models written in assignment style:

– by construction, there is always at least one initial state;

– by construction, all states have at least one next state;

– non-determinism is apparent (unassigned variables, set assignments...).

• Models written in constraint style:

– INIT constraints can be inconsistent :

∗ inconsistent model: no initial state,

∗ any specification (also SPEC 0) is vacuously true.

– TRANS constraints can be inconsistent :

∗ the transition relation is not total (there are deadlock states),

13

∗ NuSMV can detect and report this case (check_fsm).

∗ Example:

MODULE main

VAR b : boolean;

TRANS b = 1 -> 0;

– non-determinism is hidden in the constraints

The modulo 4 counter with reset, using constraints

MODULE counter_cell(tick, reset)

VAR

value : boolean;

done : boolean;

INIT

value = 0;

TRANS

reset = 1 -> next(value) = 0

TRANS

reset = 0 -> ((tick = 0 -> next(value) = value) &

(tick = 1 -> next(value) = (value+1) mod 2))

INVAR

done = (tick & (((value + 1) mod 2) = 0));

3.4 Synchronous vs. Asynchronous

Synchronous composition

• By default, composition of modules is synchronous: all modules move at

each step.

MODULE cell(input)

VAR

val : {red, green, blue};

ASSIGN

next(val) := {val, input};

MODULE main

VAR

c1 : cell(c3.val);

c2 : cell(c1.val);

c3 : cell(c2.val);

val

val

val

c3

c1

c2
input

input

input

Synchronous composition

A possible execution:

14

step c1.val c2.val c3.val

0 red green blue

1 red red green

2 green red green
3 green red green
4 green red red

5 red green red
6 red red red
7 red red red
8 red red red
9 red red red
10 red red red

Asynchronous composition

• Asynchronous composition can be obtained using keyword process.

• In asynchronous composition one process moves at each step.

• Boolean variable running is defined in each process:

– it is true when that process is selected;

– it can be used to guarantee a fair scheduling of processes.

MODULE cell(input)

VAR val : {red, green, blue};

ASSIGN next(val) := {val, input};

FAIRNESS running

MODULE main

VAR

c1 : process cell(c3.val);

c2 : process cell(c1.val);

c3 : process cell(c2.val);

Asynchronous composition

A possible execution:

step running c1.val c2.val c3.val

0 - red green blue

1 c2 red red blue
2 c1 blue red blue
3 c1 blue red blue
4 c2 blue red blue
5 c3 blue red red

6 c2 blue blue red
7 c1 blue blue red
8 c1 red blue red
9 c3 red blue blue

10 c3 red blue blue

15

