
Spin:

introduction and examples∗

Silvia Tomasi
silvia.tomasi@disi.unitn.it

http://ares.science.unitn.it/~silvia.tomasi/st/Formal_Methods.html

Course on Formal Methods
Lab Class April 20, 2010

Contents

1 Introduction 1

2 Promela examples 3
2.1 Hello world! . 3
2.2 Producers/Consumers . 4
2.3 Mutual Exclusion . 9

3 Promela overview 13
3.1 Processes . 13
3.2 Data objects . 14
3.3 Message Channels . 15
3.4 Executability . 17

4 Asynchronous Network Problems 18
4.1 Reliable FIFO Communication 18
4.2 Leader Election . 20

1 Introduction

The Spin model checker

• Open-source software tool used for formal verification of distributed soft-
ware systems.

∗These slides are derived from those by Stefano Tonetta (FBK-IRST) and Alberto Griggio
(FBK-IRST), used for FM lab 2005-2009

1

• Developed at Bell Labs.

• In 2002, recognized by the ACM with Software System Award (like Unix,
TeX, Smalltalk, Postscript, TCP/IP, Tcl/Tk).

• Automated tools convert programs written in Java or in C into Spin mod-
els.

• The specification language is called Promela.

• Spin has a graphical user interface, Xspin.

• Homepage: http://spinroot.com/spin/whatispin.html

• Manual: http://spinroot.com/spin/Man/index.html

Promela

• Promela is suitable to describe concurrent software.

– dynamic creation of concurrent processes

– (synchronous/asynchronous) communication via message channels

• Programs written in Promela can be executed/simulated.

• Simulation shows one execution.

• Verification checks every execution.

Basic commands

• To simulate a program:

spin system.pml

• Interactively:

spin -i system.pml

• To generate a verifier (pan.c):

spin -a system.pml

2

2 Promela examples

2.1 Hello world!

Hello world!

active proctype main()
{

printf("hello world\n")
}

• active instantiates one process of the type that follows.

• proctype denotes that main is a process type.

• main identifies the process type, it’s not a keyword.

• Note that ’;’ is missing after printf: ’;’ is a statement separator, not a
statement terminator.

Remark

• Each process instance has a unique, positive instantiation number.

• A process-instance remains active until the process’ body terminates (if
ever).

Hello world! Alternative

init {
printf("hello world\n")

}

• init is a process that initializes the system.

• Initially just the initial process is executed.

Simulation:

> spin hello.pml
hello world

1 process created

3

2.2 Producers/Consumers

Producers/Consumers
File prodcons.pml:

mtype = { P, C };

mtype turn = P;

active proctype producer()
{

do
:: (turn == P) ->

printf("Produce\n");
turn = C

od
}
...

Producers/Consumers

• mtype defines symbolic values.

• turn is a global variable.

• do ... od (i.e. repetition statement) defines a loop.

• Only a break statement can break the loop.

• Every option of the loop must start with ’::’.

• (turn == P) is the guard of the option.

• -> and ; are equivalent (-> indicates a causal relation between successive
statements).

• If all guards are false, then the process blocks.

• If multiple guards are true, we get non-determinism.

Producers/Consumers
The producer’s definition is equivalent to:

active proctype producer()
{
again: if

:: (turn == P) ->
printf("Produce\n");
turn = C

fi;

4

goto again
}

• goto transfers control to the statement labeled by again.

Producers/Consumers
Also equivalent to:

active proctype producer()
{
again: (turn == P) ->

printf("Produce\n");
turn = C;

goto again
}

• If the guard does not hold, execution blocks until it does.

Producers/Consumers
Also equivalent to:

active proctype producer()
{
again: if

:: (turn == P) ->
printf("Produce\n");
turn = C

:: else -> goto again
fi;
goto again

}

• else is only executable (true) if all other options are not executable.

Producers/Consumers
Simulation:

> spin prodcons.pml | more
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume
Produce

Consume
...

5

Producers/Consumers Extended
We can extend the example to more processes for each type:

active [2] proctype producer {...}

The alternation is no more guaranteed. Simulation:

> spin prodcons2_flaw.pml | more
Produce

Consume
Consume

Produce
Consume

Produce
Produce

Consume
...

Producers/Consumers Extended
Reason:

> spin -i prodcons2_flaw.pml
Select a statement

choice 3: proc 1 (producer) line 7 "prodcons2_flaw.pml" (state
4) [((turn==P))]

choice 4: proc 0 (producer) line 7 "prodcons2_flaw.pml" (state
4) [((turn==P))]
Select [1-4]: 3
Select a statement

choice 3: proc 1 (producer) line 9 "prodcons2_flaw.pml" (state
2) [printf(’Produce\\n’)]

choice 4: proc 0 (producer) line 7 "prodcons2_flaw.pml" (state
4) [((turn==P))]
Select [1-4]: 4

Producers/Consumers Extended
A correct declaration for the producer:

active [2] proctype producer()
{

do
:: request(turn, P, N) ->

printf("P%d\n", _pid);
assert(who == _pid);
release(turn, C)

od
}

6

• assert aborts the program if the expression returns a zero result, other-
wise it is just passed.

Producers/Consumers Extended
Definition of request:

inline request(x, y, z) {
atomic { x == y -> x = z; who = _pid }

}

• inline functions like C macros (their body is directly pasted into the body
of a proctype at each point of invocation)

• atomic: when it starts, the process will keep running until all steps will
complete.

• The executability of the atomic sequence is determined by the first state-
ment.

Producers/Consumers Extended
File prodcons2.pml:

mtype = { P, C, N };

mtype turn = P;
pid who;

inline request(x, y, z) {
atomic { x == y -> x = z; who = _pid }

}

inline release(x, y) {
atomic { x = y; who = 0 }

}
...

Producers/Consumers Extended
Simulation:

> spin prodcons2.pml | more
P1

C3
P0

C3
P1

C3
P1

7

C2
P0

C3
P1

...

Producers/Consumers Extended
Simulation can detect errors:

> spin false.pml
spin: line 1 "false.pml", Error: assertion violated
spin: text of failed assertion: assert(0)
#processes: 1
1: proc 0 (:init:) line 1 "false.pml" (state 1)

1 process created

However, simulation cannot prove that error do not exist.

Producers/Consumers Extended
To prove that the assertions cannot be violated, we generate a verifier:

> spin -a prodcons2.pml
> cc -o pan pan.c
> ./pan
...
Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 28 byte, depth reached 7, errors: 0
...

Producers/Consumers Extended
Back to the flawed Producers/Consumers

8

mtype = { P, C };

mtype turn = P;

int msgs;

active [2] proctype producer()
{
do
:: (turn == P) ->

printf("Produce\n");
msgs++;
turn = C

od
}

active [2] proctype consumer()
{
do
:: (turn == C) ->

printf("Consume\n");
msgs--;
turn = P

od
}

active proctype monitor() {
assert(msgs >= 0 && msgs <= 1)

}

spin -a prodcons2_flaw.pml && gcc -o pan pan.c && ./pan spin -t -p prodcons2_flaw.pml

2.3 Mutual Exclusion

The Mutual Exclusion problem
General algorithm

active [2] proctype mutex()
{
again:

/* trying section */

cnt++;
assert(cnt == 1); /* critical section */
cnt--;

/* exit section */
goto again

}

The Mutual Exclusion problem
First tentative

bit flag;
byte cnt;

active [2] proctype mutex() {
again:
flag != 1;

9

flag = 1;
cnt++;
assert(cnt == 1);
cnt--;
flag = 0;
goto again

}

The Mutual Exclusion problem
Second tentative
bit x, y;
byte cnt;

active proctype A() {
again:
x = 1;
y == 0;
cnt++;
/* critical section */
assert(cnt == 1);
cnt--;
x = 0;
goto again

}

active proctype B() {
again:
y = 1;
x == 0;
cnt++;
/* critical section */
assert(cnt == 1);
cnt--;
y = 0;
goto again

}

Dekker/Dijkstra algorithm
Trying session:

flag[i] = true;
do
:: flag[j] ->

if
:: turn == j ->

flag[i] = false;
!(turn == j);
flag[i] = true

:: else -> skip
fi

:: else ->
break

od;

• flag indicates an intention to enter the critical section

• turn indicates who has priority between the two processes.

10

Dekker/Dijkstra algorithm
Exit session:

turn = j;
flag[i] = false;

Dekker/Dijkstra algorithm
Verification:

> spin -a dekker.pml
> cc -o pan pan.c
> ./pan
...
Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 67, errors: 0
...

Doran&Thomas change
Is the outer loop really necessary?

flag[i] = true;
if
:: flag[j] ->

if
:: turn == j ->

flag[i] = false;
!(turn == j);
flag[i] = true

:: else -> skip
fi

:: else
fi;

Doran&Thomas change
Verification:

> spin -a doran.pml
> cc -o pan pan.c
> ./pan
...
pan: assertion violated (cnt==1) (at depth 117)
pan: wrote doran.pml.trail
...

11

doran.pml.trail contains a counterexample with length 117.

Doran&Thomas change
We can use a breadth-first search to find the shortest counterexample:

> cc -DBFS -o pan pan.c
> ./pan
...
pan: assertion violated (cnt==1) (at depth 12)
pan: wrote doran.pml.trail
...

Doran&Thomas change
Now, we can perform a guided simulation:

> spin -p -t doran.pml
1: proc 1 (mutex) line 8 ... [i = _pid]
2: proc 1 (mutex) line 9 ... [j = (1-_pid)]
3: proc 1 (mutex) line 11 ... [flag[i] = 1]
4: proc 1 (mutex) line 21 ... [else]
5: proc 1 (mutex) line 24 ... [cnt = (cnt+1)]
6: proc 0 (mutex) line 8 ... [i = _pid]
7: proc 0 (mutex) line 9 ... [j = (1-_pid)]
8: proc 0 (mutex) line 11 ... [flag[i] = 1]
9: proc 0 (mutex) line 13 ... [(flag[j])]
10: proc 0 (mutex) line 19 ... [else]
11: proc 0 (mutex) line 19 ... [(1)]
12: proc 0 (mutex) line 24 ... [cnt = (cnt+1)]

Peterson algorithm
A correct improvement: trying session

flag[i] = true;
turn = i;
!(flag[j] && turn == i) ->

exit session

flag[i] = false;

Verification:

> spin -a peterson.pml
> cc -o pan pan.c
> ./pan
...
State-vector 20 byte, depth reached 41, errors: 0
...

12

3 Promela overview

Promela

• Promela design is focused on process interaction at the system level

• Consequent features:

– non-deterministic control structures,
– primitives for process creation,
– primitives for interprocess communication.

• Consequent lacks:

– functions with return values,
– expressions with side-effects,
– data and functions pointers.

PROMELA is a language for building verification models (not a program-
ming language)!

Types of objects
Three basic types of objects:

• processes

• data objects

• message channels

3.1 Processes

Process Initialization

• By means of active (instantiate an initial set of processes):

active [2] proctype you_run()
{

printf("my pid is: %d\n", _pid)
}

• By means of run (creating new processes):

proctype you_run(byte x)
{

printf("x = %d, pid = %d\n", x, _pid)
}
init {

run you_run(0);
run you_run(1)

}

13

Notes

• We cannot pass parameter values to init or to active processes.

• A newly created process may not start right after its initialization.

• To keep the system finite, only 256 processes can be alive in the same
moment.

• A process “terminates” when it reaches the end of its code.

• A process “dies” when it has terminated and all processes instantiated
later have died.

• A process may terminate without dying.

3.2 Data objects

Variable Scope
There are only two levels of scope:

• global: if it is declared outside all process declarations,

• process local: if it is declared within a process declaration.

init { /* x declared in outer block */
int x;
{ /* y declared in inner block */

int y;
printf("x = %d, y = %d\n", x, y);
x++;
y++;

}
/* y remains in scope */
printf("x = %d, y = %d\n", x, y);

}

Basic types

Type Typical Range
bit 0, 1
bool false, true
byte 0..255
chan 1..255
mtype 1..255
pid 0..255
short −215 .. 215−1
int −231 .. 231−1
unsigned 0 .. 2n−1

14

Typical declarations

bit x, y; /* two single bits, initially 0 */
bool turn = true; /* boolean value, initially true */
byte a[12]; /* all elements initialized to 0 */
chan m; /* uninitialized message channel */
mtype n; /* uninitialized mtype variable */
short b[4] = 89; /* all elements initialized to 89 */
int cnt = 67; /* integer scalar, initially 67 */
unsigned v : 5; /* unsigned stored in 5 bits */
unsigned w : 3 = 5; /* value range 0..7, initially 5 */

Data structures
typedef Field {

short f = 3;
byte g

};
typedef Record {

byte a[3];
int fld1;
Field fld2;
chan p[3];
bit b

};
proctype me(Field z) { z.g = 12 }
init { Record goo; Field foo;

run me(foo)
}

Arrays and Data structures

• A structure can be passed as argument to a run statement, provided it
contains no arrays. (In the example, foo can be passed, goo cannot.)

• Multi-dimensional arrays are not supported, although there are indirect
ways:

typedef Array {
byte el[4]

};

Array a[4];

3.3 Message Channels

Message Channels

15

• Channels are used to transfer messages between active processes.

• They store messages in first-in first-out order.

• Two types:

– buffered channels,

– rendezvous ports, also called synchronous channels.

Buffered Channels

• Declaration:

chan qname = [16] of { short, byte, bool }

This channel can store up to 16 messages, each consisting of 3 fields of the
types listed.

• A field can be a user-defined type, but not an array.

• Sending a message:

qname!expr1,expr2,expr3

The process blocks if the channel is full.

• Receiving a message:

qname?var1,var2,var3

The process blocks if the channel is empty.

Alternative

• The first message field is a message type indication:

qname!expr1(expr2,expr3)
qname?var1(var2,var3)

• Some parameters can be given as constants:

qname?cons1,var2,cons2

The process blocks if the channel is empty and if the sent values do not
match the constants.

• The built-in function len can be used to get the number of messages in a
given channel:

len(qname)

16

Rendezvous Ports

• Declaration of a rendezvous port: it can pass single byte messages

chan port = [0] of { byte }

• The channel size is zero: the channel port can pass, but can not store
messages.

• Message interaction is synchronous: two processes execute a send and a
receive statement at the same time.

mtype = { msgtype };
chan name = [0] of { mtype, byte };
active proctype A()
{ name!msgtype(124);

name!msgtype(121)
}
active proctype B()
{ byte state;

name?msgtype(state)
}

Channels of channels

• Message parameters are always passed by value.

• We can pass the value of a channel from a process to another.

mtype = { msgtype };
chan glob = [0] of { chan };
active proctype A()
{ chan loc = [0] of { mtype, byte };

glob!loc;
loc?msgtype(121)

}
active proctype B()
{ chan who;

glob?who;
who!msgtype(121)

}

3.4 Executability

Statements

• Every statement is either executable or blocked.

17

• Three main types of statements:

– print statements

– assignments

– expression statements

• Print statements and assignments are always executable.

• Expression statements are executable iff they evaluate to true.

• Expressions must be side effect free.

• Exception: the run statement can be considered as a blocking expression:

– it blocks when there are 256 processes alive;

– if it does not block, it creats a new process.

4 Asynchronous Network Problems

4.1 Reliable FIFO Communication

Reliable FIFO Communication Problem

• We want to implement a reliable FIFO communication using less reliable
channels.

• A user Sender sends messages to another user Receiver by means of two
channels C1 and C2

• C1 and C2 are non-reliable channels.

• The non-reliable channels may lose or duplicate the messages.

C1

C2

Sender Receiver

Alternating Bit Protocol

• Sender tags the messages with an alternating bit (e.g. it sends (0, msg1),
(1, msg2), (0, msg3), ...).

• Sender repeatedly sends a message with its tag until it receives a bit
acknowledgment from Receiver.

18

• Suppose Sender has sent (tag, msg) and receives b as acknowledgment.
If b is equal to tag, then it means that Receiver has received the right
message, so it obtains a new message and tags it with a different value;
otherwise it sends (tag, msg) again.

• Similarly, suppose Receiver receives (tag, msg). If tag is different from
the last received bit, then it means that it is a new message; otherwise,
the message is old. In both cases, Receiver sends tag back to Sender to
communicate the correct receipt of the message.

Alternating Bit Protocol

mtype = { msg, ack };

chan to_sndr = [2] of { mtype, bit };
chan to_rcvr = [2] of { mtype, bit};

active proctype Sender()
{
...
}

active proctype Receiver()
{
...
}

Alternating Bit Protocol

active proctype Sender()
{
bit seq_out, seq_in;

/* obtain first message */
do
:: to_rcvr!msg(seq_out) ->

to_sndr?ack(seq_in);
if
:: seq_in == seq_out ->

/* obtain new message */
seq_out = 1 - seq_out;

:: else
fi

od
}

19

Alternating Bit Protocol

active proctype Receiver()
{
bit seq_in;
do
:: to_rcvr?msg(seq_in)
:: to_sndr!ack(seq_in)

od
}

Example of simulation

• Receiver sends 2 ack (then it is blocked)

• Sender sends one message

• two possibilities:

– Receiver receives the message
– Sender receives one ack

Exercise

• Try with:

active proctype Receiver()
{ bit seq_in, last_seq_in;

int received;
do
:: to_rcvr?msg(seq_in, received) ->

if
:: (seq_in != last_seq_in) ->

printf("Received: %d\n", received);
last_seq_in = seq_in

:: else
fi;
to_sndr!ack(seq_in)

od
}

4.2 Leader Election

Leader Election Problem

• N processes are the nodes of a unidirectional ring network: each process
can send messages to its clockwise neighbor and receive messages from its
counterclockwise neighbor.

20

• The requirement is that, eventually, only one process will output that it
is the leader.

• We assume that every process has a unique identifier.

• The leader must have the highest identifier

N0

N1

N3

N2

Le Lann, Chang, Roberts (LCR) solution

• Initially, every process passes its identifier to its successor.

• When a process receives an identifier from its predecessor, then:

– if it is greater than its own, it keeps passing the identifier;

– if it is smaller, it discards the identifier.

– if it is equal to its own identifier, it declares itself leader.

∗ The leader informs the others that it is the leader.
∗ After a process receives the message with the id of the leader, it

exits.

Hint:

mtype = { candidate, leader };

chan c[N] = [BUFSIZE] of { mtype, byte };

proctype node(chan prev, next; byte mynumber) { ... }

init {

...

do

:: proc <= N -> run node(...);

...

}

Exercises

• Implement the Le LCR algorithm.

• Verify there can be at most one leader (using Xspin, next lecture).

21

