NUXMV: Planning as Model Checking *

Patrick Trentin
patrick.trentin@unitn.it
http://disi.unitn.it/~trentin

Formal Methods Lab Class, Apr 21, 2015

*These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani for FM lab 2005/14

Patrick Trentin (DISI) NUXMV: Planning as Model Checking Apr 21, 2015 1/28

http://disi.unitn.it/~trentin

Contents

© Planning problem

© Examples
@ The Tower of Hanoi

o Ferryman
o Tic-Tac-Toe

Patrick Trentin (DISI) NUXMV: Planning as Model Checking

Apr 21, 2015

2/ 28

© Planning problem

3/28

Planning Problem

e Planning Problem: given (/, G, T), where

o I: (representation of) initial state
o G: (representation of) goal state
o T: transition relation

find a sequence of transitions ti, ..., t, leading from the initial state to
the goal state.

@ ldea: encode planning problem as model checking problem

4/28

Example: blocks [1/8]

Init :

Goal :

Move(a, b, c)
Precond :

Effect :

INITIAL GOAL
A ¢
B % B
¢ A

T

On(A, B),On(B, C),0n(C, T), Clear(A)
On(C, B), On(B, A), On(A, T)

Block(a) A Clear(a) A On(a, b)A
(Clear(c) v Table(c))A
a‘tbhNa#tcANb#c
Clear(b) A =On(a, b)A

On(a, c) N\ —Clear(c)

5/28

Example: blocks [2/8]

MODULE block(id, ab, bl)

VAR
above : {none, a, b, c}; -- the block above this one
below : {none, a, b, c}; —- the block below this one
DEFINE
clear := (above = none);
INIT
above = ab &
below = bl
INVAR
below != id & above != id -- a block can’t be above or below itself

MODULE main
VAR
move : {move_a, move_b, move_c}; -- at each step only one block moves
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

6/28

Example: blocks [3/8]

@ a block can not move only if it has some block above itself

TRANS
(!'block_a.clear -> move
(!'block_b.clear -> move
(!'block_c.clear -> move

'= move_a) &
= move_b) &
I= move_c)

7/28

Example: blocks [

@ a block can not move only if it has some block above itself

TRANS

('block_a.clear —-> move != move_a) &
('block_b.clear -> move != move_b) &
(!'block_c.clear -> move != move_c)

@ Q: what's wrong with following formulation?
TRANS
(block_a.clear -> move = move_a) &

(block_b.clear -> move = move_b) &
(block_c.clear -> move = move_c)

7/28

Example: blocks [

@ a block can not move only if it has some block above itself

TRANS

('block_a.clear -> move != move_a) &
('block_b.clear -> move != move_b) &
(!'block_c.clear -> move != move_c)

@ Q: what's wrong with following formulation?
TRANS
(block_a.clear -> move = move_a) &

(block_b.clear -> move = move_b) &
(block_c.clear -> move = move_c)

A:
e any non-clear block would still be able to move
e move can only have one valid value = inconsistency whenever there
are two clear blocks at the same time

7/28

Example: blocks [4

@ a moving block changes location and remains clear

TRANS
(move = move_a -> next(block_a.clear) &
next (block_a.below) != block_a.below) &
move_b -> next(block_b.clear) &
next(block_b.below) !'= block_b.below) &
(move = move_c -> next(block_c.clear) &
next (block_c.below) != block_c.below)

(move

@ a non-moving block does not change its location

TRANS
(move != move_a -> next(block_a.below) = block_a.below) &
(move != move_b -> next(block_b.below) = block_b.below) &
(move != move_c -> next(block_c.below) = block_c.below)

8/28

Example: blocks

@ a block remains connected to any non-moving block

TRANS

(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = ¢

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

9/28

Example: blocks

@ a block remains connected to any non-moving block

TRANS

(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = ¢

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

@ Q: what about “below block”?

9/28

Example: blocks

@ a block remains connected to any non-moving block

TRANS

(move != move_a & block_b.above = a

-> next(block_b.above) = a) &
(move != move_a & block_c.above = a

-> next(block_c.above) = a) &
(move != move_b & block_a.above = b

-> next(block_a.above) = b) &
(move != move_b & block_c.above = b

-> next(block_c.above) = b) &
(move != move_c & block_a.above = ¢

-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

@ Q: what about “below block”?
A: covered in previous slide!

9/28

Example: blocks |

@ positioning of blocks is simmetric
INVAR

(block_a.above = b <-> block_b.below = a)
& (block_a.above = ¢ <-> block_c.below = a)
& (block_b.above = a <-> block_a.below = b)
& (block_b.above = ¢ <-> block_c.below = b)
& (block_c.above = a <-> block_a.below = c)
& (block_c.above = b <-> block_b.below = c)
& (block_a.above = none -> (block_b.below != a & block_c.below != a))
& (block_b.above = none -> (block_a.below != b & block_c.below !'= b))

& (block_c.above = none -> (block_a.below != ¢ & block_b.below != c))

& (block_a.below = none -> (block_b.above != a & block_c.above != a))
(block_b.below = none -> (block_a.above != b & block_c.above != b))
& (block_c.below = none -> (block_a.above != c & block_b.above != c))

&

10/28

Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an
accepting state

Idea:

@ assert property p: “goal state is not reachable”
o if a plan exists, NUXMV produces a counterexample for p
@ the counterexample for p is a plan to reach the goal

11/28

Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an
accepting state

Idea:

@ assert property p: “goal state is not reachable”
o if a plan exists, NUXMV produces a counterexample for p
@ the counterexample for p is a plan to reach the goal

Examples:
@ get a plan for reaching “goal state”
SPEC
IEF (block_a.below = none & block_a.above = b & block_b.below = a &
block_b.above ¢ & block_c.below = b & block_c.above = none)

11/28

Example: blocks [7/8]

Remark: a plan is a sequence of transition leading the initial state to an
accepting state

Idea:
@ assert property p: “goal state is not reachable”
o if a plan exists, NUXMV produces a counterexample for p
@ the counterexample for p is a plan to reach the goal

Examples:
@ get a plan for reaching “goal state”
SPEC
IEF (block_a.below = none & block_a.above = b & block_b.below = a &
block_b.above = ¢ & block_c.below = b & block_c.above = none)
@ get a plan for reaching a configuration in which all blocks are placed
on the table
SPEC
'EF (block_a.below = none & block_b.below = none &
block_c.below = none)
11/28

Example: blocks [8/8]

@ at any given time, at least one block is placed on the table

INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none

12/28

Example: blocks [

@ at any given time, at least one block is placed on the table

INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none

@ at any given time, at least one block has nothing above

INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none

12/28

Example: blocks [

@ at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none
@ at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none
@ we can always reach a configuration in which all nodes are placed on
the table

SPEC
AG EF (block_a.below = none & block_b.below = none &
block_c.below = none)

12/28

Example: blocks

@ at any given time, at least one block is placed on the table
INVARSPEC
block_a.below = none | block_b.below = none | block_c.below = none
@ at any given time, at least one block has nothing above
INVARSPEC
block_a.above = none | block_b.above = none | block_c.above = none
@ we can always reach a configuration in which all nodes are placed on
the table

SPEC
AG EF (block_a.below = none & block_b.below = none &
block_c.below = none)

@ we can always reach the goal state
SPEC
AG EF(block_a.below = none & block_a.above = b &
block_b.below a & block_b.above = c &
block_c.below = b & block_c.above = none)

12/28

© Examples
@ The Tower of Hanoi

o Ferryman
@ Tic-Tac-Toe

13/28

Example: tower of hanoi [1/4]

Game with 3 poles and N disks of
different sizes:

o initial state: stack of disks with
decreasing size on pole A

o goal state: move stack on pole C
o rules:
o only one disk may be moved at
each transition
o only the upper disk can be moved
e a disk can not be placed on top of
a smaller disk

14 /28

Example: tower of hanoi [2/4]

@ base system model

MODULE main

VAR
dl : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

15/28

Example: tower of hanoi [2/4]

@ base system model

MODULE main

VAR
dl : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

o disk i is moving

DEFINE
move_dl := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

15/28

Example: tower of hanoi [2/4]

@ base system model

MODULE main

VAR
dl : {left,middle,right}; -- largest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- smallest
move : 1..4; -- possible moves

o disk i is moving

DEFINE
move_dl := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

o disk d; can move iff Vj > i.d; # d;

clear_dl := (d1'!'=d2 & d1'!'=d3 & d1'—d4)
clear_d2 := (d2!=d3 & d2!'=d44);
clear_d3 := (d3!=d4);

clear_d4 := TRUE;

15/28

Example: tower of hanoi [3/4]

@ initial state

INIT
dl = left &
d2 = left &
d3 = left &
d4 = left;

16/28

Example: tower of hanoi [3/4]

@ initial state

INIT
dl = left &
d2 = left &
d3 = left &
d4 = left;

@ move description for disk 1
TRANS
move_dl ->
-- disks location changes
next(dl) !'=d1l &

next(d2) = d2 &

next(d3) = d3 &

next(d4) = d4 &

-- dl can move only if it is clear
clear_dl &

-- dl can not move on top of smaller disks

next(dl) !'= d2 &

next(dl) != d3 &

next(dl) != d4 1628

Example: tower of hanoi [4/4]

@ get a plan for reaching “goal state”

SPEC
! EF (dl=right & d2=right & d3=right & d4=right)

17/28

Example: tower of hanoi [4/4]

@ get a plan for reaching “goal state”

SPEC
! EF (dl=right & d2=right & d3=right & d4=right)

o NUXMV execution:

nuXmv > read_model -i hanoi.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(EF (((dl = right & d2 = right) & d3 = right)
& d4 = right)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
-> State: 2.1 <-

dl = left
d2 = left
d3 = left
d4 = left

17 /28

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely across a
river.

@ initial state: all animals are on the right side

o goal state: all animals are on the left side
o rules:

o the ferryman can cross the river with at most one passenger on his boat

o the cabbage and the sheep can not be left unattended on the same side
of the river

o the sheep and the wolf can not be left unattended on the same side of
the river

Q: can the ferryman transport all the goods to the other side safely?

18/28

Example: ferry

@ base system model
MODULE main

VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; —-- possible moves
DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf = (move = w);
no_carry = (move = e);

19/28

Example: ferry

@ base system model
MODULE main

VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; —-- possible moves
DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

@ initial state

ASSIGN
init(cabbage) := right;
init (sheep) := right;
init (wolf) 1= right;
init(man) 1= right;

19/28

Example: ferryman [3/4]

o ferryman carries cabbage

TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next (sheep) = sheep &
next (wolf) = wolf

20/28

Example: ferryman [3/4]

o ferryman carries cabbage

TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next (sheep) = sheep &
next (wolf) = wolf

o ferryman carries sheep

TRANS
carry_sheep —>
sheep = man &
next (sheep) != sheep &
next(man) != man &
next (cabbage) = cabbage &
next (wolf) = wolf

20/28

Example: ferryman [3/4]

o ferryman carries cabbage

TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next (sheep) = sheep &
next (wolf) = wolf

o ferryman carries wolf

TRANS
carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next (sheep) = sheep &
next (cabbage) = cabbage

o ferryman carries sheep

TRANS
carry_sheep —>
sheep = man &
next (sheep) != sheep &
next(man) != man &
next (cabbage) = cabbage &
next (wolf) = wolf

20/28

Example: ferryman [3/4]

o ferryman carries cabbage

TRANS
carry_cabbage ->
cabbage = man &
next(cabbage) != cabbage &
next(man) != man &
next (sheep) = sheep &
next (wolf) = wolf

o ferryman carries wolf

TRANS
carry_wolf ->
wolf = man &
next(wolf) != wolf &
next(man) != man &
next (sheep) = sheep &
next (cabbage) = cabbage

o ferryman carries sheep
TRANS

e ferryman carries nothing

TRANS
carry_sheep —>
no_carry ->
sheep = man &
next(man) != man &
next (sheep) != sheep &
next (sheep) = sheep &

next(man) !'= man &
next (cabbage) = cabbage &
next (wolf) = wolf

next (cabbage) = cabbage &
next (wolf) = wolf

20/28

Example: ferryman [4/4]

@ get a plan for reaching “goal state”
DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

SPEC
! E[safe_state U goall

21/28

@ get a plan for reaching “goal state”
DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

SPEC
! E[safe_state U goall

@ NUXMV execution:
nuXmv > read_model -i ferryman.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !E [safe_state U goal] is false
-- as demonstrated by the following execution sequence
-> State: 1.1 <-
cabbage = right
sheep = right
wolf = right
man = right

21/28

Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and O)
marking the squares of a board (— a 3x3 grid). The player who succeeds
in placing three respective marks in a horizontal, vertical or diagonal row
wins the game.

o Example: 0 wins @ we model tic-tac-toe puzzle as
an array of size nine

) ¢ 112
54 =12 R
| |
| |
| |

X0 2

22/28

Example: tic-tac-toe [2/5]

@ base system model
MODULE main
VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

23/28

Example: tic-tac-toe [2/5]

@ base system model
MODULE main
VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

@ initial state
INIT
B[1] =
B[2] =
B[3] =
B[4] =
B[5] =
B[6] =
B[7] =
B[8] =
B[9] =
INIT
move = 0;

O O O O OO O oo
Frrrereeeee

23/28

Example: tic-tac-toe [3/5]

@ turns modeling
ASSIGN
init(player) := 1;
next(player) :=
case
player = 1 : 2;
player ;
esac;

[
N
-

24 /28

Example: tic-tac-toe [3/5]

@ turns modeling
ASSIGN
init(player) :
next(player) :=
case
player = 1 : 2;
player ;
esac;

]
-

1]
N
e

@ move modeling
TRANS
next (move=1) ->
B[1] = 0 & next(B[1]) = player &
next (B[2])=B[2] &
next (B[3])=B[3]
next (B[4])=B[4]
next (B[5])=B[5]
next (B[6])=B[6]
next (B[7]1)=B[7]
next (B[8])=B[8]
next (B[9])=B[9]

R

24 /28

Example: tic-tac-toe [4/5]

o “end” state

DEFINE
winl := (B[1]=1 & B[2]=1 & B[3]=1) | (B[4]=1 & B[5]=1 & B[6]=1) |
(B[7]=1 & B[8]=1 & B[9]=1) | (B[1]=1 & B[4]=1 & B[7]1=1) |
(B[2]=1 & B[5]=1 & B[8]=1) | (B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]1=1 & B[5]=1 & B[9]=1) | (B[3]=1 & B[5]=1 & B[7]1=1);
win2 := (B[1]=2 & B[2]=2 & B[3]=2) | (B[4]=2 & B[5]=2 & B[6]=2) |
(B[7]1=2 & B[8]=2 & B[9]=2) | (B[1]=2 & B[4]=2 & B[7]1=2) |
(B[2]=2 & B[5]=2 & B[8]=2) | (B[3]=2 & B[6]=2 & B[9]=2) |
(B[1]=2 & B[5]=2 & B[9]=2) | (B[3]=2 & B[5]=2 & B[7]=2);

draw := 'winl & 'win2 &

B[1]!=0 & B[2]!=0 & B[3]!=0 & B[4]!=0 &
B[5]1!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(winl | win2 | draw) <-> next(move)=0

25 /28

Example: tic-tac-toe [5/5]

A strategy is a plan that need to be accomplished for winning the game
“if the opponent has two in a row, play the third to block them”

@ player 2 does not have a “winning” strategy
SPEC
! (AX (EX (AX (EX (&X (EX (AX (EX (AX win2)))))))))
@ player 2 has a “non-losing” strategy
SPEC
AX (EX (AX (EX (AX (EX (AX (EX (AX 'win1))))))))

Verification:

nuXmv > read_model -i tictactoe.smv
nuXmv > go
nuXmv > check_ctlspec
-- specification !(AX (EX (AX (EX (AX (EX
(AX (EX (AX win2))))))))) is true
-- specification AX (EX (AX (EX (AX (EX
(AX (EX (AX 'win1)))))))) is true

26 /28

Exercises [1/2]

@ Tower of Hanoi: extend the tower of hanoi to handle five disks, and
check that the goal state is reachable.

@ Ferryman: another ferryman has to bring a fox, a chicken, a
caterpillar and a crop of lettuce safely across a river.

o initial state: all goods are on the right side
o goal state: all goods are on the left side
o rules:
o the ferryman can cross the river with at most two passengers on his
boat
o the fox eats the chicken if left unattended on the same side of the river
o the chicken eats the caterpillar if left unattended on the same side of
the river
o the caterpillar eats the lettuce if left unattended on the same side of
the river

Can the ferryman bring every item safely on the other side?

27/28

Exercises [2/2]

@ Tic-Tac-Toe: encode and verify the following properties

player 2 has also a " non-winning" strategy
player 2 does not have a "losing” strategy
player 2 does not have a "drawing” strategy
player 2 has a "non-drawing” strategy
player 1 does not have a "winning" strategy
player 1 has a "non-losing” strategy

player 1 has also a "non-winning" strategy
player 1 does not have a "losing” strategy
player 1 does not have a "drawing” strategy
player 1 has a "non-drawing” strategy

28/28

	Planning problem
	Examples
	The Tower of Hanoi
	Ferryman
	Tic-Tac-Toe

