
SPIN: Exercises∗

Patrick Trentin
patrick.trentin@unitn.it

http://disi.unitn.it/~trentin

Formal Methods Lab Class, Mar 10, 2015

∗These slides are derived from those by Stefano Tonetta, Alberto Griggio, Silvia Tomasi,

Thi Thieu Hoa Le, Alessandra Giordani for FM lab 2005/14

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 1 / 10

http://disi.unitn.it/~trentin


Contents

1 Exercises
Reliable FIFO Communication
Leader Election

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 2 / 10



Reliable FIFO Communication

Goal: design a reliable FIFO communication over a non-reliable channel.

Alternating Bit Protocol:

Sender and Receiver communicate over a couple of channels
sender2receiver and receiver2sender

the channels sender2receiver and receiver2sender are unreliable:
messages might be lost or duplicated

receiver2sender

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 3 / 10



Alternating Bit Protocol: Skeleton

mtype = { MESSAGE, ACK };

chan sender2receiver = [2] of { mtype, bit, int};

chan receiver2sender = [2] of { mtype, bit, int};

active proctype Sender () {

...

}

active proctype Receiver () {

...

}

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 3 / 10



Alternating Bit Protocol: Sender [1/2]

Sender specs:

the Sender tags the messages with an alternating bit
(e.g. it sends (msg1, 0), (msg2, 1), (msg3, 0), ... ).

the Sender repeatedly sends a message with a tag value until it
receives an acknowledgment from the Receiver .

Suppose Sender has sent (msg, out bit) and receives in bit as
acknowledgment:

if in bit is equal to out bit, then it means that Receiver has
received the right message, so it sends a new message with a different
value for out bit.
otherwise it sends (msg, out bit) again.

the Sender attaches to each message a sequence number, which is
increased each time the tag value is changed.

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 4 / 10



Alternating Bit Protocol: Sender [2/2]

active proctype Sender () {

bit in_bit, out_bit;

int seq_no;

do

:: sender2receiver!MESSAGE(out_bit, seq_no) ->

receiver2sender?ACK(in_bit, 0);

if

:: in_bit == out_bit ->

out_bit = 1 - out_bit;

seq_no++;

:: else ->

skip

fi

od

}

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 4 / 10



Alternating Bit Protocol: Receiver [1/2]

Receiver specs:

suppose Receiver receives (msg, tag):

if tag is different from the last received bit, then it means that it is a
new message;
otherwise, the message is old.

When the Receiver receives a message, it sends the tag back to the
Sender to communicate the correct receival of the message.

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 5 / 10



Alternating Bit Protocol: Receiver [2/2]

active proctype Receiver () {

bit in_bit, old_bit;

int seq_no;

do

:: sender2receiver?MESSAGE(in_bit, seq_no) ->

if

:: in_bit != old_bit ->

printf("received: %d\n", seq_no);

old_bit = in_bit;

:: else ->

skip

fi

receiver2sender!ACK(in_bit, 0);

od

}

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 5 / 10



Alternating Bit Protocol: Unreliability

inline unreliable_send(channel, type, tag, seqno) {

bool loss = false;

bool duplicate = true;

if

:: channel!type(tag, seqno);

if

:: channel!type(tag, seqno);

:: duplicate = false;

fi

:: loss = true;

fi

}

// + modify Sender and Receiver to use this function

Q: what happens with the unreliable channel? (why?)

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 5 / 10



Alternating Bit Protocol: Unreliability

inline unreliable_send(channel, type, tag, seqno) {

bool loss = false;

bool duplicate = false;

if

:: channel!type(tag, seqno);

if

:: channel!type(tag, seqno);

:: duplicate=true;

fi

:: loss=true;

fi

}

// + modify Sender and Receiver to use this function

Q: what happens with the unreliable channel? (why?) deadlock

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 5 / 10



Contents

1 Exercises
Reliable FIFO Communication
Leader Election

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 6 / 10



Leader Election Problem

N processes are the nodes of a unidirectional ring network: each
process can send messages to its clockwise neighbor and receive
messages from its counterclockwise neighbor.

The requirement is that, eventually, only one process will output that
it is the leader.

We assume that every process has a unique id.

The leader must have the highest id.

N0

N1

N3

N2

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 7 / 10



Le Lann, Chang, Roberts (LCR) solution

The algorithm:

Initially, every process passes its identifier to its successor.

When a process receives an identifier from its predecessor, then:

if it is greater than its own, it keeps passing on the identifier.
if it is smaller than its own, it discards the identifier.
if it is equal to its own identifier, it declares itself leader:

the leader communicates to its successor that now it is the leader.
after a process relayed the message with the leader id, it exits.

Complexity: at worst, n2 messages.

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 8 / 10



Peterson/Dolev, Klawe, Rodeh solution

The algorithm:

If a process is “active”, it compares its identifier with the two
couterclockwise predecessors:

if the highest of the three is the counterclock neighbor, the process
proposes the neighbor as leader,
otherwise, it becomes a “relay”.

If the process is in “relay” mode, it keeps passing whatever incoming
message.

Complexity: at worst, n · log(n) messages.

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 9 / 10



Exercise 1: Reliable FIFO Communication

configure Sender and Receiver to use unreliable send().

fix the Alternating Bit Protocol so that there is no more deadlock
and the input specification is still respected.

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 9 / 10



Exercise 2: Leader Election

mtype = { candidate, leader };

chan c[N] = [BUFSIZE] of { mtype, byte };

proctype node(chan prev, next; byte id) { ... }

init {

byte proc, i;

atomic {

// TODO: set i random in [0,N]

...

do

:: proc < N ->

run node(c[proc], c[(proc+1)%N], (N+i-proc)%N);

proc++

:: else ->

break

od

}

}

Implement a leader

election algorithm
of your choice.

Verify that there is
at most one leader.

−→ strong solution hint!

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 10 / 10



Exercises Solutions

will be uploaded on course website later this week

send me an email if you need help or you just want to propose your
own solution for a review

learning programming languages requires practice: try to come up
with your own solutions first!

Patrick Trentin (DISI) SPIN: Exercises Mar 10, 2015 10 / 10


	Exercises
	Reliable FIFO Communication
	Leader Election


