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Optimization Modulo Theories with Linear Rational Costs

ROBERTO SEBASTIANI and SILVIA TOMASI, DISI, University of Trento, Italy

In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are
effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade, efficient SMT solvers have
been developed for several theories of practical interest (e.g., linear arithmetic, arrays, and bit vectors).
Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particu-
lar, we are not aware of any previous work on SMT solvers able to produce solutions that minimize cost
functions over arithmetical variables. This is unfortunate, since some problems of interest require this
functionality.

In the work described in this article we start filling this gap. We present and discuss two general procedures
for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with
standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver.
Due to the absence of competitors in the AR, FV, and SMT domains, we have experimentally evaluated our
implementation against state-of-the-art tools for the domain of Linear Generalized Disjunctive Programming
(LGDP), which is closest in spirit to our domain, on sets of problems that have been previously proposed
as benchmarks for the latter tools. The results show that our tool is very competitive with, and often
outperforms, these tools on these problems, clearly demonstrating the potential of the approach.
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1. INTRODUCTION

In the contexts of automated reasoning (AR) and formal verification (FV), important
decision problems are effectively encoded into and solved as Satisfiability Modulo Theo-
ries (SMT) problems. In the last decade, efficient SMT solvers have been developed that
combine the power of modern Conflict-Driven Clause-Learning (CDCL) SAT solvers
with dedicated decision procedures (T -Solvers) for several first-order theories of prac-
tical interest like, for example, those of equality with uninterpreted functions (EUF),
of linear arithmetic over the rationals (LA(Q) ) or the integers (LA(Z) ), of arrays (AR),
of bit vectors (BV), and their combinations. We refer the reader to Sebastiani [2007]
and Barrett et al. [2009] for an overview.
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12:2 R. Sebastiani and S. Tomasi

Many SMT-encodable problems of interest, however, may also require the capabil-
ity of finding models that are optimal with respect to some cost function over con-
tinuous arithmetical variables. For example, in (SMT-based) planning with resources
[Wolfman and Weld 1999], a plan for achieving a certain goal must be found that not
only fulfills some resource constraints (e.g., on time, gasoline consumption, among oth-
ers) but that also minimizes the usage of some of such resources; in SMT-based model
checking with timed or hybrid systems (e.g., Audemard et al. [2002, 2005]) you may
want to find executions that minimize some parameter (e.g., elapsed time), or that
minimize/maximize the value of some constant parameter (e.g., a clock timeout value),
while fulfilling/violating some property (e.g., minimize the closure time interval of a rail
crossing while preserving safety). This also involves, as particular subcases, problems
that are traditionally addressed as linear disjunctive programming (LDP) [Balas 1998]
or linear generalized disjunctive programming (LGDP) [Raman and Grossmann 1994;
Sawaya and Grossmann 2012], or as SAT/SMT with Pseudo-Boolean (PB) constraints
and (weighted partial) MaxSAT/SMT problems [Roussel and Manquinho 2009; Li and
Manyà 2009; Nieuwenhuis and Oliveras 2006; Cimatti et al. 2010, 2013a]. Notice that
the two latter problems can be encoded into each other.

Surprisingly, little work has been done so far to extend SMT to deal with optimiza-
tion problems [Nieuwenhuis and Oliveras 2006; Cimatti et al. 2010; Sebastiani and
Tomasi 2012; Dillig et al. 2012; Cimatti et al. 2013a; Manolios and Papavasileiou 2013]
(see Section 6). In particular, to the best of our knowledge, most such works aim at
minimizing cost functions over Boolean variables (i.e., SMT with PB cost functions
or MaxSMT), while we are not aware of any previous work on SMT solvers able to
produce solutions that minimize cost functions over arithmetical variables. Notice that
the former can be encoded into the latter, but not vice versa.

In this work, we start filling this gap. We present two general procedures for adding
to SMT the functionality of finding models that minimize some LA(Q) cost variable—T
being some possibly empty, stably infinite theory such that T and LA(Q) are signature
disjoint. These two procedures combine standard SMT and minimization techniques:
the first, called offline, is much simpler to implement, since it uses an incremental SMT
solver as a black box, while the second, called inline, is more sophisticated and efficient,
but it requires modifying the code of the SMT solver. This distinction is important, since
the source code of many SMT solvers is not publicly available.

We have implemented these procedures within the MATHSAT5 SMT solver [Cimatti
et al. 2013b]. Due to the absence of competitors from AR, FV, and SMT domains (Section
6), we have experimentally evaluated our implementation against state-of-the-art tools
for the domain of LGDP, which is closest in spirit to our domain, on sets of problems
that have been previously proposed as benchmarks for the latter tools, and on other
problem sets. (Notice that LGDP is limited to plain LA(Q), so that, e.g., it cannot
handle combinations of theories like LA(Q) ∪ T .) The results show that our tool is
very competitive with, and often outperforms, these tools on these problems, clearly
demonstrating the potential of the approach.

This article extends a paper presented at the IJCAR 2012 conference [Sebastiani
and Tomasi 2012]. Here the content is extended in many ways: First, we provide the
theoretical foundations of the procedures, including formal definitions, theorems, and
relative proofs; second, we provide a much more detailed description and analysis of the
procedures, describing in detail issues that were only hinted at in the conference paper;
third, we introduce novel improvements to the procedures; fourth, we provide a much
more extended empirical evaluation; and finally, we provide a detailed description of
the background and of the related work.

Content. The rest of the article is organized as follows: In Section 2, we provide some
background knowledge about SAT, SMT, and LGDP; in Section 3, we formally define the
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Optimization Modulo Theories with Linear Rational Costs 12:3

problem addressed, provide the necessary formal results for its solution, and show how
the problem generalizes many known optimization problems; in Section 4, we present
our novel procedures; in Section 5, we present an extensive experimental evaluation;
in Section 6, we survey the related work; and in Section 7, we briefly conclude and
highlight directions for future work. In Appendix A, we provide the proofs of all the
theorems presented in the article.

2. BACKGROUND

In this section, we provide the necessary background about SAT (Section 2.1), SMT
(Section 2.2), and LGDP (Section 2.3). We assume a basic background knowledge about
logic and operational research. We provide a uniform notation for SAT and SMT: We use
boldface lowercase letters a, y for arrays and boldface uppercase letters A, Y for ma-
trices (i.e., two-dimensional arrays), standard lowercase letters a, y for single rational
variables/constants or indices and standard uppercase letters A, Y for Boolean atoms
and index sets; we use the first five letters in the various forms a, . . . e, . . . A, . . . E,
to denote constant values, the last five v, . . . z, . . .V, . . . Z to denote variables, and the
letters i, j, k, I, J, K for indexes and index sets, respectively; subscripts . j denote the
jth element of an array or matrix, while superscripts .i j are just indexes, being part
of the name of the element. We use lowercase Greek letters ϕ, φ,ψ,μ, η for denoting
formulas and uppercase ones �,� for denoting sets of formulas.

Remark 2.1. Although we refer to quantifier-free formulas, as is standard practice
in SAT, SMT, CSP, and OR communities, with a little abuse of terminology we call
“Boolean variables” the propositional atoms and we call “variables” the free constants
xi in quantifier-free LA(Q) atoms like “(3x1 − 2x2 + x3 ≤ 3).”

We assume the standard syntactic and semantic notions of propositional logic. Given
a nonempty set of primitive propositions P = {p1, p2, . . .}, the language of propositional
logic is the least set of formulas containing P and the primitive constants � and ⊥
(“true” and “false”), and closed under the set of standard propositional connectives
{¬,∧,∨,→,↔}. We call a propositional atom every primitive proposition in P, and a
propositional literal every propositional atom (positive literal) or its negation (negative
literal). We implicitly remove double negations: For example, if l is the negative literal
¬pi, then by ¬l we mean pi rather than ¬¬pi. With a little abuse of notation, we
represent a truth assignment μ indifferently either as a set of literals {li}i, with the
intended meaning that a positive (negative, respectively) literal pi means that pi is
assigned to true (false, respectively), or as a conjunction of literals

∧
i li; thus, for

example, we may say “li ∈ μ” or “μ1 ⊆ μ2,” but also “¬μ” meaning the clause “
∨

i ¬li.”
A propositional formula is in Conjunctive Normal Form (CNF) if it is written as a

conjunction of disjunctions of literals:
∧

i
∨

j li j . Each disjunction of literals
∨

j li j is
called a clause. A unit clause is a clause with only one literal.

The previous notation and terminology about (positive/negative) literals, truth as-
signments, CNF, and (unit) clauses extend straightforwardly to quantifier-free first-
order formulas.

2.1. SAT and CDCL SAT Solvers

We present here a brief description on how a CDCL SAT solver works. We refer the
reader, for example, to Marques-Silva and Sakallah [1996], Moskewicz et al. [2001],
and Marques-Silva et al. [2009] for a detailed description.

We assume the input propositional formula ϕ is in CNF. (If not, it is first CNF-
ized as in Plaisted and Greenbaum [1986].) The assignment μ is initially empty, and
it is updated in a stack-based manner. The SAT solver performs an external loop,
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alternating three main phases: Decision, Boolean Constraint Propagation (BCP), and
Backjumping and Learning.

During Decision an unassigned literal l from ϕ is selected according to some heuristic
criterion, and it is pushed into μ. l is called decision literal and the number of decision
literals that are contained in μ immediately after deciding l is called the decision level
of l.

Then BCP iteratively deduces the literals l1, l2, . . . deriving from the current as-
signment and pushes them into μ. BCP is based on the iterative application of unit
propagation: If all but one literals in a clause are false, then the only unassigned literal
l is added to μ; all negative occurrences of l in other clauses are declared false and all
clauses with positive occurrences of l are declared satisfied. Current SAT solvers in-
clude rocket-fast implementations of BCP based on the two-watched-literal scheme (see
Moskewicz et al. [2001] and Marques-Silva et al. [2009]). BCP is repeated until either
no more literals can be deduced, so that the loop goes back to another decision step, or
no more Boolean variable can be assigned, so that the SAT solver ends returning SAT,
or μ falsifies some clause ψ of ϕ (conflicting clause).

In the latter case, Backjumping and Learning are performed. A process of conflict
analysis1 detects a subset η of μ, which actually caused the falsification of ψ (conflict
set)2 and the decision level blevel where to backtrack. Additionally, the conflict clause
ψ ′ def= ¬η is added to ϕ (Learning) and the procedure backtracks up to blevel (Backjump-
ing), popping out of μ all literals whose decision level is greater than blevel. When two
contradictory literals l,¬l are assigned at level 0, the loop terminates, returning UNSAT.

Notice that CDCL SAT solvers implement “safe” strategies for deleting clauses when
no more necessary, which guarantee the use of polynomial space without affecting the
termination, correctness, and completeness of the procedure (see, e.g., Marques-Silva
et al. [2009] and Nieuwenhuis et al. [2006]).

Many modern CDCL SAT solvers provide a stack-based incremental interface (see,
e.g., Eén and Sörensson [2004]), by which it is possible to push/pop subformulas φi

into a stack of formulas �
def= {φ1, . . . , φk}, and check incrementally the satisfiability

of
∧k

i=1 φi. The interface maintains most of the information about the status of the
search from one call to the other; in particular, it records the learned clauses (plus
other information). Consequently, when invoked on � the solver can reuse a clause ψ
that was learned during a previous call on some �′ if ψ was derived only from clauses
that are still in �—provided ψ was not discharged in the meantime; in particular, if
�′ ⊆ �, then the solver can reuse all clauses learned while solving �′.

Another important feature of many incremental CDCL SAT solvers is their capability,
when � is found unsatisfiable, to return a subset of formulas in � that caused the
unsatisfiability of �. This is related to the problem of finding an unsatisfiable core of
a formula (see, e.g., Lynce and Marques-Silva [2004]). Notice that such subset is not
unique, and it is not necessarily minimal.

2.2. SMT and Lazy SMT Solvers

We assume a basic background knowledge on first-order logic. We consider some first-
order theory T , and we restrict our interest to ground formulas/literals/atoms in the
language of T (T -formulas/literals/atoms, hereafter). Notice that, for better readability,

1When a clause ψ is falsified by the current assignment, a conflict clause ψ ′ is computed from ψ such that
ψ ′ contains only one literal lu, which has been assigned at the last decision level. ψ ′ is computed starting
from ψ ′ = ψ by iteratively resolving ψ ′ with the clause ψl causing the unit propagation of some literal l in
ψ ′ until some stop criterion is met.
2That is, η is enough to force the unit propagation of the literals causing the failure of ψ .
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with a little abuse of notation we often refer to a theory T instead of its corresponding
signature; also, by “empty theory” we mean the empty theory over the empty signature;
finally, by adopting the terminology in Remark 2.1, we say that a variable belongs to
the signature of a theory T (or simply that it belongs to a theory T ).

A theory solver for T , T -Solver, is a procedure able to decide the T -satisfiability of
a conjunction/set μ of T -literals. If μ is T -unsatisfiable, then T -Solver returns UNSAT

and a set/conjunction η of T -literals in μ, which was found T -unsatisfiable; η is called
a T -conflict set, and ¬η a T -conflict clause. If μ is T -satisfiable, then T -Solver returns
SAT; it may also be able to return some unassigned T -literal l ∈ μ from a set of all
available T -literals, such that {l1, . . . , ln} |=T l, where {l1, . . . , ln} ⊆ μ. We call this
process T -deduction and (

∨n
i=1 ¬li ∨ l) a T -deduction clause. Notice that T -conflict and

T -deduction clauses are valid in T . We call them T -lemmas.
Given a T -formula ϕ, the formula ϕ p obtained by rewriting each T -atom in ϕ into a

fresh atomic proposition is the Boolean abstraction of ϕ, and ϕ is the refinement of ϕ p.
Notationally, we indicate by ϕ p and μp the Boolean abstraction of ϕ and μ, and by ϕ
and μ the refinements of ϕ p and μp , respectively. With a little abuse of notation, we
say that μp is T -(un)satisfiable if and only if μ is T -(un)satisfiable. We say that the
truth assignment μ propositionally satisfies the formula ϕ, written μ |=p ϕ, if μp |= ϕ p.

In a lazy SMT(T ) solver, the Boolean abstraction ϕ p of the input formula ϕ is given
as input to a CDCL SAT solver, and whenever a satisfying assignment μp is found
such that μp |= ϕ p, the corresponding set of T -literals μ is fed to the T -Solver; if μ is
found T -consistent, then ϕ is T -consistent; otherwise, T -Solver returns a T -conflict set
η causing the inconsistency, so that the clause ¬ηp is used to drive the backjumping and
learning mechanism of the SAT solver. The process proceeds until either a T -consistent
assignment μ is found, or no more assignments are available (ϕ is T -inconsistent).

Important optimizations are early pruning and T -propagation. The T -Solver is in-
voked also when an assignment μ is still under construction: If it is T -unsatisfiable,
then the procedure backtracks, without exploring the (possibly many) extensions of μ;
if not, and if the T -Solver is able to perform a T -deduction {l1, . . . , ln} |=T l, then l can be
unit-propagated, and the T -deduction clause (

∨n
i=1 ¬li ∨ l) can be used in backjumping

and learning. To this extent, in order to maximize the efficiency, most T -solvers are
incremental and backtrackable, that is, they are called via a push-and-pop interface,
maintaining and reusing the status of the search from one call and the other.

Another optimization is pure-literal filtering: If some LA(Q) atoms occur only posi-
tively (negatively, respectively) in the original formula (learned clauses are ignored),
then we can safely drop every negative (positive, respectively) occurrence of them from
the assignment μ to be checked by the T -Solver [Sebastiani 2007]. Intuitively, since
such occurrences play no role in satisfying the formula, the resulting partial assign-
ment μp′ still satisfies ϕ p. The benefits of this action are twofold: (i) it reduces the
workload for the T -Solver by feeding to it smaller sets; and (ii) it increases the chance
of finding a T -consistent satisfying assignment by removing “useless” T -literals that
may cause the T -inconsistency of μ.

The previous schema is a coarse abstraction of the procedures underlying all the
state-of-the-art lazy SMT tools. The interested reader is pointed to, for example,
Nieuwenhuis et al. [2006], Sebastiani [2007], and Barrett et al. [2009] for details and
further references. Importantly, some SMT solvers, including MATHSAT, inherit from
their embedded SAT solver the capabilities of working incrementally and of returning
the subset of input formulas causing the inconsistency, as described in Section 2.1.

The theory of linear arithmetic on the rationals (LA(Q)) and on the integers (LA(Z))
is one of the theories of main interest in SMT. It is a first-order theory whose atoms
are of the form (a1x1 + · · · + anxn � b), that is, (ax � b), such that � ∈ {=, =,<,>,≤,≥}.
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12:6 R. Sebastiani and S. Tomasi

Efficient incremental and backtrackable procedures have been conceived in order to
decide LA(Q) [Dutertre and de Moura 2006] and LA(Z) [Griggio 2012]. In particular,
for LA(Q), most SMT solvers implement variants of the simplex-based algorithm by
Dutertre and de Moura [2006], which is specifically designed for integration in a lazy
SMT solver, since it is fully incremental and backtrackable and allows for aggressive
T -deduction. Another benefit of such algorithm is that it handles strict inequalities
directly. Its method is based on the fact that a set of LA(Q) atoms � containing strict
inequalities S = {0 < t1, . . . , 0 < tn} is satisfiable if and only if there exists a rational
number ε > 0 such that �ε

def= (�∪Sε)\S is satisfiable, such that Sε
def= {ε ≤ t1, . . . , ε ≤ tn}.

The idea of Dutertre and de Moura [2006] is that of treating the infinitesimal parameter
ε symbolically instead of explicitly computing its value. Strict bounds (x < b) are
replaced with weak ones (x ≤ b− ε), and the operations on bounds are adjusted to take
ε into account. We refer the reader to Dutertre and de Moura [2006] for details.

2.3. Linear Generalized Disjunctive Programming

Mixed Integer Linear Programming (MILP) is an extension of Linear Programming
(LP) involving both discrete and continuous variables [Lodi 2009]. MILP problems
have the following form:

min{cx : Ax ≥ b, x ≥ 0, x j ∈ Z ∀ j ∈ I}, (1)

where A is a matrix, c and b are constant vectors, and x is the variable vector. A
large variety of techniques and tools for MILP are available, mostly based on efficient
combinations of LP, branch-and-bound search mechanism, and cutting-plane methods,
resulting in a branch-and-cut approach (see, e.g., Lodi [2009]). SAT techniques have
also been incorporated into these procedures for MILP (see Achterberg et al. [2008]).

The branch-and-bound search iteratively partitions the solution space of the original
MILP problem into subproblems and solves their LP relaxation (i.e., a MILP problem
where the integrality constraint on the variables x j , for all j ∈ I, is dropped) until all
variables are integral in the optimal solution of the LP relaxation. Cutting planes (e.g.,
Gomory mixed-integer and lift-and-project cuts [Lodi 2009]) are linear inequalities that
can be inferred and added to the original MILP problem and its subproblems in order
to cut away noninteger solutions of the LP relaxation and obtain tighter relaxations.

LDP problems are LP problems where linear constraints are connected by the logical
operations of conjunction and disjunction (see, e.g., Balas [1998]). The constraint set
can be expressed by a disjunction of linear systems (disjunctive normal form):∨

i∈I

(Aix ≥ bi) (2)

or, alternatively, as a conjunction (conjunctive normal form):

(Ax ≥ b) ∧
t∧

j=1

∨
k∈Ij

(ckx ≥ dk), (3)

or in an intermediate form called regular form (see, e.g., Balas [1983]). Notice that
(3) can be obtained from (2) by factoring out the common inequalities (Ax ≥ b) and
then by applying the distributivity of ∧ and ∨, although the latter step can cause a
blowup in size. LDP problems are effectively solved by the lift-and-project approach
that combines a family of cutting planes, called lift-and-project cuts, and the branch-
and-bound schema (see, e.g., Balas and Bonami [2007]).

LGDP is a generalization of LDP, which has been proposed in Raman and
Grossmann [1994] as an alternative model to the MILP problem. Unlike MILP, which
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is based entirely on algebraic equations and inequalities, the LGDP model allows for
combining algebraic and logical equations with Boolean propositions through Boolean
operations, providing a much more natural representation of discrete decisions. Cur-
rent approaches successfully address LGDP by reformulating and solving it as a MILP
problem [Raman and Grossmann 1994; Vecchietti and Grossmann 2004; Sawaya and
Grossmann 2005, 2012]; these reformulations focus on efficiently encoding disjunctions
and logic propositions into MILP, so as to be fed to an efficient MILP solver like CPLEX.

The general formulation of a LGDP problem is the following [Raman and Grossmann
1994]:

min
∑

k∈K zk + dx,

such that Bx ≤ b,

∨
j∈Jk

⎡
⎣ Y jk

A jkx ≤ a jk

zk = c jk

⎤
⎦ ∀k ∈ K, (4)

φ,

0 ≤ x ≤ e,

zk, c jk ∈ R1
+, Y jk ∈ {T rue, False} ∀ j ∈ Jk,∀k ∈ K,

where x is a vector of positive rational variables, d is a vector of positive rational values
representing the cost per unit of each variable in x, z is a vector of positive rational
variables representing the cost assigned to each disjunction, c jk are positive constant
values, e is a vector of upper bounds for x, and Y jk are Boolean variables.

The disequalities Bx ≤ b, where (B, b) is a m × (n + 1) matrix, are the “common”
constraints that must always hold.

Each disjunction k ∈ K consists of at least two disjuncts j ∈ Jk, such that the jkth
disjunct contains

(i) the Boolean variable Y jk, representing discrete decisions;
(ii) a set of linear constraints A jkx ≤ a jk, where (A jk, a jk) is a mjk × (n + 1) matrix;

and
(iii) the equality zk = c jk, assigning the value c jk to the cost variable zk.

Each disjunct is true if and only if all three elements (i)–(iii) are true. φ is a proposi-
tional formula, expressed in CNF, which must contain the “xor” constraints

⊕
j∈Jk

Y jk

for each k ∈ K, plus possibly other constraints. Intuitively, for each k ∈ K, the only
variable Y jk, which is set to true, selects the set of disequalities A jkx ≤ a jk, which are
enforced, and hence it selects the relative cost c jk of this choice to be assigned to the
cost variable zk.

LGDP problems can be solved using MILP solvers by reformulating the original
problem in different ways; big-M (BM) and convex hull (CH) are the two most com-
mon reformulations. In BM, the Boolean variables Y jk and the logic constraints φ
are replaced by binary variables Y jk and linear inequalities as follows [Raman and
Grossmann 1994]:

min
∑

k∈K
∑

j∈Jk
c jkY jk + dx,

such that Bx ≤ b,

A jkx − a jk ≤ M jk(1 − Y jk) ∀ j ∈ Jk,∀k ∈ K,∑
j∈Jk

Y jk = 1 ∀k ∈ K, (5)

DY ≤ D′ ,
x ∈ Rn s.t. 0 ≤ x ≤ e, Y jk ∈ {0, 1} ∀ j ∈ Jk,∀k ∈ K,
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12:8 R. Sebastiani and S. Tomasi

where M jk are the “big-M” parameters that make redundant the system of constraint
j ∈ Jk in the disjunction k ∈ K when Y jk = 0, and the constraints DY ≤ D′ are derived
from φ.

In CH, the Boolean variables Y jk are replaced by binary variables Y jk and the
variables x ∈ Rn are disaggregated into new variables v ∈ Rn in the following way:

min
∑

k∈K
∑

j∈Jk
c jkY jk + dx,

such that Bx ≤ b,

Akjv jk ≤ a jkY jk ∀ j ∈ Jk,∀k ∈ K,

x = ∑
j∈Jk

v jk ∀k ∈ K, (6)

v jk ≤ Y jke
jk ∀ j ∈ Jk,∀k ∈ K,∑

j∈Jk
Y jk = 1 ∀k ∈ K,

DY ≤ D′ ,
x, v ∈ Rn such that 0 ≤ x, v, Y jk ∈ {0, 1} ∀ j ∈ Jk,∀k ∈ K,

where constants e jk are upper bounds for variables v chosen to match the upper bounds
on the variables x.

Sawaya and Grossmann [2005] observed two facts. First, the relaxation of BM is
often weak causing a higher number of nodes examined in the branch-and-bound
search. Second, the disaggregated variables and new constraints increase the size of
the reformulation leading to a high computational effort. In order to overcome these
issues, they proposed a cutting plane method that consists in solving a sequence of BM
relaxations with cutting planes that are obtained from CH relaxations. They provided
an evaluation of the presented algorithm on three different problems: strip-packing,
retrofit planning, and zero-wait job-shop scheduling problems.

3. OPTIMIZATION IN SMT(LA(Q) ∪ T )

In this section, we define the problem addressed (Section 3.1), we introduce the formal
foundations for its solution (Section 3.2), and we show how it generalizes many known
optimization problems from the literature (Section 3.3).

3.1. Basic Definitions and Notation

In this article, we consider only signature-disjoint, stably infinite theories with equality
Ti (“Nelson-Oppen theories” [Nelson and Oppen 1979]) and we focus our interest on
LA(Q). In particular, in what follows, we assume T to be some stably infinite theory
with equality, such thatLA(Q) and T are signature disjoint. T can also be a combination
of Nelson-Oppen theories.

We assume the standard model of LA(Q), whose domain is the set of rational
numbers Q.

Definition 3.1 (OMT(LA(Q) ∪ T ), OMT(LA(Q)), and mincost). Let ϕ be a ground
SMT(LA(Q) ∪ T ) formula, and cost be a LA(Q) variable occurring in ϕ. We call an
optimization modulo LA(Q) ∪ T problem, written OMT(LA(Q) ∪ T ), the problem of
finding a model for ϕ (if any) whose value of cost is minimum. We denote such value as
mincost(ϕ). If ϕ is LA(Q)∪T -unsatisfiable, then mincost(ϕ) is +∞; if there is no minimum
value for cost, then mincost(ϕ) is −∞. We call an optimization modulo LA(Q) problem,
written OMT(LA(Q)), an OMT(LA(Q) ∪ T ) problem where T is the empty theory.

A dual definition where we look for a maximum value is easy to formulate.
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In order to make the discussion simpler, we assume, without loss of generality, that
all LA(Q) ∪ T formulas are pure [Nelson and Oppen 1979]. With a little abuse of
notation, we say that an atom in a ground T1 ∪ T2 formula is Ti-pure if it contains only
variables and symbols from the signature of Ti, for every i ∈ {1, 2}; a T1 ∪ T2 ground
formula is pure if and only if all its atoms are either T1-pure or T2-pure. Although
the purity assumption is not necessary (see Barrett et al. [2002]), it simplifies the
explanation, since it allows us to speak about “LA(Q) atoms” or “T atoms” without
further specifying. Moreover, every nonpure formula can be easily purified [Nelson and
Oppen 1979].

We also assume, without loss of generality, that all LA(Q) atoms containing the
variable cost are in the form (t �� cost), such that �� ∈ {=,≤,≥,<,>}, and cost does not
occur in t.

Definition 3.2 (Bounds and range for cost). If ϕ is in the form ϕ′ ∧ (cost < c)
(ϕ′∧¬(cost < c), respectively) for some value c ∈ Q, then we call c an upper bound (lower
bound, respectively) for cost. If ub (lb , respectively) is the minimum upper bound (the
maximum lower bound, respectively) for ϕ, we also call the interval [lb, ub[ the range
of cost.

We adopt the convention of defining upper bounds to be strict and lower bounds to be
nonstrict for a practical reason: Typically an upper bound (cost < c) derives from the
fact that a model I of cost c has been previously found, while a lower bound ¬(cost < c)
derives either from the user’s knowledge (e.g., “the cost cannot be lower than zero”) or
from the fact that the formula ϕ ∧ (cost < c) has been previously found T -unsatisfiable,
while ϕ has not.

3.2. Theoretical Results

We present here the theoretical foundations of our procedures. The proofs of the novel
results are reported in Appendix A.

The following facts follow straightforwardly from Definition 3.1.

PROPOSITION 3.3. Let ϕ, ϕ1, ϕ2 be LA(Q) ∪ T formulas and μ1, μ2 be truth assignments.

(a) If ϕ1 |= ϕ2, then mincost(ϕ1) ≥ mincost(ϕ2).
(b) If μ1 ⊇ μ2, then mincost(μ1) ≥ mincost(μ2).
(c) ϕ is LA(Q) ∪ T -satisfiable if and only if mincost(ϕ) < +∞.

We recall first some definitions and results from the literature.

Definition 3.4. We say that a collection M := {μ1, . . . , μn} of (possibly partial) assign-
ments propositionally satisfying ϕ is complete if and only if, for every total assignment
η such that η |=p ϕ, there exists μ j ∈ M such that μ j ⊆ η.

THEOREM 3.5 ([SEBASTIANI 2007]). Let ϕ be a T formula and let M := {μ1, . . . , μn} be a
complete collection of (possibly partial) truth assignments propositionally satisfying ϕ.
Then, ϕ is T -satisfiable if and only if μ j is T -satisfiable for some μ j ∈ M.

Theorem 3.5 is the theoretical foundation of the lazy SMT approach described in
Section 2.2, where a CDCL SAT solver enumerates a complete collection M of truth
assignments as previously, whose T -satisfiability is checked by a T -Solver. Notice that
in Theorem 3.5 the theory T can be any combination of theories Ti, including LA(Q).

Here we extend Theorem 3.5 to OMT(LA(Q) ∪ T ) as follows.
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THEOREM 3.6. Let ϕ be a LA(Q) ∪ T formula and let M def= {μ1, . . . , μn} be a complete
collection of (possibly partial) truth assignments that propositionally satisfy ϕ. Then
mincost(ϕ) = minμ∈Mmincost(μ).

Notice that we implicitly define minμ∈Mmincost(μ) def= +∞ if M is empty. Since
mincost(μ) is +∞ if μ is LA(Q) ∪ T -unsatisfiable, we can safely restrict the search
for minima to the LA(Q) ∪ T -satisfiable assignments in M.

If T is the empty theory, then the notion of mincost(μ) is straightforward, since each
μ is a conjunction of Boolean literals and of LA(Q) constraints, so that Theorem 3.6
provides the theoretical foundation for OMT(LA(Q)).

If , instead, T is not the empty theory, then each μ is a set of Boolean literals and of
pure T -literals and LA(Q) constraints sharing variables, so that the notion of mincost(μ)
is not straightforward. To cope with this fact, we first recall from the literature some
definitions and an important result.

Definition 3.7 (Interface variables, interface equalities). Let T1 and T2 be two stably
infinite theories with equality and disjoint signatures, and let ϕ be a T1 ∪ T2 formula. We
call interface variables of ϕ the variables occurring in both T1-pure and T2-pure atoms
of ϕ, and interface equalities of ϕ the equalities (xi = xj) on the interface variables of ϕ.

As is common practice in SMT (see, e.g., Tinelli and Harandi [1996]), hereafter
we consider only interface equalities modulo reflexivity and symmetry, that is, we
implicitly assume some total order � on the interface variables xi of ϕ, and we restrict,
without loss of generality, the set of interface equalities on ϕ to IE(ϕ) def= {(xi = xj) | xi ≺
xj}, dropping thus uninformative equalities like (xi = xi) and considering only the first
equality in each pair {(xi = xj), (xj = xi)}.

Notationwise, in what follows we use the subscripts e, d, i in “μ...,” like in “μed,”
to denote conjunctions of equalities, disequalities, and inequalities between interface
variables, respectively.

THEOREM 3.8 ([TINELLI AND HARANDI 1996]). Let T1 and T2 be two stably infinite theories

with equality and disjoint signatures; let μ
def= μT1 ∧ μT2 be a conjunction of T1 ∪ T2-

literals such that each μTi is pure for Ti . Then, μ is T1 ∪ T2-satisfiable if and only if
there exists an equivalence class Eq ⊆ IE(μ) over the interface variables of μ and the
corresponding total truth assignment μed to the interface equalities over μ:

μed
def= μe ∧ μd, such that μe

def=
∧

(xi ,xj ) ∈ Eq

(xi = xj), μd
def=

∧
(xi ,xj ) ∈ Eq

¬(xi = xj), (7)

such that μTk ∧ μed is Tk-satisfiable for every k ∈ {1, 2}.
Theorem 3.8 is the theoretical foundation of, among others, the delayed theory com-

bination SMT technique for combined theories [Bozzano et al. 2006], where a CDCL
SAT solver enumerates a complete collection of extended assignments μ ∧ μed, which
propositionally satisfy the input formula, and dedicated Tk solvers check independently
the Tk-satisfiability of μTk ∧ μed, for each k ∈ {1, 2}.

We consider now a LA(Q) ∪ T formula ϕ and a (possibly partial) truth assignment μ

that propositionally satisfies it. μ can be written as μ
def= μB ∧ μLA(Q) ∧ μT , such that μB

is a consistent conjunction of Boolean literals, and μLA(Q) and μT are LA(Q)-pure and
T -pure conjunctions of literals, respectively. (Notice that the μB component does not
affect the LA(Q) ∪ T -satisfiability of μ.) Then, the following definitions and theorems
show how mincost(μ) can be defined and computed.
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Definition 3.9. Let μ
def= μB ∧ μLA(Q) ∧ μT be a truth assignment satisfying some

LA(Q) ∪T ground formula, such that μB is a consistent conjunction of Boolean literals,
and μLA(Q) and μT are LA(Q)-pure and T -pure conjunctions of literals, respectively. We

call the complete set of ed-extensions of μ the set EXed(μ) def= {η1, . . . , ηn} of all possible
assignments in the form μ ∧ μed, where μed is in the form (7), for every equivalence
class Eq in IE(μ).

THEOREM 3.10. Let μ be as in Definition 3.9. Then,

(a) mincost(μ) = minη∈EXed(μ)mincost(η),
(b) for all η ∈ EXed(μ),

mincost(η) =
{ +∞ if μT ∧ μed is T -unsatisfiable or

if μLA(Q) ∧ μed is LA(Q)-unsatisfiable
mincost(μLA(Q) ∧ μed) otherwise.

We notice that, at least in principle, computing mincost(μLA(Q) ∧ μed) is an operation
that can be performed by standard linear-programming techniques (see Section 4).
Thus, by combining Theorems 3.6 and 3.10, we have a general method for computing
mincost(ϕ) also in the general case of nonempty theory T .

In practice, however, it is often the case that LA(Q) solvers/optimizers cannot handle
efficiently negated equalities like, for example, ¬(xi = xj) (see Dutertre and de Moura
[2006]). Thus, a technique that is adopted by most SMT solvers is to expand them into
the corresponding disjunction of strict inequalities (xi < xj)∨ (xi > xj). This “case split”
is typically efficiently handled directly by the embedded SAT solver.

We notice, however, that such case split may be applied also to interface equalities
(xi = xj), and that the resulting “interface inequalities” (xi < xj) and (xi > xj) cannot
be handled by the other theory T , because “<” and “>” are LA(Q)-specific symbols. In
order to cope with this fact, some more theoretical discussion is needed.

Definition 3.11. Let μ be as in Definition 3.9. We call the complete set of edi-extensions
of μ the set EXedi(μ) def= {ρ1, . . . , ρn} of all possible truth assignments in the form μ ∧
μed ∧ μi, where μed is as in Definition 3.9 and μi is a total truth assignment to the
atoms in {(xi < xj), (xi > xj) |(xi = xj) ∈ IE(μ)} such that μed ∧ μi is LA(Q)-consistent.

μi assigns both (xi < xj) and (xi > xj) to false if (xi = xj) is true in μed, one of them
to true and the other to false if (xi = xj) is false in μed. Intuitively, the presence of each
negated interface equalities ¬(xi = xj) in μed forces the choice of one of the two parts
〈(xi < xj), (xi > xj)〉 of the solution space.

THEOREM 3.12. Let μ be as in Definition 3.9. Then,

(a) μ is LA(Q) ∪ T -satisfiable if and only if some ρ ∈ EXedi(μ) is LA(Q) ∪ T -satisfiable;
(b) mincost(μ) = minρ∈EXedi (μ)mincost(ρ);
(c) for all ρ ∈ EXedi(μ), ρ is LA(Q)∪T -satisfiable if and only if μT ∧μed is T -satisfiable

and μLA(Q) ∧ μe ∧ μi is LA(Q)-satisfiable; and
(d) for all ρ ∈ EXedi(μ),

mincost(ρ) =
{ +∞ if μT ∧ μed is T -unsatisfiable or

if μLA(Q) ∧ μe ∧ μi is LA(Q)-unsatisfiable
mincost(μLA(Q) ∧ μe ∧ μi) otherwise.

Thus, by combining Theorems 3.6 and 3.12 we have a general method for computing
mincost(ϕ) in the case of nonempty theory T , which is compliant with an efficient usage
of standard LA(Q) solvers/optimizers.
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3.3. OMT(LA(Q) ∪ T ) with Respect to Other Optimization Problems

In this section, we show that OMT(LA(Q) ∪T ) captures many interesting optimization
problems.

LP is a particular subcase of OMT(LA(Q)) with no Boolean component, such that
ϕ

def= ϕ′ ∧ (cost = ∑
i aixi) and ϕ′ = ∧

j(
∑

i Ai jxi ≤ b j).
LDP can also be encoded into OMT(LA(Q)), since (2) and (3) can be written, respec-

tively, as ∨
i

∧
j

(
Ai

jx ≥ bi
j

)
, (8)

∧
j

(A jx ≥ b j) ∧
t∧

j=1

∨
k∈Ij

(ckx ≥ dk), (9)

where Ai
j and A j are, respectively, the jth row of the matrices Ai and A, and bi

j and
b j are, respectively, the jth row of the vectors bi and b. Since (8) is not in CNF, the
CNF-ization process of Plaisted and Greenbaum [1986] is then applied.

LGDP (4) is straightforwardly encoded into a OMT(LA(Q)) problem 〈ϕ, cost〉:
ϕ

def= (cost = ∑
k∈K zk + dx) ∧ [[Bx ≤ b]] ∧ φ ∧ [[0 ≤ x]] ∧ [[x ≤ e]]

∧ ∧
k∈K

∨
j∈Jk

(Y jk ∧ [[A jkx ≤ a jk]] ∧ (zk = c jk))

∧ ∧
k∈K((zk ≥ minj∈Jkc

jk) ∧ (zk ≤ maxj∈Jkc
jk)),

(10)

such that [[x �� a]] and [[Ax �� a]] are abbreviations, respectively, for
∧

i(xi �� ai) and∧
i(Ai·x �� ai), �� ∈ {=, =≤,≥,<,>}. The last conjunction “

∧
k∈K((zk ≥ . . . ))” in (10) is

not necessary, but it improves the performances of the SMT(LA(Q)) solver, because it
allows for exploiting the early-pruning SMT technique (see Section 2.2) by providing a
range for the values of the zk’s before the respective Y jk’s are assigned. Since (10) is not
in CNF, the CNF-ization process of Plaisted and Greenbaum [1986] is then applied.

PB constraints (see Roussel and Manquinho [2009]) in the form (
∑

i ai X
i ≤ b) such

that Xi are Boolean atoms and ai constant values in Q, and cost functions cost =∑
i ai X

i, are encoded into OMT(LA(Q)) by rewriting each PB term
∑

i ai X
i into the

LA(Q) term
∑

i xi, x being an array of fresh LA(Q) variables, and by conjoining to ϕ
the formula ∧

i((¬Xi ∨ (xi = ai)) ∧ (Xi ∨ (xi = 0)) ∧ (xi ≥ 0) ∧ (xi ≤ ai)). (11)

The term “(xi ≥ 0)∧ (xi ≤ ai)” in (11) is not necessary, but it improves the performances
of the SMT(LA(Q)) solver, because it allows for exploiting the early-pruning technique
by providing a range for the values of the xi ’s before the respective Xi ’s are assigned.

A (partial weighted) MaxSMT problem (see Nieuwenhuis and Oliveras [2006],
Cimatti et al. [2010, 2013a]) is a pair 〈ϕh, ϕs〉, where ϕh is a set of “hard” T clauses
and ϕs is a set of weighted “soft” T clauses, such that a positive weight ai is associated
with each soft T clause Ci ∈ ϕs; the problem consists in finding a maximum-weight
set of soft T clauses ψs, such that ψs ⊆ ϕs and ϕh ∪ ψs is T -satisfiable. Notice that one
can see ai as a penalty to pay when the corresponding soft clause is not satisfied. A
MaxSMT problem 〈ϕh, ϕs〉 can be encoded straightforwardly into an SMT problem with
PB cost function 〈ϕ′, cost〉 by augmenting each soft T clause Cj with a fresh Boolean
variable Xj as follows:

ϕ′ def= ϕh ∪ ⋃
C j∈ϕs

{(Xj ∨ C j)}; cost def= ∑
C j∈ϕs

a j X
j . (12)
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Vice versa, 〈ϕ′, cost def= ∑
j a j X

j〉 can be encoded into MaxSMT:

ϕh
def= ϕ′; ϕs

def= ⋃
j{(¬Xj)︸ ︷︷ ︸

a j

}. (13)

Thus, combining (11) and (12), optimization problems for SAT with PB constraints and
MaxSAT can be encoded into OMT(LA(Q)), while those for SMT(T ) with PB constraints
and MaxSMT can be encoded into OMT(LA(Q) ∪ T ) , under the assumption that T
matches the definition in Section 3.1.

Remark 3.13. We notice the deep difference between OMT(LA(Q))/OMT(LA(Q) ∪ T )
and the problem of SAT/SMT with PB constraints and cost functions (or MaxSAT/
MaxSMT) addressed in Nieuwenhuis and Oliveras [2006], Cimatti et al. [2010, 2013a].
With the latter problems, the value of cost is a deterministic consequence of a truth
assignment to the atoms of the formula, so that the search has only a Boolean
component, consisting in finding the cheapest truth assignment. With OMT(LA(Q))/
OMT(LA(Q) ∪T ), instead, for every satisfying assignment μ it is also necessary to find
the minimum-cost LA(Q) model for μ, so that the search has both a Boolean and a
LA(Q) component.

4. PROCEDURES FOR OMT(LA(Q)) AND OMT(LA(Q) ∪ T )

It might be noticed that very naive OMT(LA(Q)) or OMT(LA(Q) ∪ T ) procedures could
be straightforwardly implemented by performing a sequence of calls to an SMT solver
on formulas like ϕ ∧ (cost ≥ li) ∧ (cost < ui), each time restricting the range [li, ui[
according to a linear-search or binary-search schema. With the linear-search schema,
every time the SMT solver returns a model of cost ci, a new constraint (cost < ci) would
be added to ϕ, and the solver would be invoked again. However, the SMT solver would
repeatedly generate the same LA(Q)-satisfiable truth assignment, each time finding
a cheaper model for it. With the binary-search schema, the efficiency should improve.
However, an initial lower bound should be necessarily required as input (which is not
the case, e.g., of the problems in Section 5.3.)

In this section, we present more sophisticated procedures, based on the combination
of SMT and minimization techniques. We first present and discuss an offline schema
(Section 4.1) and an inline schema (Section 4.2) for an OMT(LA(Q)) procedure; then
we show how to extend them to the OMT(LA(Q) ∪ T ) case (Section 4.3).

4.1. An Offline Schema for OMT(LA(Q))

The general schema for the offline OMT(LA(Q)) procedure is displayed in Algorithm 1.
It takes as input an instance of the OMT(LA(Q)) problem plus optional values for lb
and ub, which are implicitly considered to be −∞ and +∞ if not present, and returns
the model M of minimum cost and its cost u (the value ub if ϕ is LA(Q)-inconsistent).
Notice that, by providing a lower bound lb (an upper bound ub, respectively), the user
implicitly assumes the responsibility of asserting there is no model whose cost is lower
than lb (there is a model whose cost is ub, respectively).

We represent ϕ as a set of clauses, which may be pushed or popped from the input
formula stack of an incremental SMT solver. To this extent, every operation like
“ϕ ← ϕ ∪ {...}” (“ϕ ← ϕ\{...},” respectively) in Algorithm 1, “{...}” being a clause set,
should be interpreted as “push {...} into ϕ” (“pop {...} from ϕ,” respectively).

First, the variables l, u defining the current range are initialized to lb and ub, re-
spectively, the atom PIV to �, and M is initialized to be an empty model. Then, the
procedure adds to ϕ the bound constraints, if present, which restrict the search within
the range [l, u[ (row 2). (Obviously, literals like ¬(cost < −∞) and (cost < +∞) are not
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ALGORITHM 1: Offline OMT(LA(Q)) Procedure based on Mixed Linear/Binary
Search
Require: 〈ϕ, cost, lb, ub〉{ub can be +∞, lb can be −∞}

1: l ← lb; u ← ub; PIV ← �;M ← ∅
2: ϕ ← ϕ ∪ {¬(cost < l), (cost < u)} // Push bound constraints into ϕ
3: while (l < u ) do
4: if (BinSearchMode()) then // Binary-search Mode
5: pivot ← ComputePivot(l, u)
6: PIV ← (cost < pivot)
7: ϕ ← ϕ ∪ {PIV} // Push PIV into ϕ
8: 〈res, μ〉 ← SMT.IncrementalSolve(ϕ)
9: if (res = UNSAT) then

10: η ← SMT.ExtractUnsatCore(ϕ)
11: else
12: η ← ∅
13: end if
14: else // Linear-search Mode
15: 〈res, μ〉 ← SMT.IncrementalSolve(ϕ)
16: η ← ∅
17: end if
18: if (res = SAT) then
19: 〈M, u〉 ← Minimize(cost, μ)
20: ϕ ← ϕ ∪ {(cost < u)} // Push new upper-bound constraint into ϕ
21: else // res = UNSAT

22: if (PIV ∈ η) then
23: l ← u
24: else
25: l ← pivot
26: ϕ ← ϕ \ { PIV} // Pop PIV from ϕ
27: ϕ ← ϕ ∪ {¬PIV} // Push ¬PIV into ϕ
28: end if
29: end if
30: end while
31: return 〈M, u〉

added.) The solution space is then explored iteratively (rows 3–30), reducing the current
range [l, u[ to explore at each loop, until the range is empty. Then 〈M, u〉 is returned—
〈∅, ub〉 if there is no solution in [lb, ub[—M being the model of minimum cost u. Each
loop may work in either linear-search or binary-search mode, driven by the heuristic
BinSearchMode(). Notice that if u = +∞ or l = −∞, then BinSearchMode() returns false.

In linear-search mode, steps 5–13 and 25–27 are not executed. First, an incremental
SMT(LA(Q)) solver is invoked on ϕ (row 15). (Notice that, given the incrementality
of the solver, every operation in the form “ϕ ← ϕ ∪ {φi}” (ϕ ← ϕ\{φi}, respectively) is
implemented as a “push” (“pop,” respectively) operation on the stack representation
of ϕ (see Section 2.1); it is also very important to recall that during the SMT call, ϕ is
updated with the clauses that are learned during the SMT search.) Then, η is set to be
empty, which forces condition 22 to hold.

If ϕ is LA(Q)-satisfiable, then it is returned res = SAT and a LA(Q)-satisfiable truth
assignment μ for ϕ. Thus, Minimize is invoked on (the subset of LA(Q)-literals of) μ,3

3Possibly after applying pure-literal filtering to μ (see Section 2.2).
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returning the model M for μ of minimum cost u (−∞ if and only if the problem is
unbounded). The current solution u becomes the new upper bound, thus the LA(Q)
atom (cost < u) is added to ϕ (row 20). Notice that, if the problem is unbounded, then
for some μ Minimize will return −∞, forcing condition 3 to be false and the whole
process to stop. If ϕ is LA(Q)-unsatisfiable, then no model in the current cost range
[l, u[ can be found; hence the flag l is set to u, forcing the end of the loop.

In binary-search mode at the beginning of the loop (steps 5–13), the value pivot ∈ ]l, u[
is computed by the heuristic function ComputePivot (in the simplest form, pivot is
(l + u)/2), and the possibly new atom PIV def= (cost < pivot) is pushed into the formula
stack, so as to temporarily restrict the cost range to [l, pivot[. Then the incremental
SMT solver is invoked on ϕ; if the result is UNSAT, the feature SMT.ExtractUnsatCore is
activated, which returns also a subset η of formulas in (the formula stack of) ϕ, which
caused the unsatisfiability of ϕ (see Section 2.1). This exploits techniques similar to
unsat-core extraction [Lynce and Marques-Silva 2004]. (In practical implementations,
it is not strictly necessary to explicitly produce the unsat core η; rather, it suffices to
check if PIV ∈ η.)

If ϕ is LA(Q)-satisfiable, then the procedure behaves as in linear-search mode. If,
instead, ϕ is LA(Q)-unsatisfiable, we look at η and distinguish two subcases. If PIV
does not occur in η, this means that ϕ\{PIV} is LA(Q)-inconsistent, that is, there is no
model in the whole cost range [l, u[. Then the procedure behaves as in linear-search
mode, forcing the end of the loop. Otherwise, we can only conclude that there is no
model in the cost range [l, pivot[, so that we still need to explore the cost range [pivot, u[.
Thus, l is set to pivot, PIV is popped from ϕ, and its negation is pushed into ϕ. Then the
search proceeds, investigating the cost range [pivot, u[.

We notice an important fact: If BinSearchMode() always returned true, then
Algorithm 1 would not necessarily terminate. In fact, an SMT solver invoked on ϕ
may return a set η containing PIV even if ϕ\PIV is LA(Q)-inconsistent.4 Thus, for ex-
ample, the procedure might get stuck in a “Zeno”5 infinite loop, each time halving the
cost range right-bound (e.g., [−1, 0[, [−1/2, 0[, [−1/4, 0[, . . .).

To cope with this fact, however, it suffices to guarantee that BinSearchMode() returns
false after a finite number of such steps, guaranteeing thus that eventually a linear-
search loop will be forced, which detects the inconsistency. In our implementations, we
have empirically chosen to force one linear-search loop after every binary-search loop
returning UNSAT, because satisfiable calls are typically much cheaper than unsatisfiable
ones. We have empirically verified in previous tests that this was, in general, the best
option, since introducing this test caused no significant overhead and prevented the
chains of (very expensive) unsatisfiable calls where they used to occur.

Under such hypothesis, as a consequence of Theorem 3.6 of Section 3.2, we have
that

(i) Algorithm 1 terminates. In linear-search mode it terminates because there are
only a finite number of candidate truth assignments μ to be enumerated, and steps
19–20 guarantee that the same assignment μ will never be returned twice by the
SMT solver. In mixed linear/binary-search mode, as previously, it terminates since
there can be at most finitely many binary-search loops between two consequent
linear-search loops;

4A CDCL-based SMT solver implicitly builds a resolution refutation whose leaves are either clauses in ϕ or
LA(Q) lemmas, and the set η represents the subset of clauses in ϕ that occur as leaves of such proof (see,
e.g., Cimatti et al. [2011] for details). If the SMT solver is invoked on ϕ, even ϕ\PIV is LA(Q)-inconsistent,
then it can “use” PIV and return a proof involving it, even though another PIV-less proof exists.
5In the famous Zeno’s paradox, Achilles never reaches the tortoise for a similar reason.
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(ii) Algorithm 1 returns a model of minimum cost, because it explores the whole
search space of candidate truth assignments, and for every suitable assignment μ
Minimize finds the minimum-cost model for μ;

(iii) Algorithm 1 requires polynomial space, under the assumption that the underly-
ing CDCL SAT solver adopts a polynomial-size clause-deleting strategy (which is
typically the case of SMT solvers, including MATHSAT).

4.1.1. Handling Strict Inequalities. Minimize is a simple extension of the simplex-based
LA(Q)-Solver of Dutertre and de Moura [2006], which is invoked after one solution is
found, minimizing it by standard simplex techniques. We recall that the algorithm in
Dutertre and de Moura [2006] can handle strict inequalities. Thus, if μ contains strict
inequalities, then Minimize temporarily relaxes them into nonstrict ones, and then it
finds a solution x of minimum cost min of the relaxed problem, namely, μrel. (Notice
that this could be done also by any standard LP package.) Then,

(1) if such minimum-cost solution x lays only on nonstrict inequalities, then x is also
a solution of the nonrelaxed problem μ, hence min can be returned;

(2) otherwise, we temporarily add the constraint (cost ≤ min) to the nonrelaxed version
of μ and then we invoke on it theLA(Q)-solving procedure of Dutertre and de Moura
[2006] (without minimization), since such algorithm can handle strict inequalities.
Then,
(i) if the procedure returns SAT, then μ has a model of cost min. If so, then the value

min can be returned, and (cost < min) can be pushed into ϕ;
(ii) otherwise, μ has no model of cost min. If so, since μ has a convex set of solutions

whose cost is strictly greater than min and there is a solution of cost min for the
relaxed problem μrel, then for some δ > 0 and for every cost c ∈ ]min, min + δ]
there exists a solution for μ of cost c. (If needed explicitly, such solution can
be computed using the techniques for handling strict inequalities described
in Dutertre and de Moura [2006].) Thus the value min can be tagged as a
nonstrict minimum and returned, so that the constraint (cost ≤ min), rather
than (cost < min), is pushed into ϕ.

Notice that situation (2)(i) is very rare in practice, but it is possible in principle, as
illustrated in the following example.

Example 4.1. Suppose we have that μ = {(cost ≥ 1), (cost > y), (cost > −y)}. If
we temporarily relax strict inequalities into nonstrict ones, then {cost = 1, y = 1} is a
minimum-cost solution that lays on the strict inequality (cost > y). Nevertheless, there
is a solution of cost 1 for the unrelaxed problem (e.g., {cost = 1, y = 0.9999}).

Notice also that (cost ≤ min) is pushed into ϕ only if the minimum cost of the current
assignment μ is strictly greater than min, as in situation (2)(ii). This prevents the
SMT solver from returning μ again. Therefore, the termination, the correctness, and
the completeness of the algorithm are guaranteed also in the case where some truth
assignments have strict minimum costs.

4.1.2. Discussion. We note a few facts about this procedure.

(1) If Algorithm 1 is interrupted (e.g., by a timeout device), then u can be returned,
representing the best approximation of the minimum cost found so far.

(2) The incrementality of the SMT solver (see Sections 2.1 and 2.2) plays an essential
role here, since at every call SMT.IncrementalSolve resumes the status of the search
at the end of the previous call, only with tighter cost range constraints. (Notice that
at each call here, the solver can reuse all previously learned clauses.) To this extent,
one can see the whole process mostly as only one SMT process, which is interrupted
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and resumed each time a new model is found, in which cost range constraints are
progressively tightened.

(3) In Algorithm 1, all the literals constraining the cost range (i.e., ¬(cost < l),
(cost < u)) are added to ϕ as unit clauses; thus, inside SMT.IncrementalSolve,
they are immediately unit-propagated, becoming part of each truth assignment μ
from the very beginning of its construction. As soon as novel LA(Q)-literals are
added to μ, which prevent it from having a LA(Q)-model of cost in [l, u[, the LA(Q)-
solver invoked on μ by early-pruning calls (see Section 2.2) returns UNSAT and the
LA(Q)-lemma ¬η describing the conflict η ⊆ μ, triggering theory backjumping and
learning. To this extent, SMT.IncrementalSolve implicitly plays a form of branch
and bound: (i) decide a new literal l and unit- or theory-propagate the literals that
derive from l (“branch”) and (ii) backtrack as soon as the current branch can no
more be expanded into models in the current cost range (“bound”).

(4) The unit clause ¬(cost < l) plays a role even in linear-search mode, since it helps
pruning the search inside SMT.IncrementalSolve.

(5) In binary-search mode, the range-partition strategy may be even more aggressive
than that of standard binary search, because the minimum cost u returned in row
19 can be smaller than pivot, so that the cost range is more than halved.

(6) Unlike with other domains (e.g., search in sorted arrays), here binary search
is not “obviously faster” than linear search, because the unsatisfiable calls to
SMT.IncrementalSolve are typically much more expensive than the satisfiable ones,
since they must explore the whole Boolean search space rather than only a portion
of it—although with a higher pruning power, due to the stronger constraint induced
by the presence of pivot. Thus, we have a trade-off between a typically much smaller
number of calls plus a stronger pruning power in binary search versus an average
much smaller cost of the calls in linear search. To this extent, it is possible, in
principle, to use dynamic/adaptive strategies for ComputePivot (see Sellmann and
Kadioglu [2008]).

4.2. An Inline Schema for OMT(LA(Q))

With the inline schema, the whole optimization procedure is pushed inside the SMT
solver by embedding the range-minimization loop inside the CDCL Boolean-search loop
of the standard lazy SMT schema of Section 2.2. The SMT solver, which is thus called
only once, is modified as follows.

Initialization. The variables lb, ub, l, u, PIV, pivot,M are brought inside the SMT
solver, and are initialized as in Algorithm 1, steps 1–2.

Range Updating and Pivoting. Every time the search of the CDCL SAT solver gets
back to decision level 0, the range [l, u[ is updated such that u (l, respectively) is assigned
the lowest (highest, respectively) value ui (li, respectively) such that the atom (cost < ui)
(¬(cost < li), respectively) is currently assigned at level 0. (If u ≤ l, or two literals l,¬l
are both assigned at level 0, then the procedure terminates, returning the current
value of u.) Then BinSearchMode() is invoked: If it returns true, then ComputePivot

computes pivot ∈ ]l, u[, and the (possibly new) atom PIV def= (cost < pivot) is decided to
be true (level 1) by the SAT solver. This mimics steps 5–7 in Algorithm 1, temporarily
restricting the cost range to [l, pivot[.

Decreasing the Upper Bound. When an assignment μ propositionally satisfying ϕ is
generated that is found LA(Q)-consistent by LA(Q)-Solver, μ is also fed to Minimize,
returning the minimum cost min of μ; then the unit clause (cost < min) is learned and
fed to the backjumping mechanism, which forces the SAT solver to backjump to level 0
and then to unit-propagate (cost < min). This case mirrors steps 18–20 in Algorithm 1,
permanently restricting the cost range to [l, min[. Minimize is embedded within the
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LA(Q)-Solver, so that it is called incrementally after it, without restarting its search
from scratch.

As a result of these modifications, we also have the following typical scenario (see
Figure 1).

Increasing the Lower Bound. In binary-search mode, when a conflict occurs such that
the conflict analysis of the SAT solver produces a conflict clause in the form ¬PIV ∨ ¬η′
such that all literals in η′ are assigned true at level 0 (i.e., ϕ∧PIV is LA(Q)-inconsistent),
then the SAT solver backtracks to level 0, unit-propagating ¬PIV. This case mirrors
steps 25–27 in Algorithm 1, permanently restricting the cost range to [pivot, u[.

Although the modified SMT solver mimics to some extent the behaviour of
Algorithm 1, the “control” of the range-restriction process is handled by the standard
SMT search. To this extent, notice that also other situations may allow for restricting
the cost range: for example, if ϕ ∧ ¬(cost < l) ∧ (cost < u) |= (cost �� m) for some atom
(cost �� m) occurring in ϕ such that m ∈ [l, u[ and �� ∈ {≤,<,≥,>}, then the SMT solver
may backjump to decision level 0 and propagate (cost �� m), further restricting the cost
range.

The same facts (1)–(6) about the offline procedure in Section 4.1 hold for the inline
version. The efficiency of the inline procedure can be further improved as follows.

Activating Previously Learned Clauses. In binary-search mode, when an assignment
μ with a novel minimum min is found, not only (cost < min) but also PIV def= (cost < pivot)
is learned as unit clause, although the latter is redundant from the logical perspective
because min < pivot. In fact, the unit clause PIV allows the SAT solver for reusing
all the clauses in the form ¬PIV ∨ Ci, which have been learned when investigating
the cost range [l, pivot[, by unit-resolving them into the corresponding clauses Ci. (In
Algorithm 1 this is done implicitly, since PIV is not popped from ϕ before step 26.)
Notice that the previous trick is useful because the algorithm of Dutertre and de
Moura [2006] is not “T -deduction complete,” that is, it is not guaranteed to T -deduce
PIV from {. . . , (cost < min)}.

In addition, the LA(Q)-inconsistent assignment μ∧(cost < min) may be fed to LA(Q)-
Solver and the negation of the returned conflict ¬η ∨ ¬(cost < min) such that η ⊆ μ,
can be learned, preventing the SAT solver from generating any assignment containing
η in the future.

Tightening. In binary-search mode, if LA(Q)-Solver returns a conflict set η ∪ {PIV},
then it is further asked to find the maximum value max such that η ∪ {(cost < max)}
is LA(Q)-inconsistent. (This is done with a simple modification of the algorithm in
Dutertre and de Moura [2006].)

—If max ≥ u, then the clause C∗ def= ¬η ∨ ¬(cost < u) is used do drive backjumping and
learning instead of C def= ¬η ∨ ¬PIV. Since the unit clause (cost < u) is permanently
assigned at level 0, this is equivalent to learning only ¬η, so that the dependency of
the conflict from PIV is removed. Eventually, instead of using C to drive backjumping
to level 0 and then to propagate ¬PIV, the SMT solver may use C∗ (which is the same
as using ¬η), then forcing the procedure to stop.

—If u > max > pivot, then the clauses C1
def= ¬η ∨ ¬(cost < max) and C2

def= ¬PIV ∨
(cost < max) are used to drive backjumping and learning instead of C def= ¬η ∨ ¬PIV.
(Notice that C can be inferred by resolving C1 and C2.) In particular, C2 forces
backjumping to level 1 and unit-propagating the (possibly fresh) atom (cost < max);
eventually, instead of using C do drive backjumping to level 0 and then to propagate
¬PIV, the SMT solver may use C1 for backjumping to level 0 and then to propagate
¬(cost < max), restricting the range to [max, u[ rather than to [pivot, u[.
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Fig. 1. One peice of possible execution of an inline procedure. (i) Pivoting on (cost < pivot0). (ii) Increasing
the lower bound to pivot0. (iii) Decreasing the upper bound to mincost(μi).
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Notice that tightening is useful because the algorithm of Dutertre and de Moura
[2006] is guaranteed neither to find the “tightest” theory conflict η∪{(cost < max)}, nor
to T -deduce (cost < max) from {. . . , PIV}.

Example 4.2. Consider the formula ϕ
def= ψ ∧ (cost ≥ a + 15) ∧ (a ≥ 0) for some ψ in

the cost range [0, 16[. With binary-search deciding PIV def= (cost < 8), the LA(Q)-Solver

produces the lemma C def= ¬(cost ≥ a + 15) ∨ ¬(a ≥ 0) ∨ ¬PIV, causing a backjumping
step to level 0 on C and the unit-propagation of ¬PIV, restricting the range to [8, 16[;
it takes a sequence of similar steps to progressively restrict the range to [12, 16[,
[14, 16[, and [15, 16[. If, instead, the LA(Q)-Solver produces the lemmas C1

def= ¬(cost ≥
a + 15) ∨ ¬(a ≥ 0) ∨ ¬(cost < 15) and C2

def= ¬PIV ∨ (cost < 15), then this first causes a
backjumping step on C2 to level 1 with the unit propagation of (cost < 15), and then a
backjumping step on C1 to level zero with the unit propagation of ¬(cost < 15), which
directly restricts the range to [15, 16[.

Adaptive Mixed Linear/Binary Search Strategy. An adaptive version of the heuristic
BinSearchMode() decides the next search mode according to the ratio between the
progress obtained in the latest binary- and linear-search steps and their respective
costs. If either ub or lb is not present—or if we are immediately after an UNSAT binary-
search step, in compliance with the strategy to avoid infinite “Zeno” sequences described
in Section 4.1—then the heuristic selects linear-search mode. Otherwise, it selects
binary-search mode if and only if∣∣∣∣ �ublin

�#conflin

∣∣∣∣ <

∣∣∣∣ �ubbin

�#confbin

∣∣∣∣ ,
where �ublin and �ubbin are, respectively, the variations of the upper bound ub in the
latest linear-search and SAT binary-search steps performed, estimating the progress
achieved by such steps, while �#conflin and �#confbin are, respectively, the number of
conflicts produced in such steps, estimating their expense.

Overall, the inline version described in this section presents some potential compu-
tational advantages with respect to the offline version of Algorithm 1. First, despite the
incrementality of the calls to the SMT solver, suspending and resuming it may cause
some overhead, because at every call the decision stack is popped to decision level 0, so
that some extra decisions, unit propagations, and early-pruning calls to the T -Solver
may be necessary to get back to the previous search status. Second, in Algorithm 1
the procedure Minimize is invoked from scratch in a nonincremental way, while in the
inline version it is embedded inside the LA(Q)-Solver, so that it starts the minimization
process from an existing solution rather than from scratch. Third, Algorithm 1 requires
computing the unsatisfiable core of ϕ—or at least checking if PIV belongs to such unsat
core—which causes overhead. Notice that the problem of computing efficiently mini-
mal unsat cores in SMT is still ongoing research (see Cimatti et al. [2011]), so that in
Algorithm 1 there is a tradeoff between the cost of reducing the size of the cores and
the probability of performing useless optimization steps.

4.3. Extensions to OMT(LA(Q) ∪ T )

We recall the terminology, assumptions, definitions, and results of Section 3.2.
Theorems 3.6, 3.10, and 3.12 allow for extending to the OMT(LA(Q) ∪ T ) case the
procedures of Sections 4.1 and 4.2 as follows.

As suggested by Theorem 3.10, straightforward OMT(LA(Q) ∪ T ) extensions of the
procedures for OMT(LA(Q)) of Sections 4.1 and 4.2 would be such that the SMT solver

ACM Transactions on Computational Logic, Vol. 16, No. 2, Article 12, Publication date: February 2015.



Optimization Modulo Theories with Linear Rational Costs 12:21

enumerates ed-extended satisfying truth assignments η
def= μ ∧ μed as in Definition 3.9,

checking the T - and LA(Q)-consistency of its components μT ∧ μed and μLA(Q) ∧ μed,
respectively, and then minimizing the μLA(Q) ∧ μed component. Termination is guaran-
teed by the fact that each EXed(μ) is a finite set, while correctness and completeness is
guaranteed by Theorems 3.6 and 3.10.

Nevertheless, as suggested in Section 3.2, minimizing μLA(Q) ∧ μed efficiently could
be problematic due to the presence of negated interface equalities ¬(xi = xj) . Thus,
alternative “asymmetric” procedures, in compliance with the efficient usage of LA(Q)
solvers in SMT, should instead enumerate edi-extended satisfying truth assignments
ρ

def= μ ∧ μedi as in Definition 3.11, checking the T - and LA(Q)-consistency of its com-
ponents μT ∧ μed and μLA(Q) ∧ μei, respectively, and then minimizing the μLA(Q) ∧ μei
component. This prevents from passing negated interface equalities to Minimize. As
before, termination is guaranteed by the fact that each EXedi(μ) is a finite set, whilst
correctness and completeness is guaranteed by Theorems 3.6 and 3.12.

This motivates and explains the following OMT(LA(Q) ∪ T ) variants of the offline
and inline procedures of Sections 4.1 and 4.2, respectively.

Algorithm 1 is modified as follows. First, SMT.IncrementalSolve in steps 8 and 15 is
asked to return also a LA(Q)∪T model I. Then, in step 19, Minimize is invoked instead
on 〈cost, μLA(Q) ∪ μei〉, such that

μei
def= {(xi = xj),¬(xi < xj),¬(xi > xj) | (xi = xj) ∈ IE(μ), I |= (xi = xj)}
∪ {(xi < xj),¬(xi > xj) | (xi = xj) ∈ IE(μ), I |= (xi < xj)}
∪ {(xi > xj),¬(xi < xj) | (xi = xj) ∈ IE(μ), I |= (xi > xj)}.

In practice, the negated strict inequalities ¬(xi < xj),¬(xi > xj) are omitted from μei,
because they are entailed by the corresponding non-negated equalities/inequalities.

The implementation of an inline OMT(LA(Q) ∪ T ) procedure comes nearly for free
once the SMT solver handles LA(Q)∪T -solving by delayed theory combination [Bozzano
et al. 2006], with the strategy of automatically case splitting disequalities ¬(xi = xj)
into the two inequalities (xi < xj) and (xi > xj), which is implemented in MATHSAT:

The solver enumerates truth assignments in the form ρ
def= μLA(Q) ∧ μeid ∧ μT as in

Definition 3.11, and passes μLA(Q) ∧ μei and μT ∧ μed to the LA(Q)-Solver and T -Solver,
respectively. (Notice that this strategy, although not explicitly described in Bozzano
et al. [2006], implicitly implements points (a) and (c) of Theorem 3.12.) If so, then,
in accordance with points (b) and (d) of Theorem 3.12, it suffices to apply Minimize to
μLA(Q) ∧ μei, then learn (cost < min) and use it for backjumping, as in Section 4.2. As
with the offline version, in practice the negated strict inequalities are omitted from μei,
because they are entailed by the corresponding non-negated equalities/inequalities.

5. EXPERIMENTAL EVALUATION

We have implemented both the offline and inline OMT(LA(Q)) procedures and the
inline OMT(LA(Q) ∪ T ) procedures of Section 4 on top of MATHSAT56 [Cimatti et al.
2013b]; we refer to them as OPTIMATHSAT. MATHSAT5 is a state-of-the-art SMT solver
that supports most of the quantifier-free SMT-LIB theories and their combinations,
and provides many other SMT functionalities (like, e.g., unsat-core extraction [Cimatti
et al. 2011], interpolation [Cimatti et al. 2010], and All-SMT [Cavada et al. 2007]).

We consider different configurations of OPTIMATHSAT, depending on the approach
(offline vs. inline, denoted by “-OF” and “-IN”) and on the search schema (linear vs.

6http://mathsat.fbk.eu/.
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binary vs. adaptive, denoted, respectively, by “-LIN,” “-BIN,” and “-ADA”).7 For example,
the configuration OPTIMATHSAT-LIN-IN denotes the inline linear-search procedure. We
used only five configurations since the “-ADA-OF” were not implemented.

Due to the absence of competitors on OMT(LA(Q) ∪T ), we evaluate the performance
of our five configurations of OPTIMATHSAT by comparing them against the commercial
LGDP tool GAMS8 v23.7.1 [Brooke et al. 2011] on OMT(LA(Q)) problems. GAMS is a
tool for modeling and solving optimization problems, consisting of different language
compilers, which translate mathematical problems into representations required by
specific solvers, like CPLEX [IBM 2010]. GAMS provides two reformulation tools, LOG-
MIP9 v2.0 and JAMS10 (a new version of the EMP11 solver), such that both of them
allow for reformulating LGDP models by using either BM or CH methods [Raman
and Grossmann 1994; Sawaya and Grossmann 2012]. We use CPLEX v12.2 [IBM 2010]
(through an OSI/CPLEX link) to solve the reformulated MILP models. All the tools were
executed using default options, as suggested by the authors [Vecchietti 2011]. We also
compared OPTIMATHSAT against MATHSAT augmented by PB optimization [Cimatti
et al. 2010] (we call it PB-MATHSAT) on MaxSMT problems.

Remark 5.1. Importantly, MATHSAT and OPTIMATHSAT use infinite-precision arith-
metic, while the GAMS tools and CPLEX implement standard floating-point arithmetic.
Moreover, the former handle strict inequalities natively (see Section 2.2), while the
GAMS tools use an approximation with a very-small constant value “eps” ε (default
ε

def= 10−6), so that, for example, “(x > 0) is internally rewritten into (x ≥ 10−6).”12

The comparison is run on four distinct collections of benchmark problems:

—(Section 5.2) LGDP problems, proposed by LOGMIP and JAMS authors [Vecchietti
and Grossmann 2004; Sawaya and Grossmann 2005, 2012];

—(Section 5.3) OMT(LA(Q)) problems from SMT-LIB;13

—(Section 5.4) OMT(LA(Q)) problems, coming from encoding parametric verification
problems from the SAL14 model checker;

—(Section 5.5) the MaxSMT problems from Cimatti et al. [2010].

The encodings from LGDP to OMT(LA(Q)) and back are described in Section 5.1.
All tests were executed on two identical 2.66GHz Xeon machines with 4GB RAM

running Linux, using a timeout of 600s for each run. In order to have a reliable and fair
measurement of CPU time, we have run only one process per PC at a time. Overall, the
evaluation consisted in ≈40,000 solver runs, for a total CPU time of up to 276 CPU days.

The correctness of the minimum costs min found by OPTIMATHSAT have been cross-
checked by another SMT solver, YICES,15 by checking the inconsistency within the
bounds of ϕ ∧ (cost < min) and the consistency of ϕ ∧ (cost = min) (if min is nonstrict), or
of ϕ∧(cost ≤ min) and ϕ∧(cost = min + ε) (if min is strict), ε being some very small value.

7Here “-LIN” means that BinSearchMode() always returns false, “-BIN” denotes the mixed linear-binary strat-
egy described in Section 4.1 to ensure termination, while “-ADA” refers to the adaptive strategy illustrated
in Section 4.2.
8http://www.gams.com.
9http://www.logmip.ceride.gov.ar/index.html.
10http://www.gams.com/.
11http://www.gams.com/dd/docs/solvers/emp.pdf.
12GAMS support team, email personal communication, 2012.
13http://www.smtlib.org/.
14http://sal.csl.sri.com.
15http://yices.csl.sri.com/.
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All versions of OPTIMATHSAT passed the previously mentioned checks. On the LGDP
problems (Section 5.2) all tools agreed on the final results, apart from tiny rounding er-
rors by GAMS tools;16 on all the other problem collections (Sections 5.3, 5.4, and 5.5) in-
stead, the results of the GAMS tools were affected by errors, which we will discuss there.

In order to make the experiments reproducible, more detailed tables, the full-size
plots, the Linux binary of OPTIMATHSAT used in this article, the problems, and the
results are made available at the OPTIMATHSAT web page.17 (We cannot distribute the
GAMS tools since they are subject to licencing restrictions (see Brooke et al. [2011]);
however, they can be obtained at GAMS url.)

5.1. Encodings

In order to translate LGDP models into OMT(LA(Q)) problems, we use the encoding
in (10) of Section 3.3, namely, LGDP2SMT. Notice that LGDP models are written in
GAMS language, which provides a large number of constructs. Since our encoder
supports only base constructs (like equations and disjunctions), before generating the
LGDP2SMT encoding, we used the GAMS Converter tool for converting complex GAMS
specifications (e.g., containing sets and indexed equations) into simpler specifications.
Notice also that in the GAMS language the disjunction of constraints in (10) must be
described as nested if-then-elses on the Boolean propositions Y jk, so as to avoid the
need of including explicitly in φ the “xor” constraints discussed in the explanation of
(10). Our encodings in both directions comply with this fact.

In order to translate OMT(LA(Q)) problems into LGDP models, we consider two
different encodings, namely, SMT2LGDP1 and SMT2LGDP2.

Since GAMS tools do not handle negated equalities and strict inequalities, with both
encodings negated equalities ¬(t1 = t2) or (t1 = t2) in the input LA(Q) formula ϕ are
first replaced by the disjunction of two inequalities ¬(t1 ≤ t2) ∨ ¬(t1 ≥ t2)) and strict
inequalities (t1 < t2) are rewritten as negated nonstrict inequalities ¬(t1 ≥ t2).18 Let ϕ′
be the LA(Q) formula obtained by ϕ after these substitutions.

In SMT2LGDP1, which is inspired to the polarity-driven CNF conversion of Plaisted
and Greenbaum [1986], we compute the Boolean abstraction ϕ′ p of ϕ′ (which plays the
role of formula φ in (4)) and then, for each LA atom ψi occurring positively (negatively,
respectively) in ϕ′, we add the disjunction ¬Ai ∨ ψi (Ai ∨ ¬ψi, respectively), where Ai is
the Boolean atom of ϕ′ p corresponding to the LA atom ψi.

In SMT2LGDP2, first we compute the CNF-ization of ϕ′ using the MATHSAT5 CNF-izer,
and then we encode each nonunit clause (li1 ∨ . . . ∨ lin) ∈ ϕ′ as a LGDP disjunction
[Y 1

i ∧ li1] ∨ · · · ∨ [Y n
i ∧ lin], where Y 1

i , . . . , Y n
i are fresh Boolean variables.

Remark 5.2. We decided to provide two different encodings for several reasons.
SMT2LGDP1 is a straightforward and very-natural encoding. However, we have verified
empirically, and some discussion with GAMS support team confirmed it,19 that some
GAMS tools/options often have problems in efficiently and even correctly handling the
Boolean structure of the formulas φ in (4) (see, e.g., the number of problems terminated
with error messages in Sections 5.3– 5.5). Thus, following also the suggestions of the
GAMS support team, we have introduced SMT2LGDP2, which eliminates any Boolean

16GAMS +CPLEX often gives some errors ≤10−5, which we believe are due to the printing floating-point
format: For example, while OPTIMATHSAT reports the value 7728125177/2500000000 with infinite-precision
arithmetic, GAMS +CPLEX reports it as its floating-point approximation 3.091250e+00.
17http://optimathsat.disi.unitn.it.
18Here, we implicitly assume that the literals ¬(t1 = t2), (t1 = t2), and (t1 < t2) occur positively in ϕ; for
negative occurrences the encoding is dual.
19GAMS support team, email personal communication, 2012.
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Fig. 2. Graphical representation of the strip-packing (left) and of a zero-walt job shop problem (right).

structure, reducing the encoding substantially to a set of LGDP disjunctions. Notice,
however, that SMT2LGDP2 benefits from the CNF encoder of MATHSAT5.

5.2. Comparison on LGDP problems

We have performed the first comparison over two distinct benchmarks, strip-packing
and zero-wait job-shop scheduling problems, which have been previously proposed as
benchmarks for LOGMIP and JAMS by their authors [Vecchietti and Grossmann 2004;
Sawaya and Grossmann 2005, 2012]. We adopted the encoding of the problems into
LGDP given by the authors20 and gave a corresponding OMT(LA(Q)) encoding. We
refer to them as “directly generated” benchmarks.

In order to make the results independent from the encoding used, to investigate
the correctness and effectiveness of the encodings described in Section 5.1, and
to check the robustness of the tools with respect to different encodings, we also
generated formulas from “directly generated” benchmarks by applying the encodings
SMT2LGDP1, SMT2LGDP2, and LGDP2SMT; we also applied the SMT2LGDP1/SMT2LGDP2 and
LGDP2SMT encodings consecutively to SMT formulas. We refer to them as “encoded”
benchmarks.

5.2.1. The Strip-Packing Problem. Given a set of N rectangles of different length Li
and height Hi, i ∈ 1, . . . , N, and a strip of fixed width W but unlimited length, the
strip-packing problem aims at minimizing the length L of the filled part of the strip
while filling the strip with all rectangles, without any overlap and any rotation (see
Figure 2, left).

The LGDP model provided by Sawaya and Grossmann [2005] is the following:

min L,

such that L ≥ xi + Li ∀i ∈ N,[
Y 1

i j
xi + Li ≤ xj

]
∨

[
Y 2

i j
xj + Lj ≤ xi

]
, (14)

∨
[

Y 3
i j

yi − Hi ≥ yj

]
∨

[
Y 4

i j
yj − Hj ≥ yi

]
∀i, j ∈ N, i < j,

xi ≤ ub − Li ∀i ∈ N.

Hi ≤ yi ≤ W ∀i ∈ N,

L, xi, yi ∈ R1
+, Y 1

i j, Y 2
i j, Y 3

i j, Y 4
i j ∈ {T rue, False},

where L corresponds to the objective function to minimize and every rectangle j ∈ J
is represented by the constants Lj and Hj (length and height, respectively) and the
variables xj, yj (the coordinates of the upper left corner in the two-dimensional space).

20Examples are available at http://www.logmip.ceride.gov.ar/newer.html and at http://www.gams.com/modlib/
modlib.htm.
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Every pair of rectangles i, j ∈ N, i < j is constrained by a disjunction that avoids
their overlapping (each disjunct represents the position of rectangle i in relation to
rectangle j). The size of the strip limits the position of each rectangle j: The width of
the strip W and the upper bound ub on the optimal solution bound the yj coordinate
and the height Hj bounds the xj coordinate. We express straightforwardly the LGDP
model (14) into OMT(LA(Q)) as follows:

ϕ
def= (cost = L) ∧ ∧

i∈N(L ≥ xi + Li)

∧ ∧
i, j∈N,i< j((xi + Li ≤ xj) ∨ (xj + Lj ≤ xi)

∨ (yi − Hi ≥ yj) ∨ (yj − Hj ≥ yi))

∧ ∧
i∈N(xi ≤ ub − Li) ∧ ∧

i∈N(xi ≥ 0)

∧ ∧
i∈N(Hi ≤ yi) ∧ ∧

i∈N(W ≥ yi) ∧ ∧
i∈N(yi ≥ 0).

(15)

We randomly generated instances of the strip-packing problem according to a fixed
width W of the strip and a fixed number of rectangles N. For each rectangle j ∈ N,
length Lj and height Hj are selected in the interval ]0, 1] uniformly at random. The
upper bound ub is computed with the same heuristic used by Sawaya and Grossmann
[2005], which sorts the rectangles in nonincreasing order of width and fills the strip by
placing each rectangle in the bottom-left corner, and the lower bound lb is set to zero.
We generated 100 samples each for 9, 10, and 11 rectangles and for two values of the
width

√
N/2 and 1. (Notice that with W = √

N/2 the filled strip looks approximatively
like a square, while W = 1 is half the average size of one rectangle.)

5.2.2. The Zero-Wait Job-Shop Problem. Consider the scenario where there is a set I of
jobs that must be scheduled sequentially on a set J of consecutive stages with zero-
wait transfer between them. Each job i ∈ I has a start time si and a processing time
tij in the stage j ∈ Ji, Ji being the set of stages of job i. The goal of the zero-wait
job-shop scheduling problem is to minimize the makespan, which is the total length of
the schedule (see Figure 2, right).

The LGDP model provided by Sawaya and Grossmann [2005] is

min M,

such that M ≥ ∑
j∈Ji

tij ∀i ∈ I,[
Y 1

ik
si + ∑

m∈Ji ,m≤ j tim ≤ sk + ∑
m∈Jk,m< j tkm

]
(16)

∨
[

Y 2
ik

sk + ∑
m∈Jk,m≤ j tkm ≤ si + ∑

m∈Ji ,m< j tim

]
∀ j ∈ Cik,∀i, k ∈ I, i < k,

M, si ∈ R1
+, Y 1

ik, Y 2
ik ∈ {T rue, False} ∀i, k ∈ I, i < k,

where M corresponds to the objective function to minimize and every job i ∈ I is
represented by the variable si (its start time) and the constant tij (its processing time
in stage j ∈ Ji). For each pair of jobs i, k ∈ I and for each stage j with potential clashes
(i.e., j ∈ Cik = {Ji ∩ Jk}), a disjunction ensures that no clash between jobs occurs
at any stage at the same time. We encoded the corresponding LGDP model (16) into
OMT(LA(Q)) as follows:

ϕ
def= (cost = M) ∧ ∧

i∈I

(
M ≥ si + ∑

j∈Ji
tij

) ∧ ∧
i∈I(si ≥ 0)

∧∧
j∈Cik,∀i,k∈I,i<k

(
(si + ∑

m∈Ji ,m≤ j tim ≤ sk + ∑
m∈Jk,m< j tkm)

∨ (sk + ∑
m∈Jk,m≤ j tkm ≤ si + ∑

m∈Ji ,m< j tim)
)

.

(17)
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Fig. 3. Table: results (# of solved instances, cumulative time in seconds for solved instances) for OPTIMATH-
SAT and GAMS (using LOGMIP and JAMS) on 100 random instances (including “directly generated” and
“encoded” benchmarks) of each of the strip-packing problems for N rectangles, where N = 9, 12, 15, and
width W = √

N/2, 1. (We use “OM” as shortcut for OPTIMATHSAT and omit “+CPLEX” in the labels of GAMS
tools.) Values highlighted in bold represent best performances. Scatter plots: comparison of the best config-
uration of OPTIMATHSAT (OPTIMATHSAT-LIN-IN) against LOGMIP(BM)+CPLEX (left), LOGMIP(CH)+CPLEX
(center), and OPTIMATHSAT-BIN-IN (right) on “directly generated” benchmarks.

We randomly generated instances of the zero-wait job-shop problem according to a
fixed number of jobs I and a fixed number of stages J. For each job i ∈ I, start time
si and processing time tij of every job are selected in the interval ]0, 1] uniformly at
random. We consider a set of 100 samples each for 9, 10, 11, 12 jobs and 8 stages, and
for 11 jobs and 9, 10 stages. We set no value for ub and lb = 0.

5.2.3. Discussion. The table of Figure 3 shows the number of solved instances and their
cumulative execution time for different configurations of OPTIMATHSAT and GAMS on
“directly generated” and “encoded” benchmarks. The scatter plots of Figure 3 com-
pare the best-performing version of OPTIMATHSAT, OPTIMATHSAT-LIN-IN, against
LOGMIP+CPLEX with BM and CH reformulation (left and center, respectively) and
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Fig. 4. Table: results (# of solved instances, cumulative time in seconds for solved instances) for OPTIMATH-
SAT and GAMS on 100 random samples (including “directly generated” and “encoded” benchmarks) of each
of the job-shop problems for I = 9, 10, 11, 12 jobs and J = 8 stages and for I = 11 jobs and J = 9, 10
stages. (We use “OM” as a shortcut for OptiMathSAT and omit “+CPLEX” in the labels of GAMS tools.) Val-
ues highlighted in bold represent best performances. Scatter plots: comparison of the best configuration of
OPTIMATHSAT (OPTIMATHSAT-LIN-IN) against LOGMIP(BM)+CPLEX (left), LOGMIP(CH)+CPLEX (center),
and OPTIMATHSAT-BIN-IN (right) on “directly generated” benchmarks.

the two inline versions OPTIMATHSAT-LIN-IN and OPTIMATHSAT-BIN-IN (right) on
“directly generated” benchmarks.

The table of Figure 4 shows the number of solved instances and their cumulative
execution time for different configurations of OPTIMATHSAT and GAMS on “directly gen-
erated” and “encoded” benchmarks. The scatter plots of Figure 4 compare, on “directly
encoded” benchmarks, the best-performing version of OPTIMATHSAT, OPTIMATHSAT-
LIN-IN, against LOGMIP with BM and CH reformulation (left and center, respec-
tively); the figure also compares the two inline versions OPTIMATHSAT-LIN-IN and
OPTIMATHSAT-BIN-IN (right).

The results on the LGDP problems in Figures 3 and 4 suggest some considerations.
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Comparing the different versions of OPTIMATHSAT, we notice that

—the inline versions (-IN) behave pairwise uniformly better than the corresponding
offline versions (-OF), which is not surprising;

—overall, the -LIN options seem to perform a little better than the corresponding -BIN
and -ADA options (although gaps are not dramatic).

Remark 5.3. We notice that with LGDP problems binary search is not “obviously
faster” than linear search, in compliance with what is stated in point 6 in Section 4.1.
This is further enforced by the fact that in strip-packing (15) (job-shop (17), respec-
tively) encodings, the cost variables cost def= L (cost def= M, respectively) occur only
in positive unit clauses in the form (L ≥ 〈term〉) ((M ≥ 〈term〉), respectively); thus,
learning ¬(cost < pivot) as a result of the binary-search steps with UNSAT results pro-
duces no constraining effect on the variables in 〈term〉, and hence no substantial extra
search-pruning effect due to the early-pruning technique of the SMT solver.

Comparing the different versions of the GAMS tools, we see that LOGMIP and JAMS
reformulations lead to substantially identical performance on both strip-packing and
job-shop instances. For both reformulation tools, the BM versions uniformly outperform
the CH ones, often dramatically.

Comparing the performances of the versions of OPTIMATHSAT against those of the
GAMS tools, we notice that

—on strip-packing problems all versions of OPTIMATHSAT outperform all GAMS ver-
sions, regardless of the encoding used. For example, the best OPTIMATHSAT version
solved ≈30% more formulas than the best GAMS version;

—on job-shop problems results are mixed. OPTIMATHSAT drastically outperforms the
CH versions on all encodings and it slightly beats the BM ones on “SMT2LGDP2 encoded”
benchmarks, while it is slightly beaten by the BM versions on “directly generated”
and “SMT2LGDP1 encoded” benchmarks. For example, the best OPTIMATHSAT version
solved ≈2% less formulas than the best GAMS version.

Overall, we can conclude that OPTIMATHSAT performances on these problems are
comparable with, and most often significantly better than, those of GAMS tools.

We may wonder how these results are affected by the different encodings used. (We
recall from the beginning of Section 5 that all solvers agreed on the results, regard-
less of the encoding.) In terms of performances, comparing the effects of the different
encodings, we notice the following facts.

—On OPTIMATHSAT (-LIN-IN) the effects of the different encodings are substantially
negligible, on both strip-packing and job-shop problems, since we have only very
small variations in the number of solved instances between “directly generated”
and “encoded” instances, in the various encoding combinations. From this reason, we
conclude that OPTIMATHSAT is robust with respect to the encodings of these problems.

—On GAMS tools the effects of the different encodings are more relevant, although
very heterogeneous: For example, with respect to “directly generated” instances,
“SMT2LGDP1 encoded” solved formulas are slightly less with BM options, and up to
much more with CH options; “SMT2LGDP2 encoded” solved formulas are slightly more
on strip-packing and a little less on job-shop with BM options, and slightly less on
strip-packing and much more on job-shop with CH options. For this reason, in the
next sections we always report the results with both encodings.

5.2.4. Analysis of OPTIMATHSAT Performances. We want to perform a more fine-
grained analysis of the performances of the best version of OPTIMATHSAT,
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Fig. 5. Scatter plots comparing solving, minimization, and certification time (left, center, and right, respec-
tively) with the execution time of OPTIMATHSAT-LIN-IN on “directly generated” instances of strip-packing
(top) and job-shop (bottom).

OPTIMATHSAT-LIN-IN. To this extent, we partition the total execution time taken on
each problem into three consecutive components:

—solving time, that is, the time spent on finding the first suboptimal solution;
—minimization time, that is, the time required to search for the optimal solution; and
—certification time, that is, the time needed for checking there is no better solution.

Figure 5 reports, for all strip-packing (top) and job-shop (bottom) instances, the ratios
of the three previously mentioned components over total execution time. (Notice the
log scale of the x axis and the linear scale on the y axis.) We notice a few facts:

—the solving time is nearly negligible; in particular, on hardest problems. This tells us,
among other facts, that OMT(LA(Q)) on these formulas is a much harder problem
than plain SMT(LA(Q)) on the same formulas;

—the remaining time, on average, is either evenly shared between the minimization
and the certification efforts (job-shop, bottom), or even it is mostly dominated by the
latter; in particular, on the hardest problem (strip-packing, top).

Overall, this suggests that on these instances OPTIMATHSAT-LIN-IN takes on aver-
age less than half of the total execution time to find the actual optimal solution, and
more than half to prove that there is no better one.

5.3. Comparison on SMT-LIB Problems

As a second comparison, in Figure 6, we compare OPTIMATHSAT against the GAMS
tools on the satisfiable LA(Q) formulas (QF_LRA) in the SMT-LIB, augmented with
randomly selected costs. (Hereafter, we do not consider the -OF versions of OPTIMATH-
SAT.) These instances are all classified as “industrial,” because they come from the
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Fig. 6. Table: results for all the inline versions of OPTIMATHSAT and all the GAMS tools, on a subset of
SMT-LIB LA(Q) satisfiable instances. The columns report, respectively, # of instances considered, # of in-
stances terminating within the timeout, # of instances terminating with correct solution, # of instances
terminating with error messages, # of instances terminating returning a wrong minimum, and # of instances
terminating wrongly returning “unfeasible.” Scatter plots: pairwise comparisons on the smt-lib LA(Q) satis-
fiable instances between OPTIMATHSAT-LIN-IN and the two versions of LOGMIP+CPLEX. LGDP models are
generated using SMT2LGDP1 (top) and SMT2LGDP2 (bottom).
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encoding of different real-world problems in formal verification, planning, and opti-
mization. They are divided into six categories, namely, sc, uart, sal, TM, tta_startup,
and miplib. Notice that other SMT-LIB categories like spider_benchmarks and
clock_synchro do not contain satisfiable instances and are thus not reported here.

Since we have no control on the origin of each problem and on the name and
meaning of the variables, we selected iteratively one variable at random as cost
variable, dropping it if the resulting minimum was −∞. This forced us to eliminate a
few instances; in particular, all miplib ones. We used both SMT2LGDP1 and SMT2LGDP2 to
encode these problems into LGDP.

As before, to check for both correctness and effectiveness of the encodings, we also
encoded the problems into LGDP by each encoding and encoded then back, to be fed to
OPTIMATHSAT-LIN-IN (fourth and fifth rows). We notice that this caused a substantial
difference in neither correctness nor efficiency.

We notice first that the results for GAMS tools are affected by correctness problems,
with both encodings. Consider the encoding SMT2LGDP1. Out of 194 samples, both
GAMS tools with the CH option returned “unfeasible” (i.e., inconsistent) on 70 samples
and an error message (regarding some unsatisfied disjunctions) on 108 samples. The
two versions with BM returned three unfeasible solutions and 52 solutions with
error messages. Only 15 samples were solved correctly by GAMS tools with the CH
option and 117 (with LOGMIP) or 116 (with JAMS) samples with BM ones, while
OPTIMATHSAT solved correctly all 194 samples. (We recall that all OPTIMATHSAT
results were cross-checked, and that the four GAMS tools were fed with the same
files.) With SMT2LGDP2 encoding the number of correctly solved formulas increases, 104
with CH option and 165 (with LOGMIP) or 166 (with JAMS) with BM; there are no
error messages and the number of unfeasible solutions of both GAMS tools with the
BM and CH options decreases to 2 and 1 respectively, but the number of solutions
with wrong minimum increases to four with the BM versions.

Importantly, with both encodings, the results for GAMS tools varied by modifying
a couple of parameters from their default value, namely, “eps” and “bigM Mvalue.”
For example, on the previously mentioned sal instance with SMT2LGDP1, with the
default values the BM versions returned a wrong minimum value “0,” the CH versions
returned “unfeasible,” while OPTIMATHSAT returned the correct minimum value “2”;
modifying eps and bigM Mvalue, the results become unfeasible also with BM options.
This highlights the fact that there are indeed some correctness and robustness
problems with the GAMS tools, regardless of the encodings used.21

5.3.1. Discussion. We conjecture that the problems with the GAMS tools may be
caused, at least in part, by the fact that GAMS tools use floating-point rather
than infinite-precision arithmetic, and they introduce internally an approximated
representation of strict inequalities (see Remark 5.1). Notice that, unlike with the
LGDP problems in Section 5.2, SMT-LIB problems do contain occurrences of strict
(nonstrict, respectively) inequalities with positive (negative, respectively) polarity.

From the perspective of the efficiency, all versions of OPTIMATHSAT solved correctly
all problems within the timeout, the -BIN-IN version performing slightly better than
the others; GAMS did not solve many samples (because of timeout, wrong solutions, and
solutions with error messages). Looking at the scatter plots, we notice that, with the
exception of a few samples, OPTIMATHSAT always outperforms the GAMS tools, often

21We also isolated a subproblem, small enough to be solved by hand, in which the GAMS tools returned
evidently wrong results, and notified it to the GAMS support team, who reckoned the problem and promised
to investigate it eventually.
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Fig. 7. Scatter plots comparing solving, minimization, and certification time (left, center, and right, respec-
tively) with the execution time of OPTIMATHSAT-LIN-IN on SMT-LIB instances.

by more than one order of magnitude. We notice that on these problems SMT2LGDP2 is
generally more effective than SMT2LGDP1 and less prone to errors.

Finally, Figure 7 reports for all SMT-LIB instances the ratios of the solution, mini-
mization, and certification times over the total execution time for OPTIMATHSAT-LIN-
IN. Unlike with Figure 5, we notice that here the solution time is dominating, the
minimization time is significant, and the certification time is nearly negligible. This
means that on these instances OPTIMATHSAT-LIN-IN takes on average more than half
of its execution time to find the first solution, less than half to find the actual optimal
solution, and very little time to prove that there is no better one. We conjecture that
this is due to the fact that most satisfiable SMT-LIB instances come from the encoding
of formal verification steps of bugged systems which, unlike with the LGDP problems
of Section 5.2, have a limited number of solutions.

5.4. Comparison on SAL Problems

As a third comparison, in Figure 8, we compare OPTIMATHSAT against the GAMS tools
on LA(Q) formulas obtained by using the SAL Model Checker on a set of bounded verifi-
cation problems—Bounded Model Checking (BMC) of invariants [Biere et al. 1999] and
K-Induction (K-IND) [Sheeran et al. 2000]—of a well-known parametric timed system,
Fisher’s Protocol.22

BMC (K-IND, respectively) takes a finite-state machine M, an invariant property �,
and an integer bound k, and produces a propositional formula ϕ, which is satisfiable
(unsatisfiable, respectively) if and only if there exists a k-step execution violating � (a k-
step induction proof that � is always verified, respectively). The approach leverages to
real-time systems by producing SMT(LA(Q)) formulas rather than purely propositional
ones (see, e.g., Audemard et al. [2002]).

Fisher’s protocol ensures mutual exclusion among N processes using real-time clocks
and a shared variable. The problem is parametric into two positive real values, δ1 and
δ2, describing the delays of some actions. It is known that mutual exclusion, and other
properties included in the SAL model, are verified if and only if δ1 < δ2.

We have produced our OMT(LA(Q)) problems as follows. We fixed the value of δ2 (we
chose δ2 = 4), and then we generated six groups of formulas according to the problem
solved (BMC or K-IND) and the property addressed (called mutex, mutual-exclusion,
time-aux3, and logical-aux1). For each group, for increasing values of N ≥ 2 and for

22Problems available at http://sal.csl.sri.com/examples.shtml.
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Fig. 8. Table: results for all the inline versions of OPTIMATHSAT and all the GAMS tools, on formulas gen-
erated from SAL models of Fisher’s protocol. The columns report, respectively, # of instances considered, #
of instances terminating within the timeout, # of instances terminating with correct solution, # of instances
terminating with error messages (GAMS tools only), # of instances terminating returning a wrong minimum,
and # of instances terminating wrongly returning “unfeasible”. Scatter plots: comparison of the best configu-
ration of OPTIMATHSAT (OPTIMATHSAT-LIN-IN) against LOGMIP(BM)+CPLEX on SMT2LGDP1 and SMT2LGDP2
encodings (left and right, respectively).

a set of sufficiently big values of k ≥ k∗,23 we used SAL to produce the corresponding
parametric SMT(LA(Q)) formulas, and asked the tool under test to find the minimum
value of δ1 that made the resulting formula LA(Q)-satisfiable (we knew in advance
from the problem that, for k big enough, this value is δ1 = δ2 = 4.0). As before,
we used both SMT2LGDP1 and SMT2LGDP2 to encode the OMT(LA(Q)) benchmarks into
LGDP.

5.4.1. Discussion. The results are presented in Figure 8. The three versions of OP-
TIMATHSAT solved correctly 385, 382, and 381 out of the 392 samples, respectively,
OPTIMATHSAT-LIN-IN being the best performer.

Considering the GAMS tools with the encoding SMT2LGDP1, the two tools using BM
solved on time and correctly only four samples over 392 and returned 19 solutions

23For BMC, k∗ is set to the smallest value of k, which makes the formula satisfiable, imposing no upper bound
on δ1; for K-IND, k∗ is set to the smallest value of k, which makes the formula encoding the inductive step
unsatisfiable, imposing δ2 > δ1). In these experiments, k∗ ranges from 5 to 10, depending on the problem;
also, for each problem, k∗ does not depend on N.
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Fig. 9. Table: results for OPTIMATHSAT, PB-MATHSAT, and the GAMS tools, on the MaxSMT benchmarks
from Cimatti et al. [2010]. The columns report, respectively, # of instances considered, # of instances ter-
minating within the timeout, # of instances terminating with correct solution, # of instances terminating
with error messages (GAMS tools only), # of instances terminating returning a wrong minimum, and # of
instances terminating wrongly returning “unfeasible.” Scatter plots: comparison of the best configuration
of OPTIMATHSAT, OPTIMATHSAT-ADA-IN, against the best configuration of PB-MATHSAT, PB-MATHSAT-LIN
(left) and the best configuration of GAMS tools, LOGMIP(BM)+CPLEX, on SMT2LGDP1 and SMT2LGDP2 encodings
(center and right, respectively).

with error messages and 1 solution with wrong minimum, while the CH ones always
returned “unfeasible.” (We recall that all GAMS tools and options are fed the same
inputs.) Considering the encoding SMT2LGDP2, the GAMS tools solved more problems
correctly (14 with BM tools and 2 with CH), but they returned wrong and unfeasible
solutions (14 wrong solutions for BM versions and 29 unfeasible for CH ones). No
solution with error messages was found.

The scatter plots compare OPTIMATHSAT-LIN-IN with the best versions of GAMS,
LOGMIP(BM)+CPLEX, on both the encodings, showing that the former dramatically
outperforms the latter, no matter the encoding used.

5.5. Comparison on PB SMT Problems

As a fourth comparison, in Figure 9, we evaluate OPTIMATHSAT on the problem sets
used in Cimatti et al. [2010] against the usual GAMS tools and against a recent reim-
plementation on MATHSAT5 of the tool in Cimatti et al. [2010], namely, PB-MATHSAT,
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for SMT with PB constraints (see Section 3).24 PB-MATHSAT is tested with both linear
search and binary search strategies (denoted with “-LIN” and “-BIN,” respectively).

As described in Cimatti et al. [2010], the problems consist of partial weighted
MaxSMT problems that are generated randomly starting from satisfiable LA(Q) formu-
las (QF_LRA) in the SMT-LIB, then converted into SMT problems with PB constraints
(see (12) in Section 3). These problems are further encoded into OMT(LA(Q)) problems
by means of the encoding (11) in Section 3, and hence into LGDP problems by means
of the usual two encodings.

5.5.1. Discussion. The results are presented in Figure 9. The three versions of OPTI-
MATHSAT solved, respectively, 630, 634, and 637 problems out of 675 problems overall,
while the two versions PB-MATHSAT solved, respectively, 636 and 632. Thus, despite
they are both implemented on top of the same SMT solver and PB-MATHSAT is spe-
cialized for PB constraints, OPTIMATHSAT performances are analogous to these of the
more-specialized tool. The various versions of the GAMS tool perform drastically worse:
with SMT2LGDP1 they solve correctly only a very small number of samples (19 with BM
tools and even 0 with CH), returning error messages, unfeasible results, or wrong min-
imum solutions on the remaining set of benchmarks; with SMT2LGDP2 more samples are
solved correctly and no error message is produced, but most problems produce a wrong
minimum solution.

Remark 5.4. Notice that, unlike with LGDP problems (see Remark 5.3) and in part
also with SMT-LIB and SAL problems, with PB problems the cost variables occur in
positive unit clauses in the form (cost = 〈term〉); thus, learning ¬(cost < pivot) as a
result of the binary-search steps with UNSAT results produces a constraining effect on
the variables in 〈term〉, and hence a pruning effect in the search due to the early-
pruning technique of the SMT solver. This might explain in part the fact that, unlike
with previous problems, here binary search performs a little better than linear search.

The scatter plots in Figure 9 compare the best version of OPTIMATHSAT with those of
PB-MATHSAT and of the GAMS tools. We see that OPTIMATHSAT-ADA-IN performances
are analogous to these of PB-MATHSAT-LIN , and they are drastically superior to these
of GAMS tools with both encodings.

As a side note, in Cimatti et al. [2013a], another empirical evaluation is performed
on MaxSMT problems—although generated with a slightly different random method
from SMT-LIB benchmarks—where OPTIMATHSAT performs equivalently better than
PB-MATHSAT and the novel specialized MaxSMT tool presented there. We refer the
reader to Cimatti et al. [2013a] for details.

5.6. Comparison against GAMS with Parallel CPLEX on All Problem Sets

As is common practice in the SMT literature, in this article we deal with single-core
sequential procedures. In fact, despite a couple of attempts [Wintersteiger et al. 2009;
Kalinnik et al. 2010], the parallelization of SMT-solving procedures is still an open
research issue. In particular, MATHSAT5, and hence OPTIMATHSAT, provide no support
for parallelization. Thus, although the issue of efficiently parallelizing OMT is poten-
tially a very interesting research topic, it is definitely not in the intended scope of this
article.

Unlike with MATHSAT5 and OPTIMATHSAT, however, CPLEX provides full support for
multiple-core parallel solving. This is an important benefit, since it allows for exploiting

24A comparison against the tool in Cimatti et al. [2010] would not be fair, since the latter was based on the
older and slower MATHSAT4. To witness this fact, a comparison of these two implementations is in Cimatti
et al. [2013a].
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the multiple-core CPUs of current PCs, reducing the elapsed time when searching for a
solution. This gives GAMS a potential advantage with respect to OPTIMATHSAT, which
the previous tests could not reveal.

In order to investigate the actual relevance of this potential advantage, we have
recently enriched our empirical investigation by running all the tests in Sections 5.2–
5.5 also on another GAMS tool, namely, JAMS(BM)+CPLEX-4CORES: This is the best-
performing GAMS GAMS tool in the tests, JAMS(BM)+CPLEX, which uses instead the
most recent version of CPLEX, v12.6, in parallel mode on four cores (options opportunis-
tic parallelmode, 4 threads). Each of the four threads is given a timeout of 600s.25

Therefore, JAMS(BM)+CPLEX-4CORES is given four times the CPU time resources than
its competitors.

5.6.1. Discussion. The results are displayed in Figure 10. In the table, for each
group of benchmarks in Sections 5.2– 5.5, we compare the performances of the best-
performing OPTIMATHSAT tool, OPTIMATHSAT-LIN-IN, of the best-performing GAMS
tool, JAMS(BM)+CPLEX, and of its parallel version, JAMS(BM)+CPLEX-4CORES. The
results for the former two tools are taken from Figures 3–9. In the last column, we
report the mean values of the speedup for JAMS(BM)+CPLEX-4CORES with respect to
JAMS(BM)+CPLEX over the problems for which both tools terminated within the time-
out. In the scatter plots we compare pairwise the performances of JAMS(BM)+CPLEX-
4CORES and JAMS(BM)+CPLEX on the five problem sets.

From Figure 10, we notice the following facts:

—The usage of CPLEX in parallel mode on the four cores pays off in terms of
elapsed time: We notice a significant average speedup from JAMS(BM)+CPLEX to
JAMS(BM)+CPLEX-4CORES, ranging from 2.35 to 9.54 with the five problem sets.

—The speedup is high and reasonably regular for the two LGDP problem sets; it is
lower and quite irregular for the other three problem sets.

—The speedup does not change the qualitative results of the evaluation in the
previous sections: OPTIMATHSAT still performs better than all GAMS tools, in-
cluding JAMS(BM)+CPLEX-4CORES, on the strip-packing, SMT-LIB, SAL, and
MaxSMT/SMT+PB problem sets; it performs worse on the job-shop problem set.

Overall, we can conclude that OPTIMATHSAT is very competitive with, and often
outperforms, GAMS LGDP tools on the very-extensive set of problems we have used
to evaluate them, despite the possibility of GAMS to use CPLEX in parallel mode on
multiple-core CPUs. This clearly demonstrates the potential of our novel OMT ap-
proach.

6. RELATED WORK

The idea of optimization in SMT was first introduced by Nieuwenhuis and Oliveras
[2006], who presented a very-general logical framework of “SMT with progressively
stronger theories” (e.g., where the theory is progressively strengthened by every new
approximation of the minimum cost), and present implementations for MaxSMT based
on this framework.

Cimatti et al. [2010] introduced the notion of ‘theory of costs” C to handle PB cost
functions and constraints by an ad hoc and independent “C solver” in the standard

25We have a technical remark: In order to use the same timeout mechanism for all tools, in all previous
tests we have used the Linux command ulimit to handle the timeout for all OPTIMATHSAT, GAMS, and
PB-MATHSAT versions. Unfortunately, ulimit does not seem to work properly for multithreaded processes,
so that for JAMS(BM)+CPLEX-4CORES we had to use instead the GAMS/CPLEX internal timeout mechanism,
which we have assumed to be reliable.

ACM Transactions on Computational Logic, Vol. 16, No. 2, Article 12, Publication date: February 2015.



Optimization Modulo Theories with Linear Rational Costs 12:37

Fig. 10. Table: comparison of OPTIMATHSAT-LIN-IN, JAMS(BM)+CPLEX, and JAMS(BM)+CPLEX-
4CORES on the five problem sets. Last column: average speedup for JAMS(BM)+CPLEX-4CORES with
respect to JAMS(BM)+CPLEX. Scatter plots: pairwise comparison of JAMS(BM)+CPLEX-4CORES vs.
JAMS(BM)+CPLEX on the five problem sets.
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lazy SMT schema, and implemented a variant of the MathSAT tool able to handle
SMT with PB constraints and to minimize PB cost functions.

The SMT solvers YICES [Dutertre and Moura 2006] and Z3 [de Moura and Bjørner
2008] also provide support for MaxSMT, although there is no publicly available
document describing the procedures used there.

Ansótegui et al. [2011] describe the evaluation of an implementation of a MaxSMT
procedure based on YICES, although this implementation is not publicly available.

Cimatti et al. [2013a] presented a “modular” approach for MaxSMT, combining a
lazy SMT solver with a MaxSAT solver, which can be used as black boxes.

We recall that MaxSMT and SMT with PB functions can be encoded into each other,
and that both are strictly less general than the problem addressed in this article
(Section 3).

Two other forms of optimization in SMT, which are quite different from the one
presented in our work, have been proposed in the literature.

Dillig et al. [2012] addressed the problem of finding partial models for quantified
first-order formula modulo theories, which minimize the number of free variables that
are assigned a value from the domain. Quoting an example from Dillig et al. [2012],
given the formula ϕ

def= (x+y+w > 0) ∨ (x+y+z+w < 5), the partial assignment {z = 0}
satisfies ϕ because every total assignment extending it satisfies ϕ and is minimum
because there is no assignment satisfying ϕ that assigns less then one variable. They
proposed a general procedure addressing the problem for every theory T admitting
quantifier elimination, and implemented a version for LA(Z) and EUF into the MISTRAL

tool.
Manolios and Papavasileiou [2013] proposed the “ILP modulo theories” framework

as an alternative to SAT modulo theories, which allows for combining integer linear
programming with decision procedures for signature-disjoint stably infinite theories
T ; they presented a general algorithm by integrating the branch-and-cut ILP method
with T -specific decision procedures, and implemented it into the INEZ tool. Notice
that the approach of Manolios and Papavasileiou [2013] cannot combine ILP with
LA(Q), since LA(Z) and LA(Q) are not signature disjoint (see Definition 2 in Manolios
and Papavasileiou [2013]). Also, the objective function is defined on the integer
domain.

We understand that neither of the previously mentioned works can handle the prob-
lem addressed in this article, and vice versa.

7. CONCLUSIONS AND FUTURE WORK

In this article, we have introduced the problem of OMT(LA(Q) ∪ T ), an extension of
SMT(LA(Q) ∪ T ) with minimization ofLA(Q) terms, and proposed two novel procedures
addressing it. We have described, implemented, and experimentally evaluated this
approach, clearly demonstrating all its potentials. We believe that OMT(LA(Q) ∪ T )
and its solving procedures are very-promising tools for a variety of optimization
problems.

This research opens the possibility for several interesting future directions. A
short-term goal, which we are currently working at, is to extend the approach to
LA(Z) and to mixed LA(Q)/LA(Z), by exploiting the solvers that are already present
in MATHSAT [Griggio 2012]. As is implicitly suggested in Section 5.6, a medium-term
goal is to investigate the parallelization of OMT procedures, so as to exploit the power
of current multiple-core CPUs. A longer-term goal is to investigate the feasibility of
extending the technique to deal with nonlinear constraints, possibly using MINLP
tools as T -Solver/Minimize.
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A. APPENDIX: PROOF OF THE THEOREMS

A.1. Proof of Theorem 3.6

We first need to prove the following lemmas.

LEMMA A.1. Let ϕ be a LA(Q) ∪ T -satisfiable LA(Q) ∪ T formula and E def= {η1, . . . , ηn}
be the set of all total truth assignments propositionally satisfying ϕ. Then mincost(ϕ) =
minηi∈Emincost(ηi).

PROOF. If ϕ is LA(Q) ∪ T -unsatisfiable, then mincost(ϕ) = minηi∈Emincost(ηi) = +∞.
Otherwise, the thesis follows straightforwardly from the fact that the set of the models
of ϕ is the union of the sets of the models of the assignments in E .

LEMMA A.2. Let ϕ be a LA(Q)∪T -satisfiable LA(Q)∪T formula and μ be a LA(Q)∪T -
satisfiable partial assignment such that μ |=p ϕ. Then there exists at least one LA(Q)∪T -
satisfiable total assignment η such that μ ⊆ η, η |=p ϕ, and mincost(μ) = mincost(η).

PROOF. Let I be a model for μ, and hence for ϕ. Then

η
def=

∧
ψi∈Atoms(ϕ)
I|=ψi

ψi ∧
∧

ψi∈Atoms(ϕ)
I|=¬ψi

¬ψi. (18)

By construction, η is a total truth assignment for ϕ and it is LA(Q) ∪ T -satisfiable,
μ ⊆ η and mincost(η) = mincost(μ) = I(cost). Since μ ⊆ η, then η |=p ϕ.

The proof of Theorem 3.6 then follows.

THEOREM 3.6. Let ϕ be a LA(Q) ∪ T formula and let M def= {μ1, . . . , μn} be a com-
plete collection of (possibly partial) truth assignments propositionally satisfying ϕ. Then
mincost(ϕ) = minμ∈Mmincost(μ).

PROOF. If ϕ is LA(Q) ∪ T -unsatisfiable, then mincost(ϕ) = minμ∈Mmincost(μ) = +∞ by
Definition 3.1 and Theorem 3.5. Otherwise, mincost(ϕ) < +∞. Then,

—Proof of mincost(ϕ) ≤ minμ∈Mmincost(μ):
By reductio ad absurdum, suppose exists μ ∈ M such that mincost(μ) < mincost(ϕ). By
Proposition 3.3, μ is LA(Q) ∪ T satisfiable. By Lemma A.2, there exists a LA(Q) ∪ T -
satisfiable total assignment η such that μ ⊆ η, η |=p ϕ, and mincost(μ) = mincost(η). By
Lemma A.1, mincost(η) ≥ mincost(ϕ), and hence mincost(μ) ≥ mincost(ϕ), contradicting
the hypothesis.

—Proof of mincost(ϕ) ≥ minμ∈Mmincost(μ):
From Lemma A.1, we have that mincost(ϕ) = minηi∈Emincost(ηi). Let η ∈ E such that
mincost(ϕ) = mincost(η) < +∞. Hence, η is LA(Q) ∪ T -satisfiable. Thus, there exists
μ ∈ M such that μ ⊆ η. μ is LA(Q) ∪ T -satisfiable since η is LA(Q) ∪ T -satisfiable.
From Proposition 3.3, mincost(μ) ≤ mincost(η); hence, mincost(μ) ≤ mincost(ϕ). Thus, the
thesis holds.

A.2. Proof of Theorem 3.10

THEOREM 3.10. Let μ be as in Definition 3.9. Then,

(a) mincost(μ) = minη∈EXed(μ)mincost(η)
(b) for all η ∈ EXed(μ),

mincost(η) =
{ +∞ if μT ∧ μed is T -unsatisfiable or

if μLA(Q) ∧ μed is LA(Q)-unsatisfiable
mincost(μLA(Q) ∧ μed) otherwise.
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PROOF.

(a) Let

μ′ def= μ ∧
∧

(xi=xj )∈IE(μ)

((xi = xj) ∨ ¬(xi = xj)).

μ and μ′ are obviously LA(Q) ∪ T -equivalent, so that mincost(μ) = mincost(μ′). By
construction, EXed(μ) is the set of all total truth assignments propositionally satis-
fying μ′, so that mincost(μ′) = minη∈EXed(μ)mincost(η).

(b) By Theorem 3.8, η is LA(Q) ∪ T -satisfiable if and only if μLA(Q) ∧ μed is LA(Q)-
satisfiable and μT ∧ μed is T -satisfiable. Thus,
—if μT ∧μed is T -unsatisfiable, then η is LA(Q)∪T -unsatisfiable, so that mincost(η) =

+∞.
—If μT ∧ μed is T -satisfiable and μLA(Q) ∧ μed is LA(Q)-unsatisfiable, then η is

LA(Q) ∪ T -unsatisfiable, so that mincost(η) = mincost(μLA(Q) ∧ μed) = +∞.
—If μT ∧μed is T -satisfiable and μLA(Q) ∧μed is LA(Q)-satisfiable, then η is LA(Q)∪
T -satisfiable. We split the proof into two parts.
≤ case: Let c ∈ Q be the value of mincost(μLA(Q)∧μed). Let μ′ def= μ∧(cost = c). Since

(cost = c) is a LA(Q)-pure atom, then μ′ = μ′
T ∧ μ′

LA(Q) such that μ′
T = μT and

μ′
LA(Q) = μLA(Q) ∧ (cost = c), which are, respectively, T - and LA(Q)-pure and T -

and LA(Q)-satisfiable by construction. Let η′ def= η ∧ (cost = c). Since IE(μ) =
IE(μ′), then μ′, μ′

LA(Q), μ′
T , and η′ match the hypothesis of Theorem 3.8, from

which we have that η′ is LA(Q) ∪ T -satisfiable, so that η has a model I such
that I(cost) = c. Thus, we have that mincost(η) ≤ mincost(μLA(Q) ∧ μed).

≥ case: Let c ∈ Q be the value of mincost(η). Then, η ∧ (cost = c) is LA(Q) ∪ T -
satisfiable. We define μ′, μ′

LA(Q), μ′
T , and η′ as in the “≤” case. As before, they

match the hypothesis of Theorem 3.8, from which we have that μ′
LA(Q) is LA(Q)-

satisfiable. Hence, μLA(Q) has a model I such that I(cost) = c. Thus, we have
that mincost(η) ≥ mincost(μLA(Q) ∧ μed).

A.3. Proof of Theorem 3.12

THEOREM 3.12. Let μ be as in Definition 3.9. Then,

(a) μ is LA(Q) ∪ T -satisfiable if and only if some ρ ∈ EXedi(μ) is LA(Q) ∪ T -satisfiable.
(b) mincost(μ) = minρ∈EXedi (μ)mincost(ρ).
(c) for all ρ ∈ EXedi(μ), ρ is LA(Q) ∪T -satisfiable if and only if μT ∧μed is T -satisfiable

and μLA(Q) ∧ μe ∧ μi is LA(Q)-satisfiable.
(d) for all ρ ∈ EXedi(μ),

mincost(ρ) =
{ +∞ if μT ∧ μed is T -unsatisfiable or

if μLA(Q) ∧ μe ∧ μi is LA(Q)-unsatisfiable
mincost(μLA(Q) ∧ μe ∧ μi) otherwise.

PROOF. Let

μ∗ def= μ ∧
∧

(xi=xj )∈IE(μ)

⎛
⎜⎝

((xi = xj) ∨ (xi < xj) ∨ (xi > xj))∧
(¬(xi = xj) ∨ ¬(xi < xj))∧
(¬(xi = xj) ∨ ¬(xi > xj))∧
(¬(xi < xj) ∨ ¬(xi > xj))

⎞
⎟⎠ . (19)

All clauses in the right conjuncts in (19) areLA(Q)-valid, hence μ and μ∗ areLA(Q) ∪ T -
equivalent, so that mincost(μ) = mincost(μ∗). By construction, EXedi(μ) is the set of all
total truth assignments propositionally satisfying μ∗.
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(a) By Theorem 3.5, μ∗ is LA(Q) ∪ T -satisfiable if and only if some ρ ∈ EXedi(μ) is
LA(Q) ∪ T -satisfiable, from which the thesis.

(b) mincost(μ) = mincost(μ∗) = minρ∈EXedi (μ)mincost(ρ).
(c) We consider one ρ ∈ EXedi(μ). ρ = μT ∧μLA(Q)∧μe∧μd∧μi. We notice that all literals

in μi are LA(Q)-pure, such that it is the LA(Q)-pure part of ρ (namely, ρLA(Q)). Thus,

by Theorem 3.8, ρ is LA(Q) ∪ T -satisfiable if and only if

ρLA(Q)︷ ︸︸ ︷
μLA(Q) ∧ μi ∧

μed︷ ︸︸ ︷
μe ∧ μd is

LA(Q)-satisfiable and μT ∧
μed︷ ︸︸ ︷

μe ∧ μd is T -satisfiable. By construction, μi |=LA(Q) μd.
Thus, μLA(Q) ∧ μi ∧ μe ∧ μd is LA(Q)-satisfiable if and only if μLA(Q) ∧ μi ∧ μe is
LA(Q)-satisfiable. Thus, the thesis holds.

(d) We consider one ρ ∈ EXedi(μ) and partition it as in point (c). From point (c), if μT ∧μed
is T -unsatisfiable or μLA(Q) ∧ μi ∧ μe is LA(Q)-unsatisfiable, then ρ is LA(Q) ∪ T -
unsatisfiable, so that mincost(ρ) = +∞. Otherwise, ρ is LA(Q) ∪ T -satisfiable.
≤ case: Let c ∈ Q be the value of mincost(μLA(Q) ∧ μe ∧ μi). Let μ′ def= μ ∧ (cost = c).

Since (cost = c) is a LA(Q)-pure atom, then μ′ = μ′
T ∧ μ′

LA(Q) such that μ′
T = μT

and μ′
LA(Q) = μLA(Q)∧(cost = c), which are, respectively, T - andLA(Q)-pure. Also,

μ′
T ∧μed is T -satisfiable and μ′

LA(Q) ∧μe ∧μi is LA(Q)-satisfiable by construction.

Let ρ ′ def= ρ ∧ (cost = c). Since IE(μ) = IE(μ′), then also μ′, μ′
LA(Q), μ′

T , and
ρ ′ match the hypothesis of this theorem. Thus, by point (c), ρ ′ is LA(Q) ∪ T -
satisfiable, so that ρ has a model I such that I(cost) = c. Therefore, we have
that mincost(ρ) ≤ mincost(μLA(Q) ∧ μe ∧ μi).

≥ ≥ case: Let c ∈ Q be the value of mincost(ρ). Then, ρ ∧ (cost = c) is LA(Q) ∪ T -
satisfiable. We define μ′, μ′

LA(Q), μ′
T , and ρ ′ as in the “≤” case. As before, they

also match the hypothesis of this theorem, so that by point (c) μ′
LA(Q) ∧ μe ∧ μi

is LA(Q)-satisfiable. Thus, μ′
LA(Q) ∧ μe ∧ μi has a model I such that I(cost) = c.

Therefore, we have that mincost(ρ) ≥ mincost(μLA(Q) ∧ μe ∧ μi).
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