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Abstract. MATHSAT is a long-term project, which has been jointly carried on
by FBK-IRST and University of Trento, with the aim of developing and maintain-
ing a state-of-the-art SMT tool for formal verification (andother applications).
MATHSAT5 is the latest version of the tool. It supports most of theSMT-LIB
theories and their combinations, and provides many functionalities (like e.g. un-
sat cores, interpolation, AllSMT). MATHSAT5 improves its predecessor MATH-
SAT4 in many ways, also providing novel features: first, a much improved incre-
mentality support, which is vital in SMT applications; second, a full support for
the theories of arrays and floating point; third, sound SAT-style Boolean formula
preprocessing for SMT formulae; finally, a framework allowing users for plug-
ging their custom tuned SAT solvers. MATHSAT5 is freely available, and it is
used in numerous internal projects, as well as by a number of industrial partners.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a (typically quantifier-free) first-order formula with respect to some decidable theory
T (or combination of theories

⋃
i Ti). SMT solvers have proved to be powerful and

expressive backend engines for formal verification in many contexts, including the ver-
ification of software, hardware, and of timed and hybrid systems. An amount of papers
with novel and very efficient techniques for SMT has been published in the last decade,
and some very efficient SMT tools are now available.

MATHSAT is a long-term project, which has been jointly carried onby FBK-IRST
and University of Trento in the last decade, with the aim of developing and maintaining
a state-of-the-art SMT tool for formal verification (and other applications). In this pa-
per we present MATHSAT5, the latest version of the tool. MATHSAT5 supports most
of the SMT-LIB theories and their combinations, and provides many SMT function-
alities (e.g. unsatisfiable cores, interpolation, AllSMT). It does not offer support for
quantifiers. MATHSAT5 improves its predecessor MATHSAT4 [5] in many ways, also
providing novel features. First, it provides a much improved support forincremental
solving, which is vital in many applications of SMT (e.g., symbolic simulation, SW
model checking). Second, it fully supports also the theories ofarraysandIEEE floating
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point numbers. Third, it provides (incremental)Theory Aware SAT-Preprocessing, i.e.
sound SAT-style Boolean formula preprocessing adapted forSMT formulas. Finally, it
supplies a framework for third-party SAT-solver integration, allowing users -including
industrial users- for plugging their custom tuned solvers.MATHSAT5 is available at
[29], and it is used in numerous internal projects, as well asby a number of industrial
partners.

The paper is structured as follows:§2 describes the functionalities of MATHSAT5;
§3 discusses its architecture;§4 discusses the specifics of our implementations;§5
shows an empirical evaluation;§6 discusses a number of in-house applications of MATH-
SAT5; finally in §7 we draw some conclusions and discuss ongoing and future work.

2 Functional View

MATHSAT5 provides functionalities for both satisfiability checking (solving) and for
extended SMT tasks. It can be accessed either through the command line, by feeding a
SMT-LIB file (in either theSMT-LIB v.1 or SMT-LIB v.2 standard), or through
an API, which is similar in spirit to the commands of theSMT-LIB v.2 language
(with additional functionalities).

Solving. MATHSAT5 solving facilities support most of theSMT-LIB theories of
interest, including that of equality and uninterpreted functions (EUF ), that of arrays
(AR), and their combinations with the theories of linear arithmetic on the rationals
(LA(Q)), the integers (LA(Z)) and mixed rational-integer (LA(QZ)), that of fixed-
width bit-vectors (BV), and that of floating-point arithmetic (FP). Notably, to the best
of our knowledge, MATHSAT5 is one of the very few SMT solvers supportingFP .

Many SMT-based formal verification techniques (e.g., BMC, symbolic simulation,
lazy abstraction) need invoking the backend SMT solverincrementally, in a stack-based
manner, by pushing and popping sub-formulas. To cope with this fact, regardless the
theories addressed, MATHSAT5 provides anincremental, stack-based interface, allow-
ing multiple satisfiability checks over a changing clause database, and maintaining use-
ful information of the status of computation (e.g. learned clause, scores) from one call
to the other, which prevents restarting the search from scratch each time.

Beyond Solving.Like its predecessors, MATHSAT5 was designed primarily to be used
in formal verification settings, where often simple queriesfor a “SAT/UNSAT” answer
are not sufficient. Thus, MATHSAT5 provides several extended SMT functionalities.
Production of Models.When the input formulaϕ is satisfiable, MATHSAT5 can pro-
duce a satisfying interpretationI on domain variables, with a congruent partial inter-
pretation of uninterpreted functions and predicates.1

Production of Proofs.Whenϕ is unsatisfiable, MATHSAT5 can produce a proof, com-
bining a resolution proof and theory-specific sub-proofs oftheT -lemmas.

1 E.g., inEUF ∪ LA(Z), if ϕ is x = 5 ∧ f(x) < 3, thenI may assignx to 5 andf(5) to 2.



Extraction of Unsatisfiable Cores.MATHSAT5 allows for extracting aT -unsatisfiable
subset of an input clause set. This implements both the standard extraction from a res-
olution proof, and the “lemma-lifting” approach we described in [10], which invokes
an external Boolean unsat-core extractor available off-the-shelf, thus benefitting from
every size-reduction techniques implemented there.
Interpolation.MATHSAT5 allows for computing (Craig) interpolants of pairs of input
mutually-inconsistent SMT formulas for nearly all implemented theories. This feature
includes optimized interpolant generator forEUF andLA(Q) [9], for LA(Z) [27], for
BV [26], and an interpolant generator for combined theories based on DTC [9].
AllSMT & Predicate Abstraction.MATHSAT5 implements an “AllSMT” functionality
[28]: in case of a satisfiable input formulaϕ, it can efficiently enumerate a complete
set of theory-consistent partial assignments satisfyingϕ. This feature is useful for per-
forming predicate abstraction in a SMT-based Counter-Example-Guided Abstraction-
Refinement (CEGAR) context (e.g. [3]).
Enumeration of Diverse Models.Strictly related to AllSMT, MATHSAT5 implements
a brand-new functionality, which was requested from our industrial partners. The users
are allowed to define a set ofdiversifying predicates [resp. terms]and MATHSAT5
enumerates models which differ to one another for the truth value [resp. domain value]
of at least one of these predicates [resp. terms].2 This technique is useful to, e.g.,
guarantee coverage of all branches in a program, partitioning the value space into a
grid, cover all values of some selector variables, investigate corner cases, etc.
Pluggable SAT Solvers.Finally, MATHSAT5 provides an API for integrating external
SAT-solvers, allowing (industrial) users for plugging their custom tuned solver for their
specific applications.

MathSAT5 vs. MathSAT4. MATHSAT5 extends and improves its predecessor MATH-
SAT4 in many ways.

From the perspective of SMT solving, a full support for the theories of arrays (AR)
and floating point (FP) has been introduced; the solvers forBV andLA(Z) have been
re-implemented and made much more efficient, and the latter has been extended to
deal also with mixed rational-integersLA(QZ). The default underlying SAT solver has
been improved. Moreover, (incremental)Theory Aware SAT-Preprocessing, i.e. sound
SAT-style Boolean formula preprocessing adapted for SMT formulas, has been intro-
duced. (See next sections.) Overall, the whole tool has beenredesigned to fully support
incrementality, in both solving and other functionalities.

From the perspective of SMT functionalities,Enumeration of Diverse Modelsand
Pluggable SAT Solversare brand new.Interpolationhas been extended toLA(Z) [27]
andBV [26]. Finally, theProduction of Modelsand ofProduction of Proofsfunctionali-
ties have been significantly improved. Importantly, theProduction of Proofs, Extraction
of Unsat Cores, Interpolation, AllSMT, Enumeration of Diverse Models, Pluggable SAT
Solversfunctionalities have been adapted to work also in incremental mode (Production
of Modelswas already incremental in MATHSAT4).

2 Notice that diversifying terms are meaningful only with terms on discrete and small bounded
domains, like enumeratives, bounded integers with small ranges, small-size bit-vectors.
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Fig. 1. Architectural overview of MATHSAT5.

3 Architectural View

Figure 1 details the MATHSAT5 architecture. From a high-level perspective, the main
component of MATHSAT5 is the environment, which acts as a coordinator for the var-
ious sub-components of the solver (preprocessor, constraint encoder, theory manager,
proof and model generator, SAT engine and individual theorysolvers). Besides coor-
dination of components, the environment is also responsible for various administrative
tasks, such as memory management and garbage collection.

The preprocessor is a term-rewriting engine which performsformula normalization
and constant inlining. In formula normalization we rewriteredundant formulas to a
“simpler” or “smaller” form. This is done by applying, up to afix point, some rewrite
rules from a database. In constant inlining we replace constants with their definitions.
(For example if the formula contains a predicate(x = 3), we replace all occurrences of
x in the input formula by 3.)

The constraint encoder performs the CNF conversion of the input formulas, as well
as the encoding of various constructs which are not directlysupported by the core com-
ponents of MATHSAT5. For instance, it eliminates term-level if-then-elseconstructs
ITE(c, t, e) from a formula by replacing them with fresh variablesxITE and by adding
to the formula the clauses(¬c ∨ (xITE = t)) and(c ∨ (xITE = e)).

The core of MATHSAT5 is composed of the SAT engine and the theory solvers,
which interact following the standard lazy/DPLL(T ) approach [2]. The SAT engine is
either our native SAT engine or a “pluggable”, third-party SAT engine. The former is a
M INI SAT-style SAT solver [19], equipped with a preprocessor/inprocessor supporting



the following Boolean formula simplifications:Variable Elimination (VE), Subsumed
clause removal (SCR)andBackwards subsumption (BS)[18]. In VE we perform DP-
resolution on a variablex, replacing all clauses of the form(C ∨ x) and(C ∨¬x) with
their pairwise resolvents. In SCR, if clauseCi subsumesCj , i.e.Ci contains a subset
of the literals inCj , then it follows theCj can be dropped from the input formula. In
BS, we take advantage from the fact that, if we resolve(¬x ∨ Ci) with (x ∨ Cj) onx,
andCi subsumesCj , then it follows that their resolvent equalsCj , thus we can shorten
(x ∨ Cj) to Cj . Notice that in general (some of) these simplifications are unsound
in an (incremental) SMT setting. We describe how we have adapted them to ensure
correctness in§4.3.

The pluggable SAT engine allows for the integration of an external, third-party SAT
solver in MATHSAT5. The architecture is based on a “SAT worker” wrapper interface
for the external solver, which is required to implement a number of callback functions
to respond to various events generated by the other MATHSAT5 components, and to
satisfy certain requirements that are needed for a proper integration in an SMT context.
For more details, we refer to§4.4.

The theory manager acts as a unified interface between the SATengine and indi-
vidual T -solvers, allowing for a modular integration of new theories. In our architec-
ture, individualT -solvers know nothing about neither the SAT engine nor theirsibling
solvers, and they only interact with the theory manager. In this way,T -solvers can be
easily added and removed without affecting the rest of the system.

The SAT engine and the theory manager communicate with the model and proof
calculator component, which is responsible of producing models for satisfiable formu-
las and refutation proofs for unsatisfiable ones. Refutation proofs consist of a Boolean
part and a theory-specific part. The theory-specific part consists of the list of theory
lemmas generated during search, together with theory-specific proofs for them. For
example, forLA(Q) a proof consists of a list of inequalities and the corresponding
coefficients needed for obtaining a contradiction via linear combinations, whereas for
EUF it consists of a sequence of applications of the reflexivity,symmetry, transitivity
and congruence axioms leading to the violation of some disequality. The Boolean part
of the proof, computed by the SAT engine, consists instead ofBoolean resolution steps
among the clauses of (the CNF conversion of) the input formula and the theory lemmas
generated by theT -solvers. From the refutation proof, interpolants and/or unsatisfiable
cores can then be produced (possibly with the help of an external Boolean unsat-core
extractor, as described in [10]).

4 Implementation

In this Section, we provide some details on the most significant aspects of the imple-
mentation of MATHSAT5.

4.1 Low-level Optimizations

MATHSAT5 is implemented in C++, using an object-oriented paradigm. One of the
most important aspects of the implementation is the use of several ad-hoc variants of



common data structures (such as vectors, stacks, queues, hash tables), specialized for
critical parts of the code, which significantly improve the overall performance of the
solver. The main reason for this is memory management. In particular, our custom data
structures and algorithms are designed to reduce the overhead due to excessive memory
allocations/deallocations and to exploit the availability of specialized allocators that try
to ensure a cache-friendly layout of data in memory. For a similar reason, we use our
own custom written library for arbitrary-precision arithmetic, built on top of the GNU
Multi Precision library [23], which avoids costly memory operations in the cases in
which the numbers to manipulate fit into machine words.

One might question the value of these low-level “micro-optimizations”, arguing that
there are many higher-level factors (such as e.g. branchingheuristics, search strategies,
preprocessing algorithms) which have a much stronger impact on the performance of an
SMT solver. Our experience however suggests that in practice these details have a very
visible impact, in particular on scalability, which is crucial for the successful application
of the solver in industrial settings. We refer to [25] for an example of the impact of low-
level optimizations on the performance of MATHSAT on real-worldLA(Q) formulas.

4.2 Incrementality

In an incremental setting, MATHSAT5 manipulates astackS
def
= [ϕ1, . . . , ϕn] of for-

mulas, which corresponds to the input problemϕ1 ∧ . . .∧ϕn. The stack is manipulated
via apushandpop interface. Pushing a formulaψ corresponds to conjoiningψ to the
current input problem, whereas popping corresponds to discarding the most recently
added conjunct. All the internal components of MATHSAT outlined in Figure 1 are
designed to exploit this stack-based interaction. In the DPLL engine, incrementality
is implemented by exploiting a variant of solving under assumptions [20]. Each ele-
mentϕi of the stack is associated to alabel literal xstacki . During CNF conversion, all
the clauses for the formulaϕi are extended with the label literal¬xstacki . When the
satisfiability of the input formula is decided, DPLL is invoked with the assumptions
{xstack1 , . . . , xstackn}. When a formula is popped from the stack, all clauses (including
learnt clauses) that contain the last label literal¬xstackn are deleted. Importantly, all
DPLL variables created afterxstackn are also deleted, as well as all the corresponding
internal variables in the theory solvers. This is very important in applications (such as
e.g. [8]) in which hundreds of thousands of simple formulas,often totally unrelated to
each other, are pushed and popped from the stack, in order to avoid cluttering the solver
with irrelevant data.

4.3 Adapting SAT-level Preprocessing to incremental SMT

As stated above, MATHSAT5 supports the following SAT formula processing tech-
niques: Variable Elimination (VE), Subsumed clause removal (SCR) and Backwards
subsumption (BS). In general, these techniques are not sound when applied in an incre-
mental SMT context. There are multiple reasons for this: 1) After model calculation,
the extended SAT model which contains the values calculatedfor eliminated variables
may beT -inconsistent; 2) VE may eliminate label literalsxstacki used for implement-
ing incrementality; 3) Variables eliminated by VE may be reintroduced either during



subsequent formula pushes, or during search; 4) Clauses which allowed us to shorten a
clause through BS or eliminate a clause through SCR may no longer be implied by the
input formula after a pop.

The first problem arises because, in an SMT context, variables in the SAT solver
might represent theory constraints (i.e., they might beproxiesfor someT -atom). In
such cases, eliminating them has the effect of dropping someT -constraints from the
formula, which might change its satisfiability status. Our simple solution to this problem
is to forbid the elimination of proxy variables (in SAT terminology, wefreezethem).

The other three issues are not due to SMT, but rather to the useof the techniques
in an incremental setting. Point 2) is problematic because label literals are necessary to
correctly maintain the stack of formulas (see§4.2 above), and so they can’t be elim-
inated from the formula. We avoid the problem by simply freezing label literals. For
problem 3), we adopt a solution similar to the one described in [30]. Roughly speak-
ing, the approach is based on saving clauses containing eliminated variables, instead
of deleting them immediately, so that they can be re-added tothe problem in case a
previously-eliminated variable is re-added to the SAT solver. We simply remark that,
unlike in the setting considered in [30], in SMT eliminated variables can be reintro-
duced even when incrementality is not used, because in general theory solvers are al-
lowed to introduce new SAT variables during search (this is the case e.g. for Delayed
Theory Combination [6] or for axiom instantiation [24]). Finally, regarding problem 4),
we observe that freezing label literals automatically gives a solution for it. The reason
is that, since we prohibit the elimination of label literals, clauses belonging to different
pushes always differ in at least one literal which only occurs negatively, thus neither
SCR nor BS is applicable. This solution, however, has the drawback of significantly
limiting the applicability of subsumption. In fact, MATHSAT5 does something better
than this, by employing the notions of contemporary and baseclauses. ClauseCi is
contemporary with respect to clauseCj if the highest label literal contained inCi is
created before the highest label literal contained inCj . If Ci is contemporary toCj , the
push/pop architecture used in MATHSAT5 ensures that as long asCj is active,Ci is
active as well. Given a clauseCi, base(Ci) is the clause obtained by removing all label
literals fromCi. Using these notions of contemporary and base clauses MATHSAT5
extends the SCR and BS rules as follows:

– If base(Ci) subsumesbase(Cj) andCi is contemporary toCj , we can dropCj

from the input formula.
– If base(Ci) subsumesbase(Cj) but Ci is not contemporary toCj , we can still

ignoreCj as long asCi is active.
– If base(Ci) backwards subsumesbase(Cj) on l andCi is contemporary toCj , we

can shortenCj by l.

Figure 2 summarizes the clause management system used in MATHSAT5, and shows
how clauses move from being active or locked, to inactive, ordropped, depending on
the circumstances.

4.4 Pluggable SAT solvers

As already described, MATHSAT5 allows for using an external CDCL-based SAT
solver as its SAT engine. From the point of view of the implementation, this is achieved
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Fig. 2.Clause Management in MATHSAT5.

by 1) requiring the external solver to implement a specificSAT workerinterface which
defines the communication protocol between the external solver and the rest of MATH-
SAT5, and 2) requiring the external solver to invoke somecallback functionsin order
to notify the rest of MATHSAT5 about specific states in the SAT search.

The SAT worker interface consists of methods for creating SAT variables, adding
clauses, propagating literals deduced by the theory solvers, and retrieving the truth val-
ues of variables after a Boolean model has been found. In order to work correctly in the
context of MATHSAT5, the SAT solver is required to be able to create new variables
and add new clauses during search. If it uses some form of preprocessing involving
variable elimination, it must also support the ability of freezing some of the variables
and correctly handle the addition of clauses containing previously-eliminated variables
(see§4.3), or else preprocessing must be turned off.3 Finally, in order to be usable in
an incremental setting, the SAT solver must support solvingunder assumptions [20]
(otherwise, it can only be used for non-incremental queries). In general, implementing
such interface amounts to creating a wrapper that invokes the corresponding functions
in the API of the SAT solver.4

Besides implementing the worker interface, the code of the external SAT solver
must also be modified to invoke a number of callback functionsprovided by MATH-
SAT5, in order to allow the interaction between the SAT engine and the theory solvers
in MATHSAT5 during the SAT search. In particular, the callback functions invoke the
theory solvers when either a complete Boolean model or a non-conflicting partial as-
signment has been found. Invoking the theory solvers allowsus to do early pruning,
theory consistency checking and the propagation of theory deductions.

3 More generally, all the SAT-based simplification techniques which are not sound in an SMT
context (such as e.g. the pure literal rule) must be switchedoff.

4 Here, we are implicitly assuming that the SAT solver exposesan API similar to that of modern
CDCL solvers such as e.g. MINI SAT or LINGELING.



In general, the source code of the external SAT solver needs to be patched to include
the proper calls to the MATHSAT5 callback functions. However, in our experience the
amount of changes required is typically quite small. In our example implementations,
using the MINI SAT [19] and CLEANELING [17] open-source SAT solvers, the patches
consist of less than 150 lines of code.

5 Experimental Evaluation

In this section, we present an experimental evaluation of MATHSAT5. We demonstrate
two key properties of our solver: first, the improvement overthe previous version of
MATHSAT; second, the usefulness of the new features.

Benchmarks. For our experiments, we use the following classes of benchmarks.

BVuMEM. Benchmarks from theBV ∪ AR SMT-LIB category. We leave out a family
containing only very large but trivial to solve benchmarks.

HSver. Benchmarks originating from practical problems in the verification of hybrid
systems. The benchmarks are in the theory ofLA(Q), and represent proof obliga-
tions generated by the scenario-based verification algorithms of [12]. Besides the
LA(Q) component, these instances also have a complex Boolean component.

COMP09. Benchmarks from the 2009 SMT-COMP, in the categories entered by MATH-
SAT4 at the time.

LRA11. The application benchmarks of the 2011 SMT-COMP, for the theory ofLA(Q).

The first three classes of benchmarks are considered as non-incremental (i.e. we
check satisfiability once per benchmark). The benchmarks inLRA11 are used to test
the value of various features of MATHSAT5 in an incremental setting5.

M ATH SAT configurations. In our experiments we have used the following versions
of MATHSAT:

MATHSAT4: The latest version of MATHSAT4 (version 4.2.17).
MATHSAT5: The baseline MATHSAT5 configuration.
MATHSAT5PREPROCESSING: MATHSAT5 with preprocessing enabled.
MATHSAT5CLEANELING : MATHSAT5 using CLEANELING as a pluggable SAT solver.
MATHSATM INISAT : MATHSAT5 using MINI SAT as a pluggable SAT solver.6

5 The benchmarks in HSver could be also organized as incremental; however, the number of
subsequent satisfiability queries is very low (two orders ofmagnitude lower than LRA11), and
thus the results are not particularly informative.

6 Notice that, although both MINI SAT and CLEANELING support SAT preprocessing, we had to
turn it off when integrating them with MATHSAT5, since their SAT preprocessing procedures
do not satisfy the requirements listed in§4.3 (see also§4.4).



Table 1. Results for MATHSAT5 with and without preprocessing on the BVuMEM and HSver
benchmark classes.

Benchmark FamilySize
MATHSAT5 MATHSAT5PREPROCESSING

#SolvedRT (sec)#TO #MO #SolvedRT (sec)#TO #MO
brummayerbiere2 22 15 2218 5 2 16 2014 6 0
brummayerbiere 293 229 25698 64 0 233 22620 60 0
calc2 36 30 7855 6 0 30 7301 6 0
stp 40 26 2659 6 8 27 3127 5 8
HSver 279 260 6192 19 0 279 2182 0 0
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Fig. 3. Impact of preprocessing in the BVuMEM (left) and HSver (right) classes.

Experimental Set Up. All benchmarks were run on an xcore X5650 platform running
Linux version 2.6.32, with a 32GB memory limit and a 20 minutetime limit. In the
tables, we use the following acronyms: RT for Runtime, TO forTime Out, MO for
Memory Out.

Experiments. The intent of the first set of experiments is to evaluate the impact of SAT-
level preprocessing. We focus on theories that cannot be directly reduced to pure SAT,
showing that our approach is useful outside of pureBV problems. Table 1 shows the re-
sults of running MATHSAT5 both with and without preprocessing on the BVuMEM and
HSver benchmarks. Figure 3 presents the corresponding scatter plots. In the BVuMEM
benchmarks, the activation of the preprocessor allows MATHSAT5 to solve a higher
number of instances. We notice that the activation of the preprocessor is not always
positive, as it may result in time outs in cases solved without preprocessing (3 bench-
marks). In terms of runtime, on the benchmarks solved in bothcases, preprocessing
yields a 15% improvement on the average runtime. In the HSverbenchmarks, on the
other hand, the positive effect of preprocessing is very evident, with 19 more instances
solved, and a 2.8x speed up on average runtime. On single benchmarks, we notice an
improvement of up to two orders of magnitude.
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Fig. 4. MATHSAT5 versus MATHSAT4 onEUF (left) andLA(Q) (right).
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Fig. 5. MATHSAT5 versus MATHSAT4 onLA(Z) (left) andBV (right).

Table 2.A comparison between MATHSAT4 and MATHSAT5 on the COMP09 benchmarks.

CategorySize
MATHSAT4 MATHSAT5

#SolvedRT (sec)#TO #MO #SolvedRT (sec)#TO #MO
BV 200 192 1939 8 0 197 2295 3 0
EUF 200 186 9317 14 0 196 6232 4 0
LA(Z) 205 202 3985 3 0 204 2205 1 0
LA(Q) 202 182 1588 20 0 184 2816 18 0

In the second set of experiments we compare MATHSAT5 against our previous
solver MATHSAT4, using the COMP09 benchmarks. The results of the experiment
are aggregated in Table 2, and displayed in scatter plots in Figures 4 and 5. From the
data presented we can clearly conclude that MATHSAT5 outperforms MATHSAT4. We
notice significant improvements in theEUF andLA(Z) categories.



Table 3.A comparison between the MATHSAT5CLEANELING , MATHSAT5M INISAT and MATHSAT5
solvers on the BVuMEM instances.

Benchmark FamilySize
MATHSAT5CLEANELING MATHSAT5M INI SAT MATHSAT5

#SolvedRT (sec)#TO #MO #SolvedRT (sec)#TO #MO #SolvedRT (sec)#TO #MO
brummayerbiere2 22 12 709 8 2 15 1831 5 2 15 2218 5 2
brummayerbiere 293 164 23383 97 29 184 17044 97 12 229 25698 64 0
calc2 36 29 5852 7 0 36 4183 0 0 30 7855 6 0
stp 40 27 3595 5 8 29 1765 3 8 26 2659 6 8

Table 4.A comparison between MATHSAT5M INISAT and MATHSAT5 on the LRA11 instances.

Benchmark
MATHSAT5M INISAT MATHSAT5

Reached boundRuntime (sec)Reached boundRuntime (sec)
bmwlin 20 5 1.inter.bmck100 101 25 101 344
fisher ring 20 3.inter.bmck100 62 1200 55 1200
dist controller15 3.inter.bmck100 76 1200 93 1200
rod 30 3.inter.bmck100 101 66 80 1200
fisher star20 3.inter.bmck100 101 40 101 367
rod 30 3.inter.indk100 27 1200 45 1200
mwlin 20 5 1.inter.indk100 47 1200 133 1200
fisher star20 3.inter.indk100 35 1200 65 1200
fisher ring 20 3.inter.indk100 33 1200 51 1200
dist controller15 3.inter.indk100 31 1200 69 1200

In order to assess the pluggable SAT solver feature, we created to two versions
of MATHSAT5 by integrating two external solvers7: M INI SAT [19] and CLEANEL-
ING [17]. The cost of the integration turned out to be very moderate. This supports the
claim that specialised SAT solver could be integrated and exploited successfully with a
low initial effort.

Then, we compared these two solvers on the BVuMEM benchmarks. The results are
detailed in Table 3. Compared to the version with our native solver (Table 1), the per-
formance of the version with MINI SAT is mixed: MATHSAT5M INISAT performs slightly
better on three families, but much worse on the brummayerbiere family. The version
with CLEANELING instead is inferior to our native solver. In general, SAT solvers and
DPLL(T ) SAT enumerators might have different requirements, so it’s not obvious that
a state-of-the-art SAT solver is always the best choice in DPLL(T ). For example, the
rapid restart policy used by modern SAT solvers might not be the best choice in SMT.
Rebuilding the assignment stack after a restart is relatively cheap in pure SAT; how-
ever, in SMT it can be more expensive, since the theory solvers still need to perform
consistency checks and provide deductions.

We also tested the version with pluggable solver on incremental benchmarks. Since
CLEANELING does not support solving under assumptions, and thus cannotbe used in-
crementally by MATHSAT5, we compared the performance of MATHSAT5 and MATH-

7 The code for the integration (see§4.4) is available from the web page of MATHSAT5 [29].



SAT5 using MINI SAT on the LRA11 benchmarks set (Table 4). These problems are
either bounded model checking (where the benchmark name contains “bmc”), or k-
induction (name contains “ind”) problems. Interestingly,k-inductions checks are much
more efficiently solved by pure MATHSAT5, while the version using MINI SAT handles
bounded model checking instances much more efficiently. We are currently investigat-
ing the reasons for this difference.

In order to assess the strength of MATHSAT5 relative to the current state of the art
(e.g. Boolector and Z3) we rely on the results of the 2011 and 2012 SMT-COMP. The
version of MATHSAT5 presented in this paper is an extension, with new features, of
the version which ran in those competitions. Thus the SMT-COMP results are relevant
to this version. The competition results show that in non-incremental categories MATH-
SAT5 is generally competitive with other modern SMT solvers. In the incremental cat-
egories, it performs extremely well, winning many of them. Thus MATHSAT5 achieves
its goal of being an efficient incremental solver, that supports a multitude of logics.

6 Applications

MATHSAT has been and is currently used in many research and industrial projects.
We have a long-standing collaboration with Intel FV group atHaifa, Israel, within

the Intel- and SRC-funded BOWLING, WOLFLING and WOLF projects, in which
MATHSAT has been used as backend engine for formal verification ofRTL designs mi-
crocode [22]. In particular, a customized version of MATHSAT is currently integrated
within the production version of Intel’s microcode-verification suite, MICROFORMAL,
and successfully used inside the company [22]. Another application in the verification
of RTL is in the ForSyn [21] tool, where MATHSAT is the decision procedure used for
checking the equivalence between RTL implementations and their high-level descrip-
tions.

MATHSAT has been used as a backend in an extended version of the NuSMV model
checker, called NuSMV3 [31]. NuSMV3 is a general synchronous extensions to the
publicly available NuSMV2, where MATHSAT is used as a backend for SMT-based ver-
ification techniques. Among these, we mention bounded modelchecking, k-induction,
and predicate abstraction. In these applications, the roleof SMT is to provide a high
level representation of the transition system. Various functionalities are exploited, in-
cluding incremental reasoning, unsatisfiable core extraction, and interpolation.

The availability of MATHSAT has provided a basis for the extension of NuSMV
to deal with analysis of hybrid systems. Hybrid systems are symbolically modeled in
a language called HyDI, and specialized forms of verification [13, 12] strongly rely on
the availability of advanced capabilities of MATHSAT. In the setting of hybrid systems
verification, MATHSAT also supports the analysis of parametric timed automata[15].

The EuRailCheck project, funded by the European Railways Agency, relies on the
MATHSAT-based requirements analysis capabilities [16].

The underlying verification capabilities provided by NUSMV3 are used in the ESA-
funded projects COMPASS [4], AUTOGEF, FAME, and FOREVER, where complex
aerospace systems are modeled in terms of hybrid automata.



MATHSAT is used as a backend for the analysis of temporal reasoning under un-
certainty [11], within applications in the ESA-funded project IRONCAP.

An important class of applications of MATHSAT in software model checking. In
particular, MATHSAT is integrated within the CPAchecker [3] and UFO [1] model
checkers for sequential software, and within Kratos [13], amodel checker for sequential
and threaded software. Within this setting, MATHSAT supports the basic model check-
ing steps (interpolation, predicate discovery, localization and post-image computation)
by means of interpolation, unsatisfiable core extraction, and AllSMT. More recently,
MATHSAT has been used as backend for an IC3-based approach to software model
checking [8], and for parametric analysis of threaded programs [14].

7 Conclusions and Future Developments

In this paper we have presented the SMT tool MATHSAT5. In comparison to its pre-
decessor MATHSAT4, substantial improvements have been made: in additionto signif-
icant improvements in efficiency, the key changes include extension to more theories,
full support for incrementality, an incremental and SMT-aware preprocessor, and sup-
port to plug in third-party SAT solvers.

MATHSAT is a long-term project, and its development is ongoing. First, we plan
a deeper investigation of SMT-aware preprocessing techniques, with the goal to make
them available within a stand-alone functionality, so thatto make MATHSAT work also
as an effectiveformula simplifier. Second, we plan to investigate and implementquanti-
fier eliminationtechniques for some of the theories of interest. We are also considering
to investigate extensions to non-linear arithmetic.

A research direction we are currently pursuing is that ofOptimization Modulo The-
ories (OMT), which leverages SMT solving fromdecisionto optimization level by
finding models thatminimizesome given cost functions. Our previous work has pro-
duced variants of MATHSAT able to minimize cost functions on the pseudo-Boolean
andLA(Q) domains respectively [7, 32]. Current and future work in this direction in-
cludes the porting of the OMT implementations of [7, 32] intothe official MATHSAT5
version, and extensions toLA(Z) andLA(QZ) cost functions.
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