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Abstract. MATHSAT is a long-term project, which has been jointly carried on
by FBK-IRST and University of Trento, with the aim of devellog and maintain-
ing a state-of-the-art SMT tool for formal verification (aother applications).
MATHSATS5 is the latest version of the tool. It supports most of $MT-LIB
theories and their combinations, and provides many funatities (like e.g. un-
sat cores, interpolation, AISMT). MrHSAT5 improves its predecessorAvH -
SAT4 in many ways, also providing novel features: first, a miaeproved incre-
mentality support, which is vital in SMT applications; sadpa full support for
the theories of arrays and floating point; third, sound S#lesBoolean formula
preprocessing for SMT formulae; finally, a framework allogiiusers for plug-
ging their custom tuned SAT solvers.AVHSATS5 is freely available, and it is
used in numerous internal projects, as well as by a numbedoftrial partners.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of denigl the satisfiability of
a (typically quantifier-free) first-order formula with resg to some decidable theory
T (or combination of theoriek); 7;). SMT solvers have proved to be powerful and
expressive backend engines for formal verification in mamtexts, including the ver-
ification of software, hardware, and of timed and hybrid sgst. An amount of papers
with novel and very efficient techniques for SMT has beenighbt in the last decade,
and some very efficient SMT tools are now available.

MATHSAT is a long-term project, which has been jointly carriedogrFBK-IRST
and University of Trento in the last decade, with the aim ofali@ping and maintaining
a state-of-the-art SMT tool for formal verification (and ettapplications). In this pa-
per we present MTHSATS5, the latest version of the tool. MHSATS5 supports most
of the SMT-LIB theories and their combinations, and prosideany SMT function-
alities (e.g. unsatisfiable cores, interpolation, AlISMT)does not offer support for
quantifiers. MATHSATS5 improves its predecessorAvH SAT4 [5] in many ways, also
providing novel features. First, it provides a much impmbseipport forincremental
solving which is vital in many applications of SMT (e.g., symbolimslation, SW
model checking). Second, it fully supports also the thesoofarraysandIEEE floating
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point numbersThird, it provides (incrementaljheory Aware SAT-Preprocessijng.
sound SAT-style Boolean formula preprocessing adapte8Nor formulas. Finally, it
supplies a framework for third-party SAT-solver integoati allowing users -including
industrial users- for plugging their custom tuned solvéaTHSATS is available at
[29], and it is used in numerous internal projects, as webyaa number of industrial
partners.

The paper is structured as followi describes the functionalities of MHSAT5;
§3 discusses its architecturg4 discusses the specifics of our implementatidjs;
shows an empirical evaluatio§B discusses a number of in-house applications af ¥
SATS5; finally in §7 we draw some conclusions and discuss ongoing and futute wor

2 Functional View

MATHSATS provides functionalities for both satisfiability clkétg (solving and for
extended SMT tasks. It can be accessed either through theandline, by feeding a
SMT-LIB file (in either theSMT-LIB v.1 or SMT-LIB v.2 standard), or through
an API, which is similar in spirit to the commands of tBMT-LIB v.2 language
(with additional functionalities).

Solving. MATHSATS5 solving facilities support most of theMT-LIB theories of
interest, including that of equality and uninterpreteddiions €U/ F), that of arrays
(AR), and their combinations with the theories of linear ari¢tioon the rationals
(LA(Q)), the integers£.A(Z)) and mixed rational-integer’(4(QZ)), that of fixed-
width bit-vectors BV), and that of floating-point arithmetic{P). Notably, to the best
of our knowledge, MTHSATS5 is one of the very few SMT solvers supportifg.

Many SMT-based formal verification techniques (e.g., BM@nbolic simulation,
lazy abstraction) need invoking the backend SMT sailverementallyin a stack-based
manner, by pushing and popping sub-formulas. To cope withftitt, regardless the
theories addressed,MH SATS5 provides afincremental stack-based interface, allow-
ing multiple satisfiability checks over a changing clausebase, and maintaining use-
ful information of the status of computation (e.g. learnkdise, scores) from one call
to the other, which prevents restarting the search fromtateach time.

Beyond Solving. Like its predecessors, MHSAT5 was designed primarily to be used
in formal verification settings, where often simple quef@sa “SAT/UNSAT” answer
are not sufficient. Thus, MrHSATS5 provides several extended SMT functionalities.
Production of ModelsWhen the input formula is satisfiable, MTHSAT5 can pro-
duce a satisfying interpretatidhon domain variables, with a congruent partial inter-
pretation of uninterpreted functions and predicates.

Production of ProofsWheny is unsatisfiable, MTHSATS5 can produce a proof, com-
bining a resolution proof and theory-specific sub-proofthef7 -lemmas.

YE.Q., INEUFULAZ),if pisz =5A f(z) < 3, thenZ may assign: to 5 andf(5) to 2.



Extraction of Unsatisfiable Core8 ATHSATS5 allows for extracting & -unsatisfiable
subset of an input clause set. This implements both the aterektraction from a res-
olution proof, and the “lemma-lifting” approach we desebin [10], which invokes
an external Boolean unsat-core extractor available @fgtelf, thus benefitting from
every size-reduction techniques implemented there.

Interpolation.MATHSATS5 allows for computing (Craig) interpolants of pairs nput
mutually-inconsistent SMT formulas for nearly all implemted theories. This feature
includes optimized interpolant generator &¥¢ F and£A(Q) [9], for LA(Z) [27], for
BV [26], and an interpolant generator for combined theorisgtdan DTC [9].

AlISMT & Predicate AbstractiolMATHSATS implements an “AlISMT” functionality
[28]: in case of a satisfiable input formufg it can efficiently enumerate a complete
set of theory-consistent partial assignments satisfyinghis feature is useful for per-
forming predicate abstraction in a SMT-based Counter-Epas@uided Abstraction-
Refinement (CEGAR) context (e.g. [3]).

Enumeration of Diverse ModelStrictly related to AISMT, MaTHSATS5 implements
a brand-new functionality, which was requested from ouustdal partners. The users
are allowed to define a set diversifying predicates [resp. termsind MATHSATS
enumerates models which differ to one another for the trathe/[resp. domain value]
of at least one of these predicates [resp. terrhghis technique is useful to, e.qg.,
guarantee coverage of all branches in a program, partitiptiie value space into a
grid, cover all values of some selector variables, investigorner cases, etc.
Pluggable SAT Solverginally, MATHSATS5 provides an API for integrating external
SAT-solvers, allowing (industrial) users for pluggingith®ustom tuned solver for their
specific applications.

MathSATS5 vs. MathSAT4. MATHSATS extends and improves its predecessar k-
SAT4 in many ways.

From the perspective of SMT solving, a full support for thedties of arraysAR)
and floating point FP) has been introduced; the solvers B and£.A(Z) have been
re-implemented and made much more efficient, and the latterbeen extended to
deal also with mixed rational-integefs4(QZ). The default underlying SAT solver has
been improved. Moreover, (incrementdiieory Aware SAT-Preprocessjrig. sound
SAT-style Boolean formula preprocessing adapted for SMinfdas, has been intro-
duced. (See next sections.) Overall, the whole tool has tezasigned to fully support
incrementality, in both solving and other functionalities

From the perspective of SMT functionalitigSnumeration of Diverse Modetnd
Pluggable SAT Solverre brand newinterpolationhas been extended tA(Z) [27]
andBYV [26]. Finally, theProduction of Modeland ofProduction of Proof$unctionali-
ties have been significantly improved. Importantly, Breduction of ProofsExtraction
of Unsat Coresinterpolation AISMT, Enumeration of Diverse ModelBluggable SAT
Solverdunctionalities have been adapted to work also in increaiendde Production
of Modelswas already incremental in MHSAT4).

2 Notice that diversifying terms are meaningful only withrteron discrete and small bounded
domains, like enumeratives, bounded integers with smagjes, small-size bit-vectors.
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Fig. 1. Architectural overview of MTHSATS5.

3 Architectural View

Figure 1 details the MTHSATS5 architecture. From a high-level perspective, the main
component of MTHSATS5 is the environment, which acts as a coordinator for tre v
ious sub-components of the solver (preprocessor, consgacoder, theory manager,
proof and model generator, SAT engine and individual thesolyers). Besides coor-
dination of components, the environment is also respoaéiblvarious administrative
tasks, such as memory management and garbage collection.

The preprocessor is a term-rewriting engine which perfdomaula normalization
and constant inlining. In formula normalization we rewnigglundant formulas to a
“simpler” or “smaller” form. This is done by applying, up tofia point, some rewrite
rules from a database. In constant inlining we replace emstwith their definitions.
(For example if the formula contains a predicéte= 3), we replace all occurrences of
x in the input formula by 3.)

The constraint encoder performs the CNF conversion of thetiformulas, as well
as the encoding of various constructs which are not direcghported by the core com-
ponents of M\THSATS5. For instance, it eliminates term-level if-then-etemstructs
ITE(e, t, e) from a formula by replacing them with fresh variables: and by adding
to the formula the clausésc Vv (e = t)) and(c V (e = €)).

The core of MATHSATS5 is composed of the SAT engine and the theory solvers,
which interact following the standard lazy/DPLL) approach [2]. The SAT engine is
either our native SAT engine or a “pluggable”, third-par§TSngine. The formeris a
MINI SAT-style SAT solver [19], equipped with a preprocessor/iggssor supporting



the following Boolean formula simplification&/ariable Elimination (VE) Subsumed
clause removal (SCRYndBackwards subsumption (BR)8]. In VE we perform DP-
resolution on a variable, replacing all clauses of the for(d' v ) and(C' v —z) with
their pairwise resolvents. In SCR, if claug subsumeg’;, i.e. C; contains a subset
of the literals inCy}, then it follows theC; can be dropped from the input formula. In
BS, we take advantage from the fact that, if we resétve v C;) with (x v C;) onz,
andC; subsumeg’;, then it follows that their resolvent equal§, thus we can shorten
(x V Cj) to C;. Notice that in general (some of) these simplifications arsound
in an (incremental) SMT setting. We describe how we have daghem to ensure
correctness ifj4.3.

The pluggable SAT engine allows for the integration of areml, third-party SAT
solver in MATHSATS. The architecture is based on a “SAT worker” wrappegriiaice
for the external solver, which is required to implement a benof callback functions
to respond to various events generated by the otherlMBATS components, and to
satisfy certain requirements that are needed for a propegriation in an SMT context.
For more details, we refer t.4.

The theory manager acts as a unified interface between theeBgifie and indi-
vidual 7-solvers, allowing for a modular integration of new theerig our architec-
ture, individual7-solvers know nothing about neither the SAT engine nor tsibling
solvers, and they only interact with the theory manageris way, 7-solvers can be
easily added and removed without affecting the rest of tiseesy.

The SAT engine and the theory manager communicate with thdehand proof
calculator component, which is responsible of producinglet®for satisfiable formu-
las and refutation proofs for unsatisfiable ones. Refutgtimofs consist of a Boolean
part and a theory-specific part. The theory-specific parsisté of the list of theory
lemmas generated during search, together with theoryifppcoofs for them. For
example, forL A(Q) a proof consists of a list of inequalities and the correspaond
coefficients needed for obtaining a contradiction via lin@ambinations, whereas for
EUF it consists of a sequence of applications of the reflexiggynmetry, transitivity
and congruence axioms leading to the violation of some disiég. The Boolean part
of the proof, computed by the SAT engine, consists inste&bofean resolution steps
among the clauses of (the CNF conversion of) the input foarant the theory lemmas
generated by th@-solvers. From the refutation proof, interpolants andfsatisfiable
cores can then be produced (possibly with the help of an mait®&oolean unsat-core
extractor, as described in [10]).

4 Implementation

In this Section, we provide some details on the most sigmifieapects of the imple-
mentation of MATHSATS.
4.1 Low-level Optimizations

MATHSATS is implemented in C++, using an object-oriented payeadiOne of the
most important aspects of the implementation is the usewarabad-hoc variants of



common data structures (such as vectors, stacks, quewststdides), specialized for
critical parts of the code, which significantly improve theewall performance of the
solver. The main reason for this is memory management. ticp&r, our custom data
structures and algorithms are designed to reduce the aethe to excessive memory
allocations/deallocations and to exploit the availapitit specialized allocators that try
to ensure a cache-friendly layout of data in memory. For dlaimeason, we use our
own custom written library for arbitrary-precision aritktit, built on top of the GNU
Multi Precision library [23], which avoids costly memory enations in the cases in
which the numbers to manipulate fit into machine words.

One might question the value of these low-level “micro-pyitiations”, arguing that
there are many higher-level factors (such as e.g. brandt@ogstics, search strategies,
preprocessing algorithms) which have a much stronger itgraihe performance of an
SMT solver. Our experience however suggests that in pethiese details have a very
visible impact, in particular on scalability, which is craldor the successful application
of the solver in industrial settings. We refer to [25] for atample of the impact of low-
level optimizations on the performance ofalvH SAT on real-worldZA(Q) formulas.

4.2 Incrementality

In an incremental setting, MrHSAT5 manipulates atackS £ [¢1, ..., pn] Of for-
mulas, which corresponds to the input problemm . . . A ¢,,. The stack is manipulated
via apushandpopinterface. Pushing a formula corresponds to conjoining to the
current input problem, whereas popping corresponds taadisng the most recently
added conjunct. All the internal components oRMiSAT outlined in Figure 1 are
designed to exploit this stack-based interaction. In the.DBngine, incrementality
is implemented by exploiting a variant of solving under asptions [20]. Each ele-
menty; of the stack is associated tdabel literal zsack . During CNF conversion, all
the clauses for the formula; are extended with the label literatzsiac . When the
satisfiability of the input formula is decided, DPLL is invadk with the assumptions
{®stack ; - - - , Tstack, }- When a formula is popped from the stack, all clauses (inotud
learnt clauses) that contain the last label literakiack, are deleted. Importantly, all
DPLL variables created aftarck, are also deleted, as well as all the corresponding
internal variables in the theory solvers. This is very impot in applications (such as
e.g. [8]) in which hundreds of thousands of simple formutdten totally unrelated to
each other, are pushed and popped from the stack, in ordesitbcduttering the solver
with irrelevant data.

4.3 Adapting SAT-level Preprocessing to incremental SMT

As stated above, MrHSAT5 supports the following SAT formula processing tech-
nigues: Variable Elimination (VE), Subsumed clause rerh@S&R) and Backwards
subsumption (BS). In general, these techniques are notlsshien applied in an incre-
mental SMT context. There are multiple reasons for this: figrAmodel calculation,
the extended SAT model which contains the values calcufateeliminated variables
may beT -inconsistent; 2) VE may eliminate label literatgac, used for implement-
ing incrementality; 3) Variables eliminated by VE may bentedduced either during



subsequent formula pushes, or during search; 4) Clauset ahowed us to shorten a
clause through BS or eliminate a clause through SCR may rgefdre implied by the
input formula after a pop.

The first problem arises because, in an SMT context, vagahbl¢he SAT solver
might represent theory constraints (i.e., they mighpbexiesfor some7-atom). In
such cases, eliminating them has the effect of dropping spreenstraints from the
formula, which might change its satisfiability status. Guor@e solution to this problem
is to forbid the elimination of proxy variables (in SAT temology, wefreezethem).

The other three issues are not due to SMT, but rather to thefuse techniques
in an incremental setting. Point 2) is problematic becaalsellliterals are necessary to
correctly maintain the stack of formulas (sg&2 above), and so they can't be elim-
inated from the formula. We avoid the problem by simply fiagdabel literals. For
problem 3), we adopt a solution similar to the one describbe@0]. Roughly speak-
ing, the approach is based on saving clauses containingnelied variables, instead
of deleting them immediately, so that they can be re-adddati@éqroblem in case a
previously-eliminated variable is re-added to the SAT eplWe simply remark that,
unlike in the setting considered in [30], in SMT eliminateariables can be reintro-
duced even when incrementality is not used, because in getheory solvers are al-
lowed to introduce new SAT variables during search (thihésdase e.g. for Delayed
Theory Combination [6] or for axiom instantiation [24]) riilly, regarding problem 4),
we observe that freezing label literals automatically gigesolution for it. The reason
is that, since we prohibit the elimination of label literadtauses belonging to different
pushes always differ in at least one literal which only oscoegatively, thus neither
SCR nor BS is applicable. This solution, however, has thevidaak of significantly
limiting the applicability of subsumption. In fact, MHSAT5 does something better
than this, by employing the notions of contemporary and ludeseses. Claus€’; is
contemporary with respect to clauég if the highest label literal contained i@i; is
created before the highest label literal containe@jnlf C; is contemporary t@’;, the
push/pop architecture used inAVHSATS ensures that as long &5 is active,C; is
active as well. Given a claugg, base(C;) is the clause obtained by removing all label
literals from C;. Using these notions of contemporary and base clausesHBAT5
extends the SCR and BS rules as follows:

— If base(C;) subsumesase(C;) andC; is contemporary t@’;, we can dropC}
from the input formula.

— If base(C;) subsumesase(C;) but C; is not contemporary t@’;, we can still
ignoreC; as long ag”; is active.

— If base(C;) backwards subsumésase(C;) onl andC; is contemporary t@;, we
can shorter©’; by [.

Figure 2 summarizes the clause management system usegtin S3AT5, and shows
how clauses move from being active or locked, to inactivejropped, depending on
the circumstances.

4.4 Pluggable SAT solvers

As already described, MHSATS5 allows for using an external CDCL-based SAT
solver as its SAT engine. From the point of view of the impleta&on, this is achieved
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Fig. 2. Clause Management in MHSATS5.
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by 1) requiring the external solver to implement a spe@#I workelinterface which
defines the communication protocol between the externaésahd the rest of MTH-
SAT5, and 2) requiring the external solver to invoke sarakback functionsn order
to notify the rest of M\THSAT5 about specific states in the SAT search.

The SAT worker interface consists of methods for creatind@ 8&riables, adding
clauses, propagating literals deduced by the theory smlaed retrieving the truth val-
ues of variables after a Boolean model has been found. I toaeork correctly in the
context of MATHSATS5, the SAT solver is required to be able to create new bkt
and add new clauses during search. If it uses some form ofgregsing involving
variable elimination, it must also support the ability odézing some of the variables
and correctly handle the addition of clauses containingipusly-eliminated variables
(see§4.3), or else preprocessing must be turned ¢finally, in order to be usable in
an incremental setting, the SAT solver must support solvinder assumptions [20]
(otherwise, it can only be used for non-incremental qugrlaggeneral, implementing
such interface amounts to creating a wrapper that involeesdihresponding functions
in the API of the SAT solvet.

Besides implementing the worker interface, the code of ttierepal SAT solver
must also be modified to invoke a number of callback functimmided by MATH-
SATS5, in order to allow the interaction between the SAT eegind the theory solvers
in MATHSATS5 during the SAT search. In particular, the callback fiores invoke the
theory solvers when either a complete Boolean model or acooflicting partial as-
signment has been found. Invoking the theory solvers allesvio do early pruning,
theory consistency checking and the propagation of theedydtions.

3 More generally, all the SAT-based simplification technisjuenich are not sound in an SMT
context (such as e.g. the pure literal rule) must be switcified

4 Here, we are implicitly assuming that the SAT solver expesesPI similar to that of modern
CDCL solvers such as e.g.IMi SAT or LINGELING.



In general, the source code of the external SAT solver neduls patched to include
the proper calls to the MrHSATS5 callback functions. However, in our experience the
amount of changes required is typically quite small. In owreple implementations,
using the MNISAT [19] and Q.EANELING [17] open-source SAT solvers, the patches
consist of less than 150 lines of code.

5 Experimental Evaluation

In this section, we present an experimental evaluation af WBAT5. We demonstrate
two key properties of our solver: first, the improvement otver previous version of
MATHSAT; second, the usefulness of the new features.

Benchmarks. For our experiments, we use the following classes of bendksna

BVUMEM. Benchmarks from th8Y U AR SMT-LIB category. We leave out a family
containing only very large but trivial to solve benchmarks.

HSver. Benchmarks originating from practical problems in the fieaition of hybrid
systems. The benchmarks are in the theorg dfQ), and represent proof obliga-
tions generated by the scenario-based verification algostof [12]. Besides the
LA(Q) component, these instances also have a complex Boolearooemip

COMPOQ09. Benchmarks from the 2009 SMT-COMP, in the categories edtey@&ATH-
SAT4 at the time.

LRA11. The application benchmarks of the 2011 SMT-COMP, for thethef LA(Q).

The first three classes of benchmarks are considered ashomwiental (i.e. we
check satisfiability once per benchmark). The benchmarkd$iA11 are used to test
the value of various features of MMHSAT5 in an incremental settifig

MATH SAT configurations. In our experiments we have used the following versions
of MATHSAT:

MATHSAT4: The latest version of WMrHSAT4 (version 4.2.17).

MATHSATS5: The baseline MTHSATS5 configuration.

MATHSAT 5preprocessiné MATHSATS with preprocessing enabled.
MATHSAT5cieaneune : MATHSATS using @EANELING as a pluggable SAT solver.
MATHSATwnsar: MATHSATS using MNISAT as a pluggable SAT solvér.

5 The benchmarks in HSver could be also organized as incramdmwever, the number of
subsequent satisfiability queries is very low (two ordemnafnitude lower than LRA11), and
thus the results are not particularly informative.

5 Notice that, although both M1 SAT and Q.EANELING support SAT preprocessing, we had to
turn it off when integrating them with MrHSAT5, since their SAT preprocessing procedures
do not satisfy the requirements listedgih.3 (see als§4.4).



Table 1. Results for MaTHSAT5 with and without preprocessing on the BVUMEM and HSver
benchmark classes.

Al MATHSATS5 MATHSAT Sereprocessing

Benchmark FamilSize o e qRT (secl#TOEMO#SoVedRT (secl#TO#MO
brummayerbiere2| 22 15| 2218 5 2 16| 2014 6 0
brummayerbiere | 293 229 25698 64 O 233 22620 60, O
calc2 36 30 7855 6 0 30 7301 6 0
stp 40 26 2659 6 8 27 31271 5 8
HSver 279 260 6192 19 0 279 2182 O 0
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Fig. 3. Impact of preprocessing in the BWUMEM (left) and HSver (tigtlasses.

Experimental Set Up. All benchmarks were run on an xcore X5650 platform running
Linux version 2.6.32, with a 32GB memory limit and a 20 mintitee limit. In the
tables, we use the following acronyms: RT for Runtime, TO Tone Out, MO for
Memory Out.

Experiments. The intent of the first set of experiments is to evaluate ttpgsichof SAT-
level preprocessing. We focus on theories that cannot leettlireduced to pure SAT,
showing that our approach is useful outside of piveproblems. Table 1 shows the re-
sults of running M\TH SAT5 both with and without preprocessing on the BVUMEM and
HSver benchmarks. Figure 3 presents the correspondingspéits. In the BVUMEM
benchmarks, the activation of the preprocessor allows®BAT5 to solve a higher
number of instances. We notice that the activation of th@nmeessor is not always
positive, as it may result in time outs in cases solved witlpwaprocessing (3 bench-
marks). In terms of runtime, on the benchmarks solved in lsases, preprocessing
yields a 15% improvement on the average runtime. In the HBgachmarks, on the
other hand, the positive effect of preprocessing is vergieavi, with 19 more instances
solved, and a 2.8x speed up on average runtime. On singléntmamks, we notice an
improvement of up to two orders of magnitude.
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Table 2. A comparison between MPHSAT4 and MATHSATS5 on the COMPO09 benchmarks.

MATHSAT4 MATHSATS
#SolvedRT (sec)#TO#MO|#SolvedRT (sec}#TO[#MO
BY 200 192 1939 8 0 1971 2295 3
EUF 200 186 9317 14 196 6232 4
LA(Z) |205 202 398§ 3 204 2205 1
LAQ) |202 182 1588 20 184 2814 18

CategorySiz

ool o
o[o|o|o

In the second set of experiments we compareTMSAT5 against our previous
solver MATHSAT4, using the COMPO09 benchmarks. The results of the exyger
are aggregated in Table 2, and displayed in scatter plotgirés 4 and 5. From the
data presented we can clearly conclude tharMSATS5 outperforms MTHSAT4. We
notice significantimprovements in /7 andL.A(Z) categories.



Table 3. A comparison between the MHSAT 5¢ieaneuing , MATHS AT Syinisar and MATHSATS
solvers on the BVUMEM instances.

MATHSAT 5ci eaneLinG MATH SAT 5u i sar MATHSATS
#SolvedRT (sec]#TO[#MO|#SolvedRT (sec)#TO|#MO|#SolvedRT (sec]#TO[#MO
brummayerbiere2| 22 12| 709 8 2 15/ 1831 5 2 15| 2218 5 2

Benchmark FamilySi

Z

brummayerbiere | 293 164] 23383 97| 29 184 17044 97| 12 229 25698 64 0
calc2 36 29| 5852 7 0 36| 4183 O 0 30 7855 6 0
stp 40| 27) 3595 5 8 29| 1765 3 8 26| 2659 6 8

Table 4. A comparison between MHSAT 5y inisar and MATHSATS5 on the LRA11 instances.

Benchmark MATH SATSM.N..SAT MATHSATSI
Reached bourj®untime (seqReached bourj®untime (sed)
bmwlin_20.5_1.inter.bmck100 101 25 101 344
fisherring_20_3.inter.omck100 62 1200 55 120(Q
dist.controller 15_3.inter.bmck100 76| 1200 93 1200
rod_30_3.inter.omck100 101 66) 80 1200
fisherstar20_3.inter.omck100 101 40 101 367
rod_30_3.inter.indk100 27| 1200 45 1200
mwlin_20.5_1.inter.indk100 47 1200 133 1200
fisherstar20_3.inter.indk100 35 1200 65 1200
fisherring_20_3.inter.indk100 33 1200 51 120(Q
dist.controller15_3.inter.indk100 31 1200 69 1200

In order to assess the pluggable SAT solver feature, weexdtdattwo versions
of MATHSATS5 by integrating two external solvérsMiNISAT [19] and Q_EANEL-
ING [17]. The cost of the integration turned out to be very motéerghis supports the
claim that specialised SAT solver could be integrated amdiogbed successfully with a
low initial effort.

Then, we compared these two solvers on the BVUMEM benchmahesresults are
detailed in Table 3. Compared to the version with our natbrees (Table 1), the per-
formance of the version with M SAT is mixed: MATHSAT 5y isar performs slightly
better on three families, but much worse on the brummayerliganily. The version
with CLEANELING instead is inferior to our native solver. In general, SATveo$ and
DPLL(7) SAT enumerators might have different requirements, smibt obvious that
a state-of-the-art SAT solver is always the best choice ibl}F). For example, the
rapid restart policy used by modern SAT solvers might notieelbtest choice in SMT.
Rebuilding the assignment stack after a restart is relgtisieeap in pure SAT; how-
ever, in SMT it can be more expensive, since the theory selstdt need to perform
consistency checks and provide deductions.

We also tested the version with pluggable solver on incréatdenchmarks. Since
CLEANELING does not support solving under assumptions, and thus caencted in-
crementally by M\THSATS5, we compared the performance oAMi SAT5 and MATH-

" The code for the integration (s§4.4) is available from the web page ofaviH SAT5 [29].



SAT5 using MNISAT on the LRA11 benchmarks set (Table 4). These problems are
either bounded model checking (where the benchmark nam@iosribmc”), or k-
induction (name contains “ind”) problems. Interestingynductions checks are much
more efficiently solved by pure MrHSATS5, while the version using MiI SAT handles
bounded model checking instances much more efficiently. Mearrently investigat-
ing the reasons for this difference.

In order to assess the strength oAMHSATS relative to the current state of the art
(e.g. Boolector and Z3) we rely on the results of the 2011 HXPEMT-COMP. The
version of MATHSATS presented in this paper is an extension, with new feafwof
the version which ran in those competitions. Thus the SMTMBOesults are relevant
to this version. The competition results show that in narrémental categories N H-
SATS is generally competitive with other modern SMT solvémghe incremental cat-
egories, it performs extremely well, winning many of therhu$ MATHSAT5 achieves
its goal of being an efficient incremental solver, that sufgpa multitude of logics.

6 Applications

MATHSAT has been and is currently used in many research and riadysbjects.

We have a long-standing collaboration with Intel FV grouplaffa, Israel, within
the Intel- and SRC-funded BOWLING, WOLFLING and WOLF prdjgcin which
MATHSAT has been used as backend engine for formal verificati®T bfdesigns mi-
crocode [22]. In particular, a customized version oA SAT is currently integrated
within the production version of Intel's microcode-verdton suite, MCROFORMAL,
and successfully used inside the company [22]. Anotheriggijin in the verification
of RTL is in the ForSyn [21] tool, where MrHSAT is the decision procedure used for
checking the equivalence between RTL implementations laeid high-level descrip-
tions.

MATHSAT has been used as a backend in an extended version of thd\NuSdel
checker, called NuSMV3 [31]. NuSMV3 is a general synchranextensions to the
publicly available NuSMV2, where MrH SAT is used as a backend for SMT-based ver-
ification techniques. Among these, we mention bounded madukiking, k-induction,
and predicate abstraction. In these applications, theab®MT is to provide a high
level representation of the transition system. Variousfiomalities are exploited, in-
cluding incremental reasoning, unsatisfiable core extmacand interpolation.

The availability of MATHSAT has provided a basis for the extension of NuUSMV
to deal with analysis of hybrid systems. Hybrid systems gmabmlically modeled in
a language called HyDI, and specialized forms of verificafis, 12] strongly rely on
the availability of advanced capabilities ofAviH SAT. In the setting of hybrid systems
verification, MATHSAT also supports the analysis of parametric timed autofiaja

The EuRailCheck project, funded by the European Railwaysnig, relies on the
MATHSAT-based requirements analysis capabilities [16].

The underlying verification capabilities provided by NUSBIgre used in the ESA-
funded projects COMPASS [4], AUTOGEF, FAME, and FOREVER enhcomplex
aerospace systems are modeled in terms of hybrid automata.



MATHSAT is used as a backend for the analysis of temporal reagamder un-
certainty [11], within applications in the ESA-funded prof IRONCAP.

An important class of applications of MHSAT in software model checking. In
particular, MATHSAT is integrated within the CPAchecker [3] and UFO [1] model
checkers for sequential software, and within Kratos [18jcalel checker for sequential
and threaded software. Within this settingabh SAT supports the basic model check-
ing steps (interpolation, predicate discovery, localmatnd post-image computation)
by means of interpolation, unsatisfiable core extractiow, AlISMT. More recently,
MATHSAT has been used as backend for an IC3-based approachwasnfnodel
checking [8], and for parametric analysis of threaded pogyr[14].

7 Conclusions and Future Developments

In this paper we have presented the SMT toddlIMSAT5. In comparison to its pre-
decessor MTHSAT4, substantial improvements have been made: in adddisignif-
icant improvements in efficiency, the key changes includeresion to more theories,
full support for incrementality, an incremental and SMTaae/preprocessor, and sup-
port to plug in third-party SAT solvers.

MATHSAT is a long-term project, and its development is ongoingstFwe plan
a deeper investigation of SMT-aware preprocessing teclesiquith the goal to make
them available within a stand-alone functionality, so tbahake MATHSAT work also
as an effectivéormula simplifier Second, we plan to investigate and implentgranti-
fier eliminationtechniques for some of the theories of interest. We are assidering
to investigate extensions to non-linear arithmetic.

A research direction we are currently pursuing is thadpfimization Modulo The-
ories (OMT) which leverages SMT solving frordecisionto optimizationlevel by
finding models thaminimizesome given cost functions. Our previous work has pro-
duced variants of MTHSAT able to minimize cost functions on the pseudo-Boolean
and L. A(Q) domains respectively [7, 32]. Current and future work irs ttirection in-
cludes the porting of the OMT implementations of [7, 32] ithe official MATHSATS
version, and extensions 0A(Z) and L A(QZ) cost functions.
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