
Efficient Interpolant Generation in Satisfiability Modulo
Linear Integer Arithmetic

Alberto Griggio1 ?, Thi Thieu Hoa Le2, and Roberto Sebastiani2 ??

1 FBK-Irst, Trento, Italy
2 DISI, University of Trento, Italy

Abstract. The problem of computing Craig interpolants in SAT and SMT has re-
cently received a lot of interest, mainly for its applications in formal verification.
Efficient algorithms for interpolant generation have been presented for some the-
ories of interest —including that of equality and uninterpreted functions (EUF),
linear arithmetic over the rationals (LA(Q)), and their combination— and they
are successfully used within model checking tools. For the theory of linear arith-
metic over the integers (LA(Z)), however, the problem of finding an interpolant
is more challenging, and the task of developing efficient interpolant generators
for the full theory LA(Z) is still the objective of ongoing research.
In this paper we try to close this gap. We build on previous work and present
a novel interpolation algorithm for SMT(LA(Z)), which exploits the full power
of current state-of-the-art SMT(LA(Z)) solvers. We demonstrate the potential of
our approach with an extensive experimental evaluation of our implementation of
the proposed algorithm in the MATHSAT SMT solver.

1 Motivations, related work and goals

Given two formulasA andB such thatA∧B is inconsistent, a Craig interpolant (simply
“interpolant” hereafter) for (A,B) is a formula I s.t. A entails I , I ∧B is inconsistent,
and all uninterpreted symbols of I occur in both A and B.

Interpolation in both SAT and SMT has been recognized to be a substantial tool for
formal verification. For instance, in the context of software model checking based on
counter-example-guided-abstraction-refinement (CEGAR) interpolants of quantifier-free
formulas in suitable theories are computed for automatically refining abstractions in
order to rule out spurious counterexamples. Consequently, the problem of computing
interpolants in SMT has received a lot of interest in the last years (e.g., [14, 17, 19, 11,
4, 10, 13, 7, 8, 3, 12]). In the recent years, efficient algorithms and tools for interpolant
generation for quantifier-free formulas in SMT have been presented for some theories
of interest, including that of equality and uninterpreted functions (EUF) [14, 7], linear
arithmetic over the rationals (LA(Q)) [14, 17, 4], and for their combination [19, 17, 4,
8], and they are successfully used within model-checking tools.

For the theory of linear arithmetic over the integers (LA(Z)), however, the prob-
lem of finding an interpolant is more challenging. In fact, it is not always possible to
? Supported by the European Community’s FP7/2007-2013 under grant agreement Marie Curie

FP7 - PCOFUND-GA-2008-226070 “progetto Trentino”, project Adaptation.
?? Supported by SRC under GRC Custom Research Project 2009-TJ-1880 WOLFLING.

obtain quantifier-free interpolants starting from quantifier-free input formulas in the
standard signature of LA(Z) (consisting of Boolean connectives, integer constants and
the symbols +, ·,≤,=) [14]. For instance, there is no quantifier-free interpolant for the
LA(Z)-formulas A def

= (2x− y + 1 = 0) and B def
= (y − 2z = 0).

In order to overcome this problem, different research directions have been explored.
One is to restrict to important fragments of LA(Z) where the problem does not oc-
cur. To this extent, efficient interpolation algorithms for the Difference Logic (DL)
and Unit-Two-Variables-Per-Inequality (UT VPI) fragments of LA(Z) have been pro-
posed in [4]. Another direction is to extend the signature of LA(Z) to contain modular
equalities =c (or, equivalently, divisibility predicates), so that it is possible to compute
quantifier-free LA(Z) interpolants by means of quantifier elimination —which is how-
ever prohibitively expensive in general, both in theory and in practice. For instance,
I

def
= (−y + 1 =2 0) ≡ ∃x.(2x − y + 1 = 0) is an interpolant for the formulas

(A,B) above. Using modular equalities, Jain et al. [10] developed polynomial-time in-
terpolation algorithms for linear equations and their negation and for linear modular
equations. A similar algorithm was also proposed in [13]. The work in [3] was the first
to present an interpolation algorithm for the full LA(Z) (augmented with divisibility
predicates) which was not based on quantifier elimination. Finally, an alternative algo-
rithm, exploiting efficient interpolation procedures for LA(Q) and for linear equations
in LA(Z), has been recently presented in [12].

The obvious limitation of the first research direction is that it does not cover the full
LA(Z). For the second direction, the approaches so far seem to suffer from some draw-
backs. In particular, some of the interpolation rules of [3] might result in an exponential
blow-up in the size of the interpolants wrt. the size of the proofs of unsatisfiability
from which they are generated. The algorithm of [12] avoids this, but at the cost of sig-
nificantly restricting the heuristics commonly used in state-of-the-art SMT solvers for
LA(Z) (e.g. in the framework of [12] both the use of Gomory cuts [18] and of “cuts
from proofs” [5] is not allowed). More in general, the important issue of how to effi-
ciently integrate the presented techniques into a state-of-the-art SMT(LA(Z)) solver is
not immediate to foresee from the papers.

In this paper we try to close this gap. After recalling the necessary background
knowledge (§2), we present our contribution, which is twofold.

First (§3) we show how to extend the state-of-the art LA(Z)-solver of MATHSAT
[9] in order to implement interpolant generation on top of it without affecting its effi-
ciency. To this extent, we combine different algorithms corresponding to the different
submodules of the LA(Z)-solver, so that each of the submodules requires only mi-
nor modifications, and implement them in MATHSAT (MATHSAT-MODEQ hereafter).
An extensive empirical evaluation (§5) shows that MATHSAT-MODEQ outperforms in
efficiency all existing interpolant generators for LA(Z).

Second (§4), we propose a novel and general interpolation algorithm for LA(Z),
independent from the architecture of MATHSAT, which overcomes the drawbacks of
the current approaches. The key idea is to extend both the signature and the domain of
LA(Z): we extend the signature by adding the ceiling function d·e to it, and the domain
by allowing non-variable terms to be non-integers. This greatly simplifies the interpo-
lation procedure, and allows for producing interpolants which are much more compact

than those generated by the algorithm of [3]. Also this novel technique was easily im-
plemented on top of the LA(Z)-solver of MATHSAT without affecting its efficiency.
(We call this implementation MATHSAT-CEIL.) An extensive empirical evaluation (§5)
shows that MATHSAT-CEIL drastically outperforms MATHSAT-MODEQ, and hence
all other existing interpolant generators for LA(Z), for both efficiency and size of the
final interpolant.

2 Background: SMT(LA(Z))

2.1 Generalities

Satisfiability Modulo Theory – SMT. Our setting is standard first order logic. We use
the standard notions of theory, satisfiability, validity, logical consequence. We call Sat-
isfiability Modulo (the) Theory T , SMT(T), the problem of deciding the satisfiability
of quantifier-free formulas wrt. a background theory T . 3 Given a theory T , we write
φ |=T ψ (or simply φ |= ψ) to denote that the formula ψ is a logical consequence of
φ in the theory T . With φ � ψ we denote that all uninterpreted (in T) symbols of φ
appear in ψ. With a little abuse of notation, we might sometimes denote conjunctions
of literals l1 ∧ . . . ∧ ln as sets {l1, . . . , ln} and vice versa. If η is the set {l1, . . . , ln},
we might write ¬η to mean ¬l1 ∨ . . . ∨ ¬ln.

We call T -solver a procedure that decides the consistency of a conjunction of literals
in T . If S is a set of literals in T , we call T -conflict set w.r.t. S any subset η of S which
is inconsistent in T . We call ¬η a T -lemma (notice that ¬η is a T -valid clause).

A standard technique for solving the SMT(T) problem is to integrate a DPLL-based
SAT solver and a T -solver in a lazy manner (see, e.g., [2] for a detailed description).
DPLL is used as an enumerator of truth assignments for the propositional abstraction
of the input formula. At each step, the set of T -literals in the current assignment is sent
to the T -solver to be checked for consistency in T . If S is inconsistent, the T -solver
returns a conflict set η, and the corresponding T -lemma ¬η is added as a blocking
clause in DPLL, and used to drive the backjumping and learning mechanism.

Interpolation in SMT. We consider the SMT(T) problem for some background the-
ory T . Given an ordered pair (A,B) of formulas such that A ∧ B |=T ⊥, a Craig
interpolant (simply “interpolant” hereafter) is a formula I s.t. (i) A |=T I , (ii) I ∧B is
T -inconsistent, and (iii) I � A and I � B.

Following [14], an interpolant for (A,B) in SMT(T) can be generated by com-
bining a propositional interpolation algorithm for the Boolean structure of the formula
A ∧ B with a T -specific interpolation procedure that deals only with negations of T -
lemmas, that is, with T -inconsistent conjunctions of T -literals. Therefore, in the rest of
the paper, we shall consider algorithms for conjunctions/sets of literals only, which can
be extended to general formulas by simply “plugging” them into the algorithm of [14].

3 The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper
we restrict our interest to quantifier-free formulas.

2.2 Efficient SMT(LA(Z)) solving

In this section, we describe our algorithm for efficiently solving SMT(LA(Z)) prob-
lems, as implemented in the MATHSAT 5 SMT solver [9]. They key feature of our
solver is an extensive use of layering and heuristics for combining different known
techniques, in order to exploit the strengths and to overcome the limitations of each of
them. Both the experimental results of [9] and the latest SMT solvers competition SMT-
COMP’10 4 demonstrate that it represents the current state of the art in SMT(LA(Z)).

The architecture of the solver is outlined in Fig. 1. It is organized as a layered
hierarchy of submodules, with cheaper (but less powerful) ones invoked earlier and
more often. The general strategy used for checking the consistency of a set of LA(Z)-
constraints is as follows.

First, the rational relaxation of the problem is checked, using a Simplex-based
LA(Q)-solver similar to that described in [6]. If no conflict is detected, the model
returned by the LA(Q)-solver is examined to check whether all integer variables are
assigned to an integer value. If this happens, the LA(Q)-model is also a LA(Z)-model,
and the solver can return sat.

Internal
Branch and Bound

Branch and Bound
lemmas generator

LA(Z)-solver

3

DPLL

21

2LA(Q)-solver

3no conflict
trail simplifications

4 conflict
5

5

timeout

Branch and Bound-lemma

1
Diophantine

equations handler

4

1

conflict

LA(Z)-conflict

no conflict
equality elimination

no conflict

LA(Z) model

conflict

LA(Z) model

sat

Fig. 1. Architecture of the LA(Z)-solver of MATHSAT.

Otherwise, the spe-
cialized module for han-
dling linear LA(Z) equa-
tions (Diophantine equa-
tions) is invoked. This
module is similar to the
first part of the Omega
test described in [16]:
it takes all the equa-
tions in the input prob-
lem, and tries to elim-
inate them by comput-
ing a parametric solu-
tion of the system and
then substituting each
variable in the inequal-
ities with its parametric
expression. If the system of equations itself is infeasible, this module is also able to
detect the inconsistency.

Otherwise, the inequalities obtained by substituting the variables with their para-
metric expressions are normalized, tightened and then sent to the LA(Q)-solver, in
order to check the LA(Q)-consistency of the new set of constraints.

If no conflict is detected, the branch and bound module is invoked, which tries to
find a LA(Z)-solution via branch and bound [18]. This module is itself divided into
two submodules operating in sequence. First, the “internal” branch and bound mod-
ule is activated, which performs case splits directly within the LA(Z)-solver. The in-
ternal search is performed only for a bounded (and small) number of branches, after

4 http://www.smtcomp.org/2010/

which the “external” branch and bound module is called. This works in cooperation
with the DPLL engine, using the “splitting on-demand” approach of [1]: case splits
are delegated to DPLL, by sending to it LA(Z)-valid clauses of the form (t − c ≤
0) ∨ (−t + c + 1 ≤ 0) (called branch-and-bound lemmas) that encode the required
splits. Such clauses are generated with the “cuts from proofs” algorithm of [5]: “nor-
mal” branch-and-bound steps – splitting cases on an individual variable – are inter-
leaved with “extended” steps, in which branch-and-bound lemmas involve an arbitrary
linear combination of variables, generated by computing proofs of unsatisfiability of
particular systems of Diophantine equations.

3 From LA(Z)-solving to LA(Z)-interpolation

Our objective is that of devising an interpolation algorithm that could be implemented
on top of the LA(Z)-solver described in the previous section without affecting its ef-
ficiency. To this end, we combine different algorithms corresponding to the different
submodules of the LA(Z)-solver, so that each of the submodules requires only minor
modifications.

3.1 Interpolation for Diophantine equations

An interpolation procedure for systems of Diophantine equations was given by Jain et
al. in [10]. The procedure starts from a proof of unsatisfiability expressed as a linear
combination of the input equations whose result is an equation (

∑
cixi + c = 0) in

which the greatest common divisor (GCD) of the coefficients ci of the variables is not
a divisor of the constant term c.

Given a proof of unsatisfiability for a system of equations partitioned into A and
B, let (

∑
xi∈A∩B cixi +

∑
yj 6∈B ajyj + c = 0) be the linear combination of the

equations from A with the coefficients given by the proof of unsatisfiability. Then,
I

def
=

∑
xi∈A∩B cixi+c =g 0, where g is any integer that dividesGCD(aj), is an inter-

polant for (A,B) [10]. Jain et al. show that a proof of unsatisfiability can be obtained
by computing the Hermite Normal Form [18] of the system of equations. However, this
is only one possible way of obtaining such proof. In particular, as shown in [9], the sub-
module of our LA(Z)-solver that deals with Diophantine equations can already produce
proofs of unsatisfiability directly. Therefore, we can apply the interpolation algorithm
of [10] without any modification to the solver.

3.2 Interpolation for inequalities

The second submodule of our LA(Z)-solver checks the LA(Q)-consistency of a set of
inequalities, some of which obtained by substitution and tightening [9]. In this case, we
produce interpolants starting from proofs of unsatisfiability in the cutting-plane proof
system, a complete proof system for LA(Z) [18]. Similarly to previous work on LA(Q)
and LA(Z) [14, 3], we produce interpolants by annotating each step of the proof of
unsatisfiability of A ∧B, such that the annotation for the root of the proof (deriving an
inconsistent inequality (c ≤ 0) with c ∈ Z>0) is an interpolant for (A,B).

Definition 1 (Valid annotated sequent). An annotated sequent is a sequent in the form
(A,B) ` (t ≤ 0)[I] where A and B are conjunctions of equalities and inequalities in
LA(Z), and where I (called annotation) is a set of pairs 〈(ti ≤ 0), Ei〉 in which Ei is a
(possibly empty) conjunction of equalities and modular equalities. It is said to be valid
when:

1. A |=
∨

〈ti≤0,Ei〉∈I((ti ≤ 0) ∧ Ei);
2. For all 〈ti ≤ 0, Ei〉 ∈ I , B ∧Ei |= (t− ti ≤ 0);
3. For every element 〈(ti ≤ 0), Ei〉 of I , ti � A, (t− ti) � B, Ei � A and Ei � B.

Definition 2 (Interpolating Rules). The LA(Z)-interpolating inference rules that we
use are the following:

Hyp-A
(A,B) ` (t ≤ 0)[{〈t ≤ 0,>〉}]

if (t ≤ 0) ∈ A or (t = 0) ∈ A

Hyp-B
(A,B) ` (t ≤ 0)[{〈0 ≤ 0,>〉}]

if (t ≤ 0) ∈ B or (t = 0) ∈ B

Comb
(A,B) ` t1 ≤ 0[I1] (A,B) ` t2 ≤ 0[I2]

(A,B) ` (c1t1 + c2t2 ≤ 0)[I]
where:

– c1, c2 > 0

– I
def
= {〈c1t′1 + c2t

′
2 ≤ 0, E1 ∧ E2〉 | 〈t′1 ≤ 0, E1〉 ∈ I1 and 〈t′2 ≤ 0, E2〉 ∈ I2}

Strengthen
(A,B) `

∑
i cixi + c ≤ 0[{〈t′ ≤ 0,>〉}]

(A,B) `
∑

i cixi + c+ k ≤ 0[I]
where:

– k
def
= d

⌈ c
d

⌉
− c, and d > 0 is an integer that divides all the ci’s;

– I
def
= {〈t′ + j ≤ 0,∃(x 6∈ B).(t′ + j = 0)〉 | 0 ≤ j < k} ∪ {〈t′ + k ≤ 0,>〉};

and
– ∃(x 6∈ B).(t′ + j = 0) denotes the result of the existential elimination from

(t′ + j = 0) of all and only the variables x1, ..., xn not occurring in B.5

Theorem 1. All the interpolating rules preserve the validity of the sequents.

Corollary 1. If we can derive a valid sequent (A,B) ` c ≤ 0[I] with c ∈ Z>0, then
ϕI

def
=

∨
〈ti≤0,Ei〉∈I((ti ≤ 0) ∧Ei) is an interpolant for (A,B).

Notice that the first three rules correspond to the rules for LA(Q) given in [14],
whereas Strengthen is a reformulation of the k-Strengthen rule given in [3]. Moreover,
although the rules without annotations are refutationally complete for LA(Z), in the
above formulation the annotation of Strengthen might prevent its applicability, thus
losing completeness. In particular, it only allows to produce proofs with at most one
strengthening per branch. Such restriction has been put only for simplifying the proofs
of correctness, and it is not present in the original k-Strengthen of [3]. However, for our
purposes this is not a problem, since we use the above rules only in the second submod-
ule of our LA(Z)-solver, which always produces proofs with at most one strengthening
per branch.

5 We recall that ∃(x1, . . . , xn).(
∑

i cixi +
∑

j djyj + c = 0) ≡ (
∑

j djyj + c =GCD(ci) 0),
and that (t =0 0) ≡ (t = 0).

Generating cutting-plane proofs in the LA(Z)-solver. The equality elimination and
tightening step generates new inequalities (t′ + c′ + k ≤ 0) starting from a set of input
equalities {e1 = 0, . . . , en = 0} and an input inequality (t+c ≤ 0). Thanks to its proof-
production capabilities [9], we can extract from the Diophantine equations submodule
the coefficients {c1, . . . , cn} such that (

∑
i ciei + t+ c ≤ 0) ≡ (t′ + c′ ≤ 0). Thus, we

can generate a proof of (t′+ c′ ≤ 0) by using the Comb and Hyp rules. We then use the
Strengthen rule to obtain a proof of (t′ + c′ + k ≤ 0). The new inequalities generated
are then added to the LA(Q)-solver. If a LA(Q)-conflict is found, then, the LA(Q)-
solver produces a LA(Q)-proof of unsatisfiability (as described in [4]) in which some
of the leaves are the new inequalities generated by equality elimination and tightening.
We can then simply replace such leaves with the corresponding cutting-plane proofs to
obtain the desired cutting-plane unsatisfiability proof.

3.3 Interpolation with branch-and-bound

Interpolation via splitting on-demand. In the splitting on-demand approach, the
LA(Z) solver might not always detect the unsatisfiability of a set of constraints by it-
self; rather, it might cooperate with the DPLL solver by asking it to perform some case
splits, by sending to DPLL some additional LA(Z)-lemmas encoding the different case
splits. In our interpolation procedure, we must take this possibility into account.

Let (t − c ≤ 0) ∨ (−t + c + 1 ≤ 0) be a branch-and-bound lemma added to the
DPLL solver by the LA(Z)-solver, using splitting on-demand. If t � A or t � B, then
we can exploit the Boolean interpolation algorithm also for computing interpolants in
the presence of splitting-on-demand lemmas. The key observation is that the lemma
(t− c ≤ 0)∨ (−t+ c+ 1 ≤ 0) is a valid clause in LA(Z). Therefore, we can add it to
any formula without affecting its satisfiability. Thus, if t � A we can treat the lemma
as a clause from A, and if t � B we can treat it as a clause from B.6

Thanks to the observation above, in order to be able to produce interpolants with
splitting on-demand the only thing we need is to make sure that we do not generate
lemmas containingAB-mixed terms.7 This is always the case for “normal” branch-and-
bound lemmas (since they involve only one variable), but this is not true in general for
“extended” branch-and-bound lemmas generated from proofs of unsatisfiability using
the “cuts from proofs” algorithm of [5]. The following example shows one such case.

Example 1. Let A and B be defined as

A
def
= (x− 2y ≤ 0) ∧ (2y − x ≤ 0), B

def
= (x− 2z − 1 ≤ 0) ∧ (2z + 1− x ≤ 0)

When solvingA∧B using extended branch and bound, we might generate the following
AB-mixed lemma: (y − z ≤ 0) ∨ (−y + z + 1 ≤ 0).

Since we want to be able to reuse the Boolean interpolation algorithm also for split-
ting on-demand, we want to avoid generating AB-mixed lemmas. However, we would
still like to exploit the cuts from proofs algorithm of [5] as much as possible. We de-
scribe how we do this in the following.

6 If both t � A and t � B, we are free to choose between the two alternatives.
7 That is, terms t such that t 6� A and t 6� B.

The cuts from proofs algorithm in a nutshell. The core of the cuts from proofs al-
gorithm is the identification of the defining constraints of the current solution of the
rational relaxation of the input set of LA(Z) constraints. A defining constraint is an in-
put constraint

∑
i cixi + c ./ 0 (where ./∈ {≤,=}) such that

∑
i cixi + c evaluates to

zero under the current solution for the rational relaxation of the problem. After having
identified the defining constraints D, the cuts from proofs algorithm checks the satisfia-
bility of the system of Diophantine equationsDE

def
= {

∑
i cixi+c = 0 | (

∑
i cixi+c ./

0) ∈ D}. If DE is unsatisfiable, then it is possible to generate a proof of unsatisfiability
for it. The root of such proof is an equation

∑
i c

′
ixi + c′ = 0 such that the GCD g of

the c′i’s does not divide c′. From such equation, it is generated the extended branch and
bound lemma:

(
∑

i

c′i
g
xi ≤

⌈
−c′i
g

⌉
− 1) ∨ (

⌈
−c′i
g

⌉
≤

∑
i

c′i
g
xi).

Avoiding AB-mixed lemmas. If
∑

i

c′i
g
xi is not AB-mixed, we can generate the

above lemma also when computing interpolants. If
∑

i

c′i
g
xi is AB-mixed, instead,

we generate a different lemma, still exploiting the unsatisfiability of (the equations
corresponding to) the defining constraints. Since DE is unsatisfiable, we know that
the current rational solution µ is not compatible with the current set of defining con-
straints. If the defining constraints were all equations, the submodule for handling Dio-
phantine equations would have detected the conflict. Therefore, there is at least one
defining constraint

∑
i c̄ixi + c̄ ≤ 0. Our idea is that of splitting this constraint into

(
∑

i c̄ixi + c̄+ 1 ≤ 0) and (
∑

i c̄ixi + c̄ = 0), by generating the lemma

¬(
∑

i c̄ixi + c̄ ≤ 0) ∨ (
∑

i c̄ixi + c̄+ 1 ≤ 0) ∨ (
∑

i c̄ixi + c̄ = 0).

In this way, we are either “moving away” from the current bad rational solution µ
(when (

∑
i c̄ixi + c̄ + 1 ≤ 0) is set to true), or we are forcing one more element of

the set of defining constraints to be an equation (when (
∑

i c̄ixi + c̄ = 0) is set to
true): if we repeat the splitting, then, eventually all the defining constraints for the bad
solution µ will be equations, thus allowing the Diophantine equations handler to detect
the conflict without the need of generating more branch-and-bound lemmas. Since the
set of defining constraints is a subset of the input constraints, lemmas generated in this
way will never be AB-mixed.

It should be mentioned that this procedure is very similar to the algorithm used
in the recent work [12] for avoiding the generation of AB-mixed cuts. However, the
criterion used to select which inequality to split and how to split it is different (in [12]
such inequality is selected among those that are violated by the closest integer solution
to the current rational solution). Moreover, we don’t do this systematically, but rather
only if the cuts from proofs algorithm is not able to generate a non-AB-mixed lemma by
itself. In a sense, the approach of [12] is “pessimistic” in that it systematically excludes
certain kinds of cuts, whereas our approach is more “optimistic”.

Interpolation for the internal branch-and-bound module. From the point of view
of interpolation the subdivision of the branch-and-bound module in an “internal” and
an “external” part poses no difficulty. The only difference between the two is that in the
former the case splits are performed by the LA(Z)-solver instead of DPLL. However,
we can still treat such case splits as if they were performed by DPLL, build a Boolean
resolution proof for the LA(Z)-conflicts discovered by the internal branch-and-bound
procedure, and then apply the propositional interpolation algorithm as in the case of
splitting on-demand.

4 A novel general interpolation technique for inequalities

The use of the Strenghen rule allows us to produce interpolants with very little modi-
fications to the LA(Z)-solver (we only need to enable the generation of cutting-plane
proofs), which in turn result in very little overhead at search time. However, the Strengthen
rule might cause a very significant overhead when generating the interpolant from a
proof of unsatisfiability. In fact, even a single Strengthen application results in a disjunc-
tion whose size is proportional to the value of the constant k in the rule. The following
example, taken from [12], illustrates the problem.

Example 2. Consider the following (parametric) interpolation problem [12]:

A
def
= (−y − 2nx− n+ 1 ≤ 0) ∧ (y + 2nx ≤ 0)

B
def
= (−y − 2nz + 1 ≤ 0) ∧ (y + 2nz − n ≤ 0)

where the parameter n is an integer constant greater than 1. Using the rules of §3.2, we
can construct the following annotated cutting-plane proof of unsatisfiability:

y + 2nx ≤ 0
[{〈y + 2nx ≤ 0,>〉}]

−y − 2nz + 1 ≤ 0
[{〈0 ≤ 0,>〉}]

2nx− 2nz + 1 ≤ 0
[{〈y + 2nx ≤ 0,>〉}]

2nx− 2nz + 1 + (2n− 1) ≤ 0

[{〈y + 2nx+ j ≤ 0,
∃x.(y + 2nx+ j = 0)〉 |
0 ≤ j < 2n− 1}∪

{〈y + 2nx+ 2n− 1 ≤ 0,>〉}]

−y − 2nx− n+ 1 ≤ 0
[{〈−y − 2nx− n+ 1 ≤ 0,>〉}]

y + 2nz − n ≤ 0
[{〈0 ≤ 0,>〉}]

−2nx+ 2nz − 2n+ 1 ≤ 0
[{〈−y − 2nx− n+ 1 ≤ 0,>〉}]

1 ≤ 0
[{〈j − n+ 1 ≤ 0,∃x.(y + 2nx+ j = 0)〉 | 0 ≤ j < 2n− 1}∪
{〈(2n− 1)− n+ 1 ≤ 0,>〉}]

By observing that (j − n+ 1 ≤ 0) |= ⊥ when j ≥ n, the generated interpolant is:

(y =2n −n+ 1) ∨ (y =2n −n+ 2) ∨ . . . ∨ (y =2n 0),

whose size is linear in n, and thus exponential wrt. the size of the input problem. In
fact, in [12], it is said that this is the only (up to equivalence) interpolant for (A,B)

that can be obtained by using only interpreted symbols in the signature Σ def
= {=,≤

,+, ·} ∪ Z ∪ {=g |g ∈ Z>0}.

In order to overcome this drawback, we present a novel and very effective way of
computing interpolants in LA(Z), which is inspired by a result by Pudlák [15]. The key
idea is to extend both the signature and the domain of the theory by explicitly introduc-
ing the ceiling function d·e and by allowing non-variable terms to be non-integers.

As in the previous Section, we use the annotated rules Hyp-A, Hyp-B and Comb.
However, in this case the annotations are single inequalities in the form (t ≤ 0) rather
than (possibly large) sets of inequalities and equalities. Moreover, we replace the Strenghten
rule with the equivalent Division rule:

Division

(A,B) `
∑

i aixi +
∑

j cjyj +
∑

k bkzk + c ≤ 0 [
∑

i aixi +
∑

j c
′
jyj + c′ ≤ 0]

(A,B) `
∑

i

ai
d
xi +

∑
j

cj
d
yj +

∑
k

bk
d
zk +

⌈ c
d

⌉
≤ 0 [

∑
i

ai
d
xi +

⌈∑
j c

′
jyj + c′

d

⌉
≤ 0]

where:
– xi 6∈ B, yj ∈ A ∩B, zk 6∈ A
– d > 0 divides all the ai’s, cj’s and bk’s

As before, if we ignore the presence of annotations, the rules Hyp-A, Hyp-B, Comb
and Division form a complete proof systems for LA(Z) [18]. Notice also that all the
rules Hyp-A, Hyp-B, Comb and Division preserve the following invariant: the coeffi-
cients ai of the A-local variables are always the same for the implied inequality and its
annotation. This makes the Division rule always applicable. Therefore, the above rules
can be used to annotate any cutting-plane proof. In particular, this means that our new
technique can be applied also to proofs generated by other LA(Z) techniques used in
modern SMT solvers, such as those based on Gomory cuts or on the Omega test [16].

Definition 3. An annotated sequent (A,B) ` (t ≤ 0)[(t′ ≤ 0)] is valid when:

1. A |= (t′ ≤ 0);
2. B |= (t− t′ ≤ 0);
3. t′ � A and (t− t′) � B.

Theorem 2. All the interpolating rules preserve the validity of the sequents.

Corollary 2. If we can derive a valid sequent (A,B) ` c ≤ 0[t ≤ 0] with c > 0, then
(t ≤ 0) is an interpolant for (A,B).

Example 3. Consider the following interpolation problem:

A
def
= (y = 2x), B

def
= (y = 2z + 1).

The following is an annotated cutting-plane proof of unsatisfiability for A ∧B:

y = 2x

y − 2x ≤ 0[y − 2x ≤ 0]

y = 2z + 1

2z + 1− y ≤ 0[0 ≤ 0]

2z − 2x+ 1 ≤ 0[y − 2x ≤ 0]

z − x+ 1 ≤ 0[−x+
⌈
y
2

⌉
≤ 0]

y = 2x

2x− y ≤ 0
[2x− y ≤ 0]

y = 2z + 1

y − 2z − 1 ≤ 0
[0 ≤ 0]

2x− 2z − 1 ≤ 0[2x− y ≤ 0]

1 ≤ 0[−y + 2
⌈
y
2

⌉
≤ 0]

Then, (−y + 2
⌈y
2

⌉
≤ 0) is an interpolant for (A,B).

Using the ceiling function, we do not incur in any blowup of the size of the gener-
ated interpolant wrt. the size of the proof of unsatisfiability.8 In particular, by using the
ceiling function we might produce interpolants which are up to exponentially smaller
than those generated using modular equations. The intuition is that the use of the ceiling
function in the annotation of the Division rule allows for expressing symbolically the
case distinction that the Strengthen rule of §3.2 was expressing explicitly as a disjunc-
tion of modular equations, which was the source of the exponential blowup.

Example 4. Consider again the parametric interpolation problem of Example 2:

A
def
= (−y − 2nx− n+ 1 ≤ 0) ∧ (y + 2nx ≤ 0)

B
def
= (−y − 2nz + 1 ≤ 0) ∧ (y + 2nz − n ≤ 0)

Using the ceiling function, we can generate the following annotated proof:

y + 2nx ≤ 0
[y + 2nx ≤ 0]

−y − 2nz + 1 ≤ 0
[0 ≤ 0]

2nx− 2nz + 1 ≤ 0
[y + 2nx ≤ 0]

2n · (x− z + 1 ≤ 0)

[x+
⌈

y
2n

⌉
≤ 0]

−y − 2nx− n+ 1 ≤ 0
[−y − 2nx− n+ 1 ≤ 0]

y + 2nz − n ≤ 0
[0 ≤ 0]

−2nx+ 2nz − 2n+ 1 ≤ 0
[−y − 2nx− n+ 1 ≤ 0]

1 ≤ 0 [2n
⌈

y
2n

⌉
− y − n+ 1 ≤ 0]

The interpolant corresponding to such proof is then (2n
⌈ y
2n

⌉
−y−n+1 ≤ 0), whose

size is linear in the size of the input.

Solving and interpolating formulas with ceilings. Any SMT solver supporting LA(Z)
can be easily extended to support formulas containing ceilings. In fact, we notice that
we can eliminate ceiling functions from a formula ϕ with a simple preprocessing step
as follows:

1. Replace every term dtie occurring in ϕ with a fresh integer variable xdtie;
2. Set ϕ to ϕ ∧

∧
i{(xdtie − 1 < ti ≤ xdtie)}.

Moreover, we remark that for using ceilings we must only be able to represent
non-variable terms with rational coefficients, but we don’t need to extend our LA(Z)-
solver to support Mixed Rational/Integer Linear Arithmetic. This is because, after the
elimination of ceilings performed during preprocessing, we can multiply both sides of
the introduced constraints (xdtie − 1 < ti) and (ti ≤ xdtie) by the least common
multiple of the rational coefficients in ti, thus obtaining two LA(Z)-inequalities.

For interpolation, it is enough to preprocess A and B separately, so that the elimi-
nation of ceilings will not introduce variables common to A and B.

8 However, we remark that, in general, cutting-plane proofs of unsatisfiability can be exponen-
tially large wrt. the size of the input problem [18, 15].

IPRINCESS INTERPOLATINGOPENSMT SMTINTERPOL

M
A

T
H

S
A

T
-M

O
D

E
Q

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

M
A

T
H

S
A

T
-C

E
IL

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

Fig. 2. Comparison between MATHSAT and the other LA(Z)-interpolating tools, execution time.

5 Experimental evaluation

The techniques presented in previous sections have been implemented within the MATH-
SAT 5 SMT solver [9]. In this section, we experimentally evaluate our approach.

5.1 Description of the benchmark sets

We have performed our experiments on a subset of the benchmark instances in the
QF LIA (“quantifier-free LA(Z)”) category of the SMT-LIB.9 More specifically, we
have selected the subset of LA(Z)-unsatisfiable instances whose rational relaxation is
(easily) satisfiable, so that LA(Z)-specific interpolation techniques are put under stress.
In order to generate interpolation problems, we have split each of the collected instances
in two parts A and B, by collecting about 40% of the toplevel conjuncts of the instance
to form A, and making sure that A contains some symbols not occurring in B (so that
A is never a “trivial” interpolant). In total, our benchmark set consists of 513 instances.

We have run the experiments on a machine with a 2.6 GHz Intel Xeon processor, 16
GB of RAM and 6 MB of cache, running Debian GNU/Linux 5.0. We have used a time
limit of 1200 seconds and a memory limit of 3 GB.

All the benchmark instances and the executable of MATHSAT used to perform
the experiments are available at http://es.fbk.eu/people/griggio/papers/
tacas11_experiments.tar.bz2

9 http://smtlib.org

IPRINCESS INTERPOLATINGOPENSMT SMTINTERPOL

M
A

T
H

S
A

T
-M

O
D

E
Q

 1

 10

 100

 1 10 100

 1

 10

 100

 1 10 100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

M
A

T
H

S
A

T
-C

E
IL

 1

 10

 100

 1 10 100

 1

 10

 100

 1 10 100

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

Fig. 3. Comparison between MATHSAT and the other LA(Z)-interpolating tools, interpolants
size (measured in number of nodes in the DAG of the interpolant). (See also footnote 13.)

5.2 Comparison with the state-of-the-art tools available

We compare MATHSAT with all the other interpolant generators for LA(Z) which are
available (to the best of our knowledge): IPRINCESS [3],10 INTERPOLATINGOPENSMT
[12],11 and SMTINTERPOL12. We compare not only the execution times for generating
interpolants, but also the size of the generated formulas (measured in terms of number
of nodes in their DAG representation).

For MATHSAT, we use two configurations: MATHSAT-MODEQ, which produces
interpolants with modular equations using the Strengthen rule of §3, and MATHSAT-
CEIL, which uses the ceiling function and the Division rule of §4.

Results on execution times for generating interpolants are reported in Fig. 2. Both
MATHSAT-MODEQ and MATHSAT-CEIL could successfully generate an interpolant
for 478 of the 513 interpolation problems (timing out on the others), whereas IPRINCESS,
INTERPOLATINGOPENSMT and SMTINTERPOL were able to successfully produce an
interpolant in 62, 192 and 217 cases respectively. Therefore, MATHSAT can solve more
than twice as many instances as its closer competitor SMTINTERPOL, and in most cases
with a significantly shorter execution time (Fig. 2).

For the subset of instances which could be solved by at least one other tool, there-
fore, the two configurations of MATHSAT seem to perform equally well. The situation
10 http://www.philipp.ruemmer.org/iprincess.shtml
11 http://www.philipp.ruemmer.org/interpolating-opensmt.shtml
12 http://swt.informatik.uni-freiburg.de/research/tools/
smtinterpol. We are not aware of any publication describing the tool.

Execution Time Interpolants Size Execution Time

M
A

T
H

S
A

T
-C

E
IL

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06 1e+07

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

MATHSAT-MODEQ MATHSAT-MODEQ MATHSAT w/o interpolation
(a) (b)

Fig. 4. (a) Comparison between MATHSAT-MODEQ and MATHSAT-CEIL configurations for in-
terpolation. (b) Execution time overhead for interpolation with MATHSAT-CEIL.

is the same also when we compare the sizes of the produced interpolants, measured
in number of nodes in a DAG representation of formulas. Comparisons on interpolant
size are reported in Fig. 3, which shows that, on average, the interpolants produced by
MATHSAT are comparable to those produced by other tools. In fact, there are some
cases in which SMTINTERPOL produces significantly-smaller interpolants, but we re-
mark that MATHSAT can solve 261 more instances than SMTINTERPOL.13

The differences between MATHSAT-MODEQ and MATHSAT-CEIL become evident
when we compare the two configurations directly. The plots in Fig. 4(a) show that
MATHSAT-CEIL is dramatically superior to MATHSAT-MODEQ, with gaps of up to
two orders of magnitude in execution time, and up to four orders of magnitude in the
size of interpolants. Such differences are solely due to the use of the ceiling function in
the generated interpolants, which prevents the blow-up of the formula wrt. the size of the
proof of unsatisfiability. Since most of the differences between the two configurations
occur in benchmarks that none of the other tools could solve, the advantage of using
ceilings was not visible in Figs. 2 and 3.

Finally, in Fig. 4(b) we compare the execution time of producing interpolants with
MATHSAT-CEIL against the solving time of MATHSAT with interpolation turned off.
The plot shows that the restriction on the kind of extended branch-and-bound lemmas
generated when computing interpolants (see §3.3) can have a significant impact on indi-
vidual benchmarks. However, on average MATHSAT-CEIL is not worse than the “regu-
lar” MATHSAT, and the two can solve the same number of instances, in approximately
the same total execution time.

13 The plots of Fig. 3 show also some apparently-strange outliers in the comparison with INTER-
POLATINGOPENSMT. A closer analysis revealed that those are instances for which INTERPO-
LATINGOPENSMT was able to detect that the inconsistency of A ∧B was due solely to A or
to B, and thus could produce a trivial interpolant ⊥ or >, whereas the proof of unsatisfiability
produced by MATHSAT involved both A and B. An analogous situation is visible also in the
comparison between MATHSAT and SMTINTERPOL, this time in favor of MATHSAT.

6 Conclusions

In this paper, we have presented a novel interpolation algorithm for LA(Z) that al-
lows for producing interpolants from arbitrary cutting-plane proofs without the need of
performing quantifier elimination. We have also shown how to exploit this algorithm,
in combination with other existing techniques, in order to implement an efficient in-
terpolation procedure on top of a state-of-the-art SMT(LA(Z))-solver, with almost no
overhead in search, and with up to orders of magnitude improvements – both in exe-
cution time and in formula size – wrt. existing techniques for computing interpolants
from arbitrary cutting-plane proofs.

References
1. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in SAT Modulo

Theories. In LPAR’06, volume 4246 of LNCS. Springer, 2006.
2. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In

Handbook of Satisfiability, chapter 25. IOS Press, 2009.
3. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An Interpolating Sequent Calculus for

Quantifier-Free Presburger Arithmetic. In IJCAR, volume 6173 of LNCS. Springer, 2010.
4. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Generation of Craig Interpolants in

Satisfiability Modulo Theories. ACM Trans. Comput. Logic, 12(1), October 2010.
5. I. Dillig, T. Dillig, and A. Aiken. Cuts from Proofs: A Complete and Practical Technique for

Solving Linear Inequalities over Integers. In CAV, volume 5643 of LNCS. Springer, 2009.
6. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In CAV’06,

volume 4144 of LNCS. Springer, 2006.
7. A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground interpolation for the theory

of equality. In TACAS’09, volume 5505 of LNCS. Springer, 2009.
8. A. Goel, S. Krstic, and C. Tinelli. Ground Interpolation for Combined Theories. In CADE-

22, volume 5663 of LNCS. Springer, 2009.
9. A. Griggio. A Practical Approach to SMT(LA(Z)). SMT 2010 Workshop, July 2010.

10. H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig Interpolation for Linear Diophantine
(Dis)Equations and Linear Modular Equations. In CAV’08, volume 5123 of LNCS. Springer,
2008.

11. D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In FSE’05. ACM,
2006.

12. D. Kroening, J. Leroux, and P. Rümmer. Interpolating Quantifier-Free Presburger Arith-
metic. In LPAR, 2010. To Appear. Available at http://www.philipp.ruemmer.
org/publications.shtml.

13. C. Lynch and Y. Tang. Interpolants for Linear Arithmetic in SMT. In ATVA’08, volume 5311
of LNCS. Springer, 2008.

14. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1), 2005.
15. P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computa-

tions. J. of Symb. Logic, 62(3), 1997.
16. W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence

analysis. In SC, 1991.
17. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. J. Symb.

Comput., 45(11), 2010.
18. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
19. G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In CADE-

20, volume 3632 of LNCS. Springer, 2005.

