
Incremental Linearization: A practical approach to Satisfiability Modulo
Nonlinear Arithmetic and Transcendental Functions

(Invited Paper)

Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri
Fondazione Bruno Kessler (FBK), Italy

Email: {cimatti, griggio, irfan, roveri}@fbk.eu

Roberto Sebastiani
University of Trento, Italy

Email: roberto.sebastiani@unitn.it

Abstract—Satisfiability Modulo Theories (SMT) is the prob-
lem of deciding the satisfiability of a first-order formula with
respect to some theory or combination of theories. In this
paper, we overview our recent approach called Incremen-
tal Linearization, which successfully tackles the problems of
SMT over the theories of nonlinear arithmetic over the reals
(NRA), nonlinear arithmetic over the integers (NIA) and their
combination, and of NRA augmented with transcendental
(exponential and trigonometric) functions (NTA). Moreover,
we showcase some of the experimental results and outline
interesting future directions.

Keywords-Automated Reasoning; Linear and Nonlinear
Arithmetic; SMT; Transcendental Functions;

I. INTRODUCTION

Satisfiability Modulo Theories (SMT) solvers are used as
automated reasoning engines in various problem areas such
as formal verification. Over the years, there has been a lot
of progress on the efficient techniques for the quantifier-free
theories of linear arithmetic and uninterpreted functions –
many powerful and effective SMT solvers are available for
such theories. Yet, many application domains require more
expressive theories (e.g. aerospace, cyber-physical systems,
and railways). Supporting nonlinear theories and finding
their efficient solving methods, that work well in practice, in
SMT solvers has become a fundamental research problem.
Unfortunately, dealing with nonlinearity is a hard challenge.
Going from linear to nonlinear arithmetic yields a complex-
ity gap that results in a computational barrier in practice – in
the case of the reals, most available complete solvers rely on
Cylindrical Algebraic Decomposition (CAD) techniques [1],
which require double exponential time in worst case; the
problem becomes undecidable [2] (the result of Hilbert’s
10th problem) in the case of the integers. Similarly, the
addition of transcendental functions to the reals has been
shown to be undecidable [3].

Recently, we have proposed a conceptually-simple yet
effective practical approach for dealing with the quantifier-
free theory of nonlinear arithmetic over the reals, over
the reals extended with transcendental functions, and over
integers, called Incremental Linearization [4], [5], [6], [7].
Its underlying idea is that of trading the use of expensive,
exact solvers for nonlinear arithmetic for an abstraction-

refinement loop on top of much less expensive solvers for
linear arithmetic and uninterpreted functions. In this paper,
we give an overview of the approach.

The paper is organized as follows. In II we provide
some background. Then, we present high-level ideas of
incremental linearization for SMT in III. In IV we mention
related work and in V we present some highlights of the ex-
perimental results. Finally, in VI we draw some conclusions
and outline future work directions.

II. BACKGROUND

We assume the standard first-order quantifier-free logical
setting and standard notions of theory, satisfiability, and
logical consequence. We denote formulae with ϕ,ψ, terms
with t, s, variables with x, y, constants with a, b, c, functions
with f, TF, each possibly with subscripts. If X is a set of
variables, we write ϕ(X) to denote the fact that the all the
variables of ϕ are in X . If µ is a model and x is a variable,
we write µ[x] to denote the value of x in µ, and we extend
this notation to terms and formulae in the usual way. If Γ is
a set of formulae, we write

∧
Γ (or simply Γ) to denote the

conjunction of all the formulae in Γ. We abuse the notation
and write t ∈ ϕ to denote that term t occurs in ϕ. abs(t)
stands for ITE(t < 0,−t, t), ITE being the standard if-then-
else term operator. We denote with Z, Q and R the set of
integer, rational and real numbers, respectively.

Satisfiability Modulo Theories: Satisfiability Modulo
Theories (SMT) is the problem of deciding the satisfiability
of a first-order formula with respect to some first-order
theory (T) or combination of first-order theories (T1 ∪ T2).
A formula is satisfiable in T (or T -satisfiable) if it is
satisfiable in a model of T (also written as T -model).
An SMT solver is a decision procedure which solves the
SMT problem. There exist several theories that the modern
SMT solvers support. In this work we are interested in the
following theories: Equality and Uninterpreted Functions,
Linear Arithmetic and Nonlinear Arithmetic over the reals
and over the integers, and in their combinations thereof.
The theory of linear real arithmetic (LRA) [resp. LIA]
is the first-order theory with equality whose atoms are
linear polynomial constraints interpreted over R, whereas
the theory of nonlinear real arithmetic (NRA) [resp. NIA

] is the first-order theory with equality whose atoms are
nonlinear polynomial constraints interpreted over R [resp.
Z]. We denote with UFLRA the combined theory of UF
and LRA, and UFLIA the combined theory of UF and LIA.

Functions over the reals: We assume that we have
continuous and differentiable functions. If f is a univariate
function, we write d

dxf for the first-order derivative of f .
We also write f (i) for the i-th derivative of f , and f ′ and
f ′′ for f (1) for f (2), respectively. Let f be a univariate
function twice differentiable at point c. The concavity of
f at c is the sign of f ′′(c). Let f(x, y) be a bivariate func-
tion. We write d

dxf(x, y) and d
dyf(x, y) for the first-order

partial derivatives of f(x, y) w.r.t. x and y, respectively.
The tangent plane at (a, b) to a bivariate function f(x, y),
denoted with TANPLANEf,a,b(x, y), is defined as follows:
TANPLANEf,a,b(x, y) =̇ f(a, b) + d

dxf(a, b) ∗ (x − a) +
d
dyf(a, b) ∗ (y − b).

Taylor Series and Taylor’s Theorem: Let f(x) be n-
differentiable at a. The Taylor series of f of degree n cen-
tered around a is the polynomial: Pn,f,a(x) =̇

∑n
i=0

f(i)(a)
i! ∗

(x − a)i. The Taylor series centered around zero is also
called Maclaurin series. According to Taylor’s theorem, any
continuous function f(x) that is (n + 1)-differentiable can
be written as the sum of the Taylor series and the remainder
term: f(x) = Pn,f,a(x)+Rn+1,f,a(x), where Rn+1,f,a(x) is
the Lagrange form of the remainder. An upper bound on the
size of the remainder RU

n+1,f,a(x) at a point x can be defined

as: maxc∈[min(a,x),max(a,x)](|f (n+1)(c)|) ∗ |(x−a)
n+1|

(n+1)! . From
this, we obtain a lower- and an upper-bound for f(x), given
by Pn,f,a(x) − RU

n+1,f,a(x) and Pn,f,a(x) + RU
n+1,f,a(x)

respectively. Clearly, the closer is a to x, the tighter the
approximation of f(x) will be.

III. SMT VIA INCREMENTAL LINEARIZATION

We first give the intuition by an example.
Example: Consider the following constraints: x ∗ x +

y ∗ y ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (y ≥ 1.1 ∨ y ≤ −1.1),
which are graphically shown in Figure 1a. We want to check
whether their intersection is nonempty or not. One way
is to use some nonlinear solving method to answer that
question. However, notice that the intersection can be shown
empty by approximating the circle: this can be done by
replacing nonlinear multiplications, i.e., x∗x and y ∗y with
uninterpreted functions f∗(x, x) and f∗(y, y), respectively,
and adding the following linear constraints over the uninter-
preted functions (f∗(x, x) ≥ −2.8 ∗x− 1.96)∧ (f∗(x, x) ≥
−3 ∗ x− 2.25) ∧ (f∗(x, x) ≥ 3.2 ∗ x− 2.56) ∧ (f∗(x, x) ≥
2.6 ∗ x − 1.69) ∧ (f∗(y, y) ≥ 2.4 ∗ y − 1.44) ∧ (f∗(y, y) ≥
−2.8 ∗ y− 1.96)∧ (f∗(y, y) ≥ 2.2 ∗ y− 1.21)∧ (f∗(y, y) ≥
−3∗y−2.25). Clearly, as depicted in Figure 1b the additional
constraints approximate the circle. Therefore, we can answer
the question by solving the linear problem (as shown in
Figure 1c) using some linear method.

We now provide a high-level description of the algorithm
for SMT solving on NTA (and hence NRA) based on incre-
mental linearization, also shown in Figure 2. (We obtain the
procedure for SMT(NIA) by replacing the underlying solver
with SMT(UFLIA).) To simplify the presentation, and when
not explicitly stated otherwise, we often implicitly assume
w.l.o.g. that all multiplications in the input formula ϕ are
either between variables (e.g. x∗y) or between one constant
and one variable (e.g. 3x), and that all transcendental func-
tions in ϕ are applied to variables (e.g., exp(x)). Moreover,
we consider exp, sin and π transcendental functions only.
Other transcendental functions such as log, cos, tan, arcsin,
arccos, arctan can be handled by means of rewriting.

A. High-level Description

The algorithm takes as input a formula ϕ containing
nonlinear constraints with polynomials and transcendental
functions. Then the formula ϕ is abstracted into an over-
approximating formula ϕ̂ over the combined theory of
linear arithmetic and uninterpreted functions (UFLRA). ϕ̂
is the result of replacing each nonlinear term x ∗ y with
f∗(x, y), and each transcendental term TF(x) with fTF(x),
s.t. f∗(.) and fTF(., .) are uninterpreted functions, and the
symbol π with the new symbol π̂. (We remark that, linear
multiplications, like e.g. c ∗ x where c is a constant, are
not replaced.) Then the algorithm enters a loop. At each
iteration, the approximation ϕ̂ ∧

∧
Γ (Γ is empty initially)

of ϕ is solved by an SMT(UFLRA) solver. If the solver
returns SAT then the algorithm tries to lift it to a satisfiability
result for the original formula ϕ, and in the case of an
unsuccessful attempt it refines the approximation by adding
new UFLRA constraints to Γ that rule out spurious solutions.
The process iterates until either the formula ϕ̂∧

∧
Γ is proved

unsatisfiable in SMT(UFLRA), or the UFLRA-satisfiable
result is lifted to a satisfiability result for the original
formula.

B. Spuriousness Check and Abstraction Refinement

The lifting of UFLRA-satisfiability result is formulated as
a SMT(UFLRA) search problem over a constrained version
of ϕ, guided by the current abstract model, either by yielding
a sufficient criterion for concluding the existence of a model
for ϕ, returning that µ̂ is not spurious, or by concluding µ̂ is
spurious. In the later case, µ̂ violates some multiplications,
or some transcendental functions, or both, and the refinement
procedure tries to refine the spurious model µ̂ by adding
UFLRA refinement constraints that rule out µ̂ (and other
spurious solutions). This is performed in two steps: NRA
refinement and NTA refinement.

1) NRA Spuriousness Check and Refinement: To deter-
mine whether µ̂ implies the existence of a NRA-model for
ϕ, one could simply check if µ̂[x] ∗ µ̂[y] = µ̂[f∗(x, y)]
for every multiplication term f∗(x, y) ∈ ϕ̂. However, it is
easy to see that this very simple check succeeds only if the

(a) Is the intersection of the circle and
squares nonempty?

(b) Linear approximation of circle. (c) Linear constraints for solving the prob-
lem.

Figure 1. Linearization Example

Initial
Abstraction

SMT(UFLRA)

Refinement

UNSAT

SAT

ϕ

ϕ̂

SAT, µ̂linear lemmas

UNSAT

µ̂ not spurious

Figure 2. SMT(NTA) via Incremental Linearization

UFLRA solver “guesses” a model that is consistent with
all the nonlinear multiplications. In an infinite and dense
domain like the rationals or the reals, the chances that this
will happen are close to zero in general. In order to detect
satisfiable cases more effectively in the very-likely case in
which µ̂ is spurious, we also want to search for the existence
of an actual model for ϕ “in the surroundings” of µ̂. Our
idea is to extract the truth assignment ψ̂ induced by µ̂ on
the atoms of ϕ̂:

ψ̂ =̇
∧

[Â ∈ atoms(ϕ̂) s.t.µ̂|=Â]

Â ∧
∧

[Â ∈ atoms(ϕ̂) s.t.µ̂6|=Â]

¬Â,

and then to look for another model η̂ for ψ̂. Notice that,
any such model η̂ shares with µ̂ the truth assignment on
the atoms ψ̂, but with different values of the real variables.
Then we conjoin to the truth assignment the multiplication-
line constraints:

ψ̂∗ =̇ ψ̂ ∧∧
f∗(x,y)∈ψ̂

(
(x = µ̂[x] ∧ f∗(x, y) = µ̂[x] ∗ y)∨
(y = µ̂[y] ∧ f∗(x, y) = µ̂[y] ∗ x)

)
.

The main idea is to build an UFLRA underapproximation
ψ̂∗ of the NRA formula ψ, in which all multiplications
are forced to be linear. This idea is demonstrated by the
following example.

Example: Consider the following formula ϕ =̇ x∗y =
10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4). Its abstraction is given by
ϕ̂ =̇ f∗(x, y) = 10∧(2 ≤ x ≤ 4)∧(2 ≤ y ≤ 4). Suppose the
following model µ̂ is returned by the SMT(UFLRA) solver:
µ̂[x] = 2, µ̂[y] = 4, µ̂[f∗(x, y)] = 10. µ̂ is a spurious
interpretation because 2 ∗ 4 6= 10 in NRA. However, using
the search for NRA-model described earlier, we can still find
an NRA-compliant model from the “guesses”, which solves
the following UFLRA-satisfiable formula:

ψ̂∗ =̇ f∗(x, y) = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4)∧
((x = 2 ∧ f∗(x, y) = 2 ∗ y)∨
(y = 4 ∧ f∗(x, y) = 4 ∗ x)).

A possible UFLRA-model µ̂∗ for ϕ̂ is µ̂∗[x] = 5
2 , µ̂

∗[y] =
4, µ̂∗[f∗(x, y)] = 10, that is also compliant with NRA.

If the search for NRA-model fails, then we looks for
UFLRA constraints on multiplication terms in the form
f∗(x, y) occurring in ϕ̂ which are violated by µ̂. We refine
the abstraction by selecting suitable instantiations of given
constraint schemata which prevent spurious assignments to
multiplication terms. We consider the refinement constraint
schemata in Figure 3 (more details can be found in [7]),
where x, xi, y, yi are variables and a, b are generic rational
values.

Example: Consider the case where ϕ contains the mul-
tiplications u1∗w1 and u2∗w2, so that ϕ̂ contains the multi-
plication terms f∗(u1, w1) and f∗(u2, w2). Let µ̂ be a spuri-
ous assignment s.t. µ̂[u1] = 2, µ̂[w1] = 3, µ̂[f∗(u1, w1)] =
7, µ̂[u2] = 3, µ̂[w2] = −4, µ̂[f∗(u2, w2)] = 5. µ̂ violates
the third Zero constraint on f∗(u2, w2), and it violates the
three Monotonicity constraints on 〈f∗(u1, w1), f∗(u2, w2)〉.
Overall, this leads to the addition of the Zero and Mono-

Zero: ∀x, y.((x = 0 ∨ y = 0)↔ f∗(x, y) = 0)

∀x, y.(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))↔ f∗(x, y) > 0)

∀x, y.(((x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0))↔ f∗(x, y) < 0)

Monotonicity: ∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2) ∧ abs(y1) ≤ abs(y2))→ abs(f∗(x1, y1)) ≤ abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) < abs(x2) ∧ abs(y1) ≤ abs(y2) ∧ y2 6= 0)→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

∀x1, y1, x2, y2.((abs(x1) ≤ abs(x2) ∧ abs(y1) < abs(y2) ∧ x2 6= 0)→ abs(f∗(x1, y1)) < abs(f∗(x2, y2)))

Tangent plane: ∀x, y.(f∗(a, y) = a ∗ y ∧ f∗(x, b) = b ∗ x∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ f∗(x, y) < TANPLANE∗,a,b(x, y))∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ f∗(x, y) > TANPLANE∗,a,b(x, y)))

Figure 3. The refinement UFLRA constraint schemata for multiplication.

Zero: ((u2 < 0 ∧ w2 > 0) ∨ (u2 > 0 ∧ w2 < 0))↔ f∗(u2, w2) < 0

Monotonicity: (abs(u1) ≤ abs(u2) ∧ abs(w1) ≤ abs(w2))→ abs(f∗(u1, w1)) ≤ abs(f∗(u2, w2))

(abs(u1) < abs(u2) ∧ abs(w1) ≤ abs(w2) ∧ w2 6= 0)→ abs(f∗(u1, w1)) < abs(f∗(u2, w2))

(abs(u1) ≤ abs(u2) ∧ abs(w1) < abs(w2) ∧ u2 6= 0)→ abs(f∗(u1, w1)) < abs(f∗(u2, w2))

Tangent plane: f∗(2, w1) = 2 ∗ w1

f∗(u1, 3) = 3 ∗ u1
((u1 > 2 ∧ w1 < 3) ∨ (u1 < 2 ∧ w1 > 3))→ f∗(u1, w1) < 3 ∗ u1 + 2 ∗ w1 − 6

((u1 < 2 ∧ w1 < 3) ∨ (u1 > 2 ∧ w1 > 3))→ f∗(u1, w1) > 3 ∗ u1 + 2 ∗ w1 − 6

f∗(3, w2) = 3 ∗ w2

f∗(u2,−4) = −4 ∗ u2
((u2 > 3 ∧ w2 < −4) ∨ (u2 < 3 ∧ w2 > −4))→ f∗(u2, w2) < −4 ∗ u2 + 3 ∗ w2 + 12

((u2 < 3 ∧ w2 < −4) ∨ (u2 > 3 ∧ w2 > −4))→ f∗(u2, w2) > −4 ∗ u2 + 3 ∗ w2 + 12

Figure 4. Top: example of instantiation of constraint schemata for the multiplication terms f∗(u1, w1) and f∗(u2, w2), where µ̂[u1] = 2, µ̂[w1] =
3, µ̂[f∗(u1, w1)] = 7, µ̂[u2] = 3, µ̂[w2] = −4, µ̂[f∗(u2, w2)] = 5.

tonicity constraints, plus the Tangent-plane ones in the points
(2, 3) and (3,−4), which are reported at the top of Figure 4.

2) NTA Spuriousness Check and Refinement: The process
is performed for progressively-improving precision. At each
iteration, first we looks for UFLRA constraints on transcen-
dental terms in the form fTF(x) occurring in ϕ̂ which are
violated by µ̂. These constraints (if any) are added to Γ. If Γ
contains at least one refinement constraint ruling out µ̂, then
the refinement process is completed. If not so, then no result
in either direction was obtained with the current precision.
Then, the current precision is increased and spuriousness
check is invoked again with the improved precision and
search for linear lemmas is performed. The whole process
is iterated until either ϕ is found satisfiable, or some refine-
ment constraint is produced (or the process is terminated
due to resource-budget exhaustion). The NTA-consistency
check of the SMT(UFLRA)-model µ̂ amounts to checking if
µ̂[fTF(x)] = TF(µ̂[x]). In practice, the check cannot be im-
plemented, since transcendental functions at rational points
most often have irrational values (see e.g. [8]), which cannot
be represented in SMT(UFLRA). Therefore, for each term
TF(x) in ϕ, we instead compute two rational values, namely
QL and QU, with the property that QL ≤ TF(µ̂[x]) ≤ QU.

The computation of QL and QU is based on polynomials
computed using Taylor series, according to the given current
precision. This is done by expanding the Maclaurin series of
TF, generating polynomials for the upper and lower bounds
according to Taylor’s theorem, until the requested precision
is met. The two values QL and QU are simply the results of
evaluating the two computed polynomials Pl(x) and Pu(x)
at µ̂[x]. As an additional requirement that will be explained
below, the function also ensures that the concavity of the
Taylor polynomials is the same as that of TF at µ̂[x].

If the value of TF(x) in µ̂ is not included in the in-
terval [QL, QU], we generate (piecewise) linear constraints
that remove the point (µ̂[x], µ̂[TF(x)]) (and possibly many
others) from the graph of fTF, thus refining the abstraction.
First, we attempts to exclude the bad point by invoking basic
lemmas, which instantiates some basic constraint schemata
describing very general properties of the transcendental
function TF under consideration (see [6] for details). These
constraints encode some simple properties of transcendental
functions (such as sign and monotonicity conditions, or
bounds at noteworthy values) via linear relations. If none
of the basic constraints is violated, then two situations are
possible, as illustrated in Figure 5. Let the green line be

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2 2.5 3 3.5 4

p1

p2

tf(x)
Pl(x)
Pu(x)
T(x)

Sl(x), Su(x)

lx ux

Figure 5. Piecewise-linear refinement illustration.

the graph of some transcendental function TF. The points
p1 = (x1, y1) and p2 = (x2, y2), say (1.0,1.0) and (2.2,
0.5), represent transcendental terms that are spurious in the
current assignment µ̂ —that is, p1 = (µ̂[x1], µ̂[fTF(x1)])
and p2 = (µ̂[x2], µ̂[fTF(x2)]), for some x1, x2. In order to
eliminate them, we need to discover linear constraints that
are guaranteed to safely approximate TF. Clearly, a major
role is played by the position of the spurious value µ̂[fTF(x)]
relative to the correct value TF(µ̂[x]), and by the concavity
of TF around the point µ̂[x]. If the concavity is negative
or equal to zero, and the point lies above the function,
then the tangent to the function would be adequate to block
the spurious assignment –and tighten the approximation of
TF. (This is the case for p1.) However, if the concavity is
negative but the point lies below the function, then a tangent
would be not adequate. (This is the case for p2.) For this
reason, secants are required, which are unfortunately not
unique.

The Exponential Function: Since d
dx exp(x) = exp(x),

all the derivatives of exp are positive. The polynomial
Pn,exp,0(x) is given by the Maclaurin series Pn,exp,0(x) =∑n
i=0

xi

i! and behaves differently depending on the sign of x.
Thus, we distinguish three cases for finding the polynomials
Pl(x) and Pu(x):

• Case x = 0: since exp(0) = 1, we have Pl(0) =
Pu(0) = 1;

• Case x < 0: we have that Pn,exp,0(x) < exp(x) if
n is odd, and Pn,exp,0(x) > exp(x) if n is even;
we therefore set Pl(x) = Pn,exp,0(x) and Pu(x) =
Pn+1,exp,0(x) for a suitable n so that the required
precision ε is met;

• Case x > 0: we have that Pn,exp,0(x) < exp(x)

and Pn,exp,0(x) ∗ (1 − xn+1

(n+1)!)
−1 > exp(x) when

(1− xn+1

(n+1)!) > 0, therefore we set Pl(x) = Pn,exp,0(x)

and Pu(x) = Pn,exp,0(x)∗(1− xn+1

(n+1)!)
−1 for a suitable

n.

Since the concavity of exp is always positive, the tangent
refinement will always give lower bounds for exp(x), and
the secant refinement will give upper bounds.

The Sine Function: The correctness of our refinement
procedure relies crucially on being able to compute the
concavity of the transcendental function TF at a given point
c. This is needed in order to know whether a computed
tangent or secant line constitutes a valid upper or lower
bound for TF around c (see Figure 5). In the case of the
sin function, computing the concavity at an arbitrary point c
is problematic, since this essentially amounts to computing
the value c′ ∈ [−π, π) s.t. c = 2πn+ c′ for some integer n,
because in [−π, π) the concavity of sin(c′) is the opposite
of the sign of c′. This is not easy to compute because π is
a transcendental number. In order to solve this problem, we
exploit another property of sin, namely its periodicity (with
period 2π). More precisely, we split the reasoning about
sin depending on two kinds of periods: base period, with
argument from −π to π, and extended period. For each
sin(x) term we introduce an “artificial” sin term sin(ωx),
where ωx is a fresh variable called base variable. Base
variables are constrained to be interpreted over the base
period, where the sin value for the corresponding variable
in the extended period is computed. This is done by adding
the following constraint during formula preprocessing:∧
sin(x)∈ϕ

(
−π ≤ ωx < π ∧ sin(x) = sin(ωx)) ∧
((−π ≤ x < π)→ x = ωx)

)
.

The first conjunct constrains ωx to the base period. The
second conjunct constrains sin(x) to have the same value as
sin(ωx). The third conjunct states that if x is interpreted in
the base period then it has the same value as its base variable.
In order to reason about the irrational π, we introduce a
variable π̂, and add the constraint lπ < π̂ < uπ to ϕ.
lπ and uπ are valid rational lower and upper bounds for
the actual value of π that can be computed with various
methods. Then, for each term fsin(ωx) that needs to be
refined, we first check whether µ̂[ωx] ∈ [−lπ, lπ], where
lπ is the current lower bound for π̂. If this is the case, then
we derive the concavity of sin at µ̂[ωx] by just looking at the
sign of µ̂[ωx]. We can therefore perform tangent or secant
refinement. More precisely, we finds the lower and upper
polynomials using Taylor’s theorem, which ensures that
Pn,sin,0(ωx) − RU

n+1,sin,0(ωx) ≤ sin(ωx) ≤ Pn,sin,0(ωx) +

RU
n+1,sin,0(ωx) where Pn,sin,0(ωx) =

∑n
k=0

(−1)k∗ω2k+1
x

(2k+1)!

and RU
n+1,sin,0(ωx) =

ω2(n+1)
x

(2(n+1))! . We set Pl(x) =

Pn,sin,0(x) − RU
n+1,sin,0(x) and Pu(x) = Pn,sin,0(x) +

RU
n+1,sin,0(x). Under the above hypothesis that µ̂[ωx] ∈

[−lπ, lπ], if µ̂[ωx] ≥ 0, then the validity interval is [0, π̂),
otherwise, it is [−π̂, 0].

The remaining case to discuss is when the value of ωx in
µ̂ is not within the interval [−lπ, lπ]. In this case, we cannot
reliably compute the concavity of sin at µ̂[ωx]. Therefore,
instead of performing a tangent/secant refinement, we refine
the precision of π̂ by computing a tighter interval (l′π, u

′
π)

for it, using Machin’s formula [9].

Example: In order to rule out a spurious interpretation
µ̂[x] = 2.0, µ̂[fexp(x)] = 3.0 (where fexp(x) is the
abstraction of the exponential function) we may exploit the
positive concavity of exp(x) and obtain a linear lower-bound
constraint, e.g. fexp(x) > 155

21 + 331
45 ∗ (x − 2). Notice

that, exp(2.0) u 7.389, 155
21 u 7.381 / exp(2.0), and

331
45 u 7, 356 / d

dxexp(2.0). These values are such that
the above linear constraint “approximates” the tangent of
exp(x) in x = 2, since it always lower-bounds exp(x) and
its value and derivative are very near to those of exp(x) for
x = 2.0.

Remark: It is important to notice that we describe the
refinement strategy which is currently implemented, which
is only one of the many alternative strategies by which
refinement can be performed. Moreover, we skipped the
method to conclude the existence of an NTA-model, the
details can be found in [6].

IV. RELATED WORK

Various techniques have been explored for nonlinear SMT
solving, that include: quantifier elimination methods like
cylindrical algebraic decomposition (CAD) [1] and virtual
substitution (VS) [10] for NRA (adopted by the solvers:
SMT-RAT [11], Z3 [12] and YICES [13]); methods based
on interval constraint propagation (ICP) [14] (implemented
in the RASAT [15] solver for NRA, and ISAT3 [16] and
DREAL [17] for NTA); linearization techniques [18], [19],
[20], [21] for NRA and NIA (implemented in CVC4 [22]);
and bit-blasting approaches [23], [24] (Z3 and SMT-RAT)
and a combination of SMT(NRA) solving techniques with
branch and bound [25] and [26] (YICES and SMT-RAT)
for NIA. Moreover, in the context of theorem proving,
two remarkable deductive methods are described in [27]
(METITARSKI [27]) and in [28] for NTA.

V. EXPERIMENTAL EVALUATION

The incremental linearization procedure has been im-
plemented within the MATHSAT SMT solver [29]. The
GMP arbitrary-precision library is used to represent rational
numbers. For the evaluation, we compared MATHSAT with
various SMT solvers. The experiments were run on a cluster
of identical machines equipped with 2.6GHz Intel Xeon
X5650 processors. The memory limit was set to 6 GB and
1000 seconds for the time limit. We present the results using
survival plots and briefly discuss them. (For more detailed
results and discussion, we refer to [30].) In the plots, by
VIRTUALBEST we mean the results of a virtual portfolio
solver that performs on each benchmark as the best of the
solvers in the portfolio.

A. Other Approaches

For SMT(NRA), we considered Z3, YICES, and SMT-
RAT, which implement expensive techniques based on
variants of CAD, and ISAT3 and DREAL, based on ICP.

For SMT(NIA), we considered Z3 and SMT-RAT which
are based on the bit-blasting approach, YICES which uses
CAD together with the branch-and-bound technique. We
also considered the recent version of CVC4 for SMT(NRA)
and SMT(NIA) that, as discussed in [20], is an indepen-
dent implementation of our incremental linearization ap-
proach. For SMT(NTA), we considered ISAT3, DREAL and
METITARSKI, that implements a deductive approach.

B. Benchmarks

For the experimental evaluation on SMT we selected the
following benchmarks. For NRA and NIA, we used all
the SMT-LIB [31] benchmarks from the QF-NRA and QF-
NIA categories, respectively. The QF-NRA class contains
11354 benchmarks the QF-NIA category contains 23876
benchmarks. Since SMT(NTA) is not standardized in SMT-
LIB, for NTA we adopted an extended version of SMT-LIB
including special function symbols for sin, exp and π. We
collected and encoded SMT(NTA) benchmarks from various
sources, for a total of 2512 benchmarks. ISAT3 requires
that each variable is constrained to some interval. Therefore,
we used a very large bound (allowed by ISAT3) for each
variable in the NRA benchmarks. However, it also requires
the intervals to be small when there are transcendental
functions. In this case we generated scaled-down versions
of the NTA benchmarks, by adding bound constraints that
force all the real variables in the problem to assume values
in the [−300, 300] interval.

C. Results

1) SMT(NRA): The results are shown in Figure 6. MATH-
SAT (and also CVC4, that basically implements the same
technique) demonstrates very good performance. Overall,
MATHSAT solves 8852 benchmarks (behind Z3 with 9922
and YICES 9874). Interestingly, incremental linearization is
highly complementary with respect to the more expensive
techniques implemented in Z3, YICES and SMT-RAT.
MATHSAT is able to solve 317 benchmarks that cannot be
solved by other solvers (with the exception of CVC4).

2) SMT(NIA): The results are shown in Figure 7. MATH-
SAT solves the highest number of satisfiable and unsatisfi-
able instances. It solves a total of 16716 problems; the clos-
est to MATHSAT is YICES which solves 15785 problems.
Z3, SMT-RAT, and CVC4 are able to solve less than 10000
benchmarks. Notice that YICES implements a combination
of expensive NRA quantifier elimination (CAD) and branch-
and-bound technique, while Z3 and SMT-RAT rely on
bit-blasting, and CVC4 is using a variant of incremental
linearization. The difference between MATHSAT and VIR-
TUALBEST is around 2000 instances; that suggests some
complementarity among the approaches.

3) SMT(NTA): The results are shown in Figure 8 and
Figure 9. We can see that MATHSAT is able to solve
more benchmarks than DREAL and ISAT3. METITARSKI

 0

 2000

 4000

 6000

 8000

 10000

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NRA) -- SAT+UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

Figure 6. Survival plots for SMT(NRA) benchmarks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NIA) -- SAT+UNSAT Benchmarks

MathSAT
CVC4

Z3
Yices

SMT-RAT
virtual-best

Figure 7. Survival plots for SMT(NIA) benchmarks

is unable to deal with benchmarks involving Boolean com-
binations, and thus could not be over all the benchmarks.
Similarly to the case of SMT(NRA), DREAL is able to solve
only unsatisfiable benchmarks, and returns MAYBESAT in
many situations that are in fact unsatisfiable. If we consider
the scaled-down case, ISAT3 demonstrates better perfor-
mance than DREAL, being able to prove more satisfiable
benchmarks. Overall, however, it is still behind MATHSAT.

VI. CONCLUSION

We have overviewed incremental linearization, which
we have proposed as a general framework for automated
reasoning about nonlinear polynomials and transcendental
functions such as exponentiation and trigonometric func-
tions. The approach has been implemented inside the MATH-
SAT SMT solver. The experimental results show the merits
of incremental linearization. The technique is surprisingly
effective, even compared to other complete (when available)
and more mature approaches. Moreover, in [4], [6], we have
successfully applied it to the verification of invariant proper-
ties of infinite transition systems with nonlinear constraints
(the approach has been implemented within the NUXMV
model checker [32]).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NTA) -- SAT+UNSAT Benchmarks

MathSAT
dReal

MetiTarski
virtual-best

Figure 8. Survival plots for SMT(NTA) – unbounded benchmarks

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NTA) -- SAT+UNSAT Benchmarks (Bounded)

MathSAT
iSAT3
dReal

virtual-best

Figure 9. Survival plots for SMT(NTA) – bounded benchmarks

This work opens a number of research directions. Incre-
mental linearization is clearly an incomplete technique in
general for nonlinear problems, nevertheless, it would be
interesting to identify subclasses of nonlinear problems for
which incremental linearization is (theoretically) complete.
To further improve efficiency, we would like to investigate
the integration of incremental linearization with complemen-
tary techniques, such as ICP or CAD. Since most state-
of-the-art SMT solvers for UF and LA can compute inter-
polants [33], extending incremental linearization to compute
interpolants would be an exciting direction. Another appli-
cation of incremental linearization would be in the case of
Optimization Modulo Theories (OMT) [34] problems w.r.t.
NRA, NTA, and NIA.

REFERENCES

[1] G. E. Collins, “Quantifier elimination for real closed fields by
cylindrical algebraic decomposition-preliminary report,” ACM
SIGSAM Bulletin, vol. 8, no. 3, pp. 80–90, 1974.

[2] Y. V. Matiyasevich, Hilbert’s Tenth Problem, ser. Foundations
of computing. MIT Press, 1993.

[3] D. Richardson, “Some undecidable problems involving ele-
mentary functions of a real variable,” J. Symb. Log., vol. 33,
no. 4, pp. 514–520, 1968.

[4] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani,
“Invariant checking of NRA transition systems via incremen-
tal reduction to LRA with EUF,” in TACAS, ser. LNCS, vol.
10205, 2017, pp. 58–75.

[5] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani,
“Satisfiability modulo transcendental functions via incremen-
tal linearization,” in CADE, ser. Lecture Notes in Computer
Science, vol. 10395. Springer, 2017, pp. 95–113.

[6] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani,
“Incremental linearization for satisfiability and verification
modulo nonlinear arithmetic and transcendental functions,”
ACM TOCL, vol. 19, pp. 19:1–19:52, 2018.

[7] A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani,
“Experimenting on solving nonlinear integer arithmetic with
incremental linearization,” in SAT, ser. LNCS. Springer,
2018, pp. 383–398.

[8] I. Niven, Numbers: Rational and Irrational. Mathematical
Association of America, 1961.

[9] J. Berggren, J. Borwein, and P. Borwein, Pi: A Source Book.
Springer New York, 2013.

[10] V. Weispfenning, “Quantifier elimination for real algebra -
the quadratic case and beyond,” Appl. Algebra Eng. Commun.
Comput., vol. 8, no. 2, pp. 85–101, 1997.

[11] F. Corzilius, G. Kremer, S. Junges, S. Schupp, and
E. Ábrahám, “SMT-RAT: an open source C++ toolbox for
strategic and parallel SMT solving,” in SAT, ser. LNCS, vol.
9340. Springer, 2015, pp. 360–368.

[12] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT
solver,” in TACAS, ser. LNCS, vol. 4963. Springer, 2008,
pp. 337–340.

[13] B. Dutertre, “Yices 2.2,” in CAV, ser. LNCS, vol. 8559.
Springer, 2014, pp. 737–744.

[14] F. Benhamou and L. Granvilliers, “Continuous and interval
constraints,” in Handbook of Constraint Programming. El-
sevier, 2006, vol. 2, pp. 571–603.

[15] V. X. Tung, T. V. Khanh, and M. Ogawa, “raSAT: An SMT
solver for polynomial constraints,” in IJCAR, ser. LNCS, vol.
9706. Springer, 2016, pp. 228–237.

[16] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert,
“Efficient solving of large non-linear arithmetic constraint
systems with complex boolean structure,” JSAT, vol. 1, no.
3-4, pp. 209–236, 2007.

[17] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver
for nonlinear theories over the reals,” in CADE-24, ser. LNCS,
vol. 7898. Springer, 2013, pp. 208–214.

[18] P. Fontaine, M. Ogawa, T. Sturm, and X. Vu, “Subtropical
satisfiability,” in FroCoS, ser. LNCS, vol. 10483. Springer,
2017, pp. 189–206.

[19] A. Maréchal, A. Fouilhé, T. King, D. Monniaux, and M. Périn,
“Polyhedral approximation of multivariate polynomials using
Handelman’s Theorem,” in VMCAI, ser. LNCS, vol. 9583.
Springer, 2016, pp. 166–184.

[20] A. Reynolds, C. Tinelli, D. Jovanovic, and C. Barrett, “De-
signing theory solvers with extensions,” in FroCoS, ser.
LNCS, vol. 10483. Springer, 2017.

[21] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell,
and A. Rubio, “SAT modulo linear arithmetic for solving
polynomial constraints,” JAR, vol. 48, pp. 107–131, 2012.

[22] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-
vanovic, T. King, A. Reynolds, and C. Tinelli, “CVC4,” in
CAV, ser. LNCS, vol. 6806. Springer, 2011, pp. 171–177.

[23] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp,
R. Thiemann, and H. Zankl, “SAT solving for termination
analysis with polynomial interpretations,” in SAT, ser. LNCS.
Springer, 2007, pp. 340–354.

[24] H. Zankl and A. Middeldorp, “Satisfiability of non-linear
(ir)rational arithmetic,” in LPAR-16, 2010, Revised Selected
Papers, 2010, pp. 481–500.

[25] D. Jovanovic, “Solving nonlinear integer arithmetic with
MCSAT,” in VMCAI 2017, Proceedings, ser. LNCS, vol.
10145. Springer, 2017, pp. 330–346.

[26] G. Kremer, F. Corzilius, and E. Ábrahám, “A generalised
branch-and-bound approach and its application in SAT mod-
ulo nonlinear integer arithmetic,” in CASC 2016, Proceedings,
ser. LNCS, vol. 9890. Springer, 2016, pp. 315–335.

[27] B. Akbarpour and L. C. Paulson, “MetiTarski: An automatic
theorem prover for real-valued special functions,” J. Autom.
Reasoning, vol. 44, no. 3, pp. 175–205, 2010.

[28] A. Eggers, E. Kruglov, S. Kupferschmid, K. Scheibler,
T. Teige, and C. Weidenbach, “Superposition modulo non-
linear arithmetic,” in FroCoS, ser. LNCS, vol. 6989. Springer,
2011, pp. 119–134.

[29] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani,
“The MathSAT5 SMT Solver,” in TACAS, ser. LNCS, vol.
7795. Springer, 2013, pp. 93–107.

[30] A. Irfan, “Incremental linearization for satisfiability and
verification modulo nonlinear arithmetic and transcendental
functions,” Ph.D. dissertation, University of Trento,
2018. [Online]. Available: http://es-static.fbk.eu/people/irfan/
papers/thesis.pdf

[31] C. Barrett, P. Fontaine, and C. Tinelli, “The
Satisfiability Modulo Theories Library (SMT-LIB),”
www.SMT-LIB.org, 2016.

[32] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti,
A. Micheli, S. Mover, M. Roveri, and S. Tonetta, “The nuXmv
symbolic model checker,” in CAV, ser. LNCS, vol. 8559.
Springer, 2014, pp. 334–342.

[33] A. Cimatti, A. Griggio, and R. Sebastiani, “Efficient gener-
ation of Craig interpolants in satisfiability modulo theories,”
ACM TOCL, vol. 12, pp. 7:1–7:54, 2010.

[34] R. Sebastiani and S. Tomasi, “Optimization modulo theories
with linear rational costs,” ACM TOCL, vol. 16, no. 2, pp.
12:1–12:43, 2015.

