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Abstract. We present a novel approach for enumerating partial models
of a propositional formula, inspired by how theory solvers and the SAT
solver interact in lazy SMT. Using various forms of dual reasoning allows
our CDCL-based algorithm to enumerate partial models with no need
for exploring and shrinking full models. Our focus is on model enumer-
ation without repetition, with potential applications in weighted model
counting and weighted model integration for probabilistic inference over
Boolean and hybrid domains. Chronological backtracking renders the use
of blocking clauses obsolete. We provide a formalization and examples.
We further discuss important design choices for a future implementation
related to the strength of dual reasoning, including unit propagation,
using SAT or QBF oracles.

1 Introduction

Model enumeration is a key task in various activities, such as lazy Satisfiability
Modulo Theories [29], predicate abstraction [13], software product line engineer-
ing [7], model checking [2,18,31], and preimage computation [14,30].

Whereas in some applications enumerating models multiple times causes no
harm, in others avoiding repetitions is crucial. Examples are weighted model
counting (WMC) for probabilistic reasoning in Boolean domains and weighted
model integration (WMI), which generalizes WMC for hybrid domains [22,23].
There, the addends are partial satisfying assignments, i.e., some variables remain
unassigned. Each of these assignments represents a set of total assignments, and
consequently, the number of the addends is reduced. A formula might be rep-
resented in a concise manner by the disjunction of its pairwise contradicting
partial models, which is of interest in digital circuit synthesis [1]. Partial models
are relevant also in predicate abstraction [13], preimage computation [14,30],
and existential quantification [4]. They can be obtained by shrinking total mod-
els [32]. Alternatively, dual reasoning, where the formula is considered together
with its negation, allows for pruning the search space early and detecting partial
models. It is also applied in the context of model counting [3,19].

If only a subset X of the variables is significant, the models are projected onto
these relevant variables. We say that we existentially quantify the formula over
the irrelevant variables Y and write ∃Y [F (X,Y ) ], where F (X,Y ) is a formula
over variables X and Y such that X ∩ Y = ∅. Projected model enumeration
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occurs in automotive configuration [34], existential quantifier elimination [4],
image computation [9,10], predicate abstraction [13], and bounded model check-
ing [31].

To avoid finding models multiple times, blocking clauses might be added to
the formula under consideration [11,18]. This method suffers from a potentially
exponential blowup of the formula and consequent slowdown of unit propagation.
Toda and Soh [33] address this issue by a variant of conflict analysis, which is
motivated by Gebser et al. [8] and is exempt from blocking clauses. Chronological
backtracking in Grumberg et al. [9] and our previous work [21] ensures that the
search space is traversed in a systematic manner, similarly to DPLL [5], and the
use of blocking clauses is avoided. Whenever a model is found, the last (relevant)
decision literal is flipped. No clause asserting this flipped decision is added, which
might cause problems during later conflict analysis. This problem is addressed
by modifying the implication graph [9] or by an alternative first UIP scheme [33].
Our contribution. We lift the way how theory and SAT solver interact in SMT
to propositional projected model enumeration without repetition. Based on the
notion of logical entailment, combined with dual reasoning, our algorithm detects
partial models in a forward manner, rendering model shrinking superfluous. The
test for entailment is crucial in our algorithm. Anticipating a future implementa-
tion, we present it in four flavors with different strengths together with examples.
The main enumeration engine uses chronological CDCL [25], is exempt from
blocking clauses, and thus does not suffer from a formula blowup. Its projection
capabilities make it suitable also for applications requiring model enumeration
with projection. We conclude our presentation by a formalization of our algo-
rithm and a discussion of the presented approach. Our work is motivated by
projected model counting and weighted model integration. We therefore focus on
(projected) model enumeration without repetition. Contrarily to Oztok and Dar-
wiche [26], we use an oracle and build a Disjoint Sum-of-Products (DSOP) [1].
The work by Lagniez and Marquis [12] is orthogonal to ours. It is led by a dis-
junctive decomposition of the formula under consideration after a full model is
found and also decomposes it into disjoint connected components.

2 Preliminaries

A literal � is a variable v or its negation ¬v. We denote by V (�) the variable
of � and extend this notation to sets and sequences of literals. We write � for
the complement of �, i.e., � = ¬�, defining ¬¬� = �. A formula in conjunctive
normal form (CNF) over variables V is defined as a conjunction of clauses, which
are disjunctions of literals with variable in V , whereas a formula in disjunctive
normal form (DNF) is a disjunction of cubes, which are conjunctions of literals.
We might interpret formulae, clauses, and cubes also as sets of clauses or cubes,
and literals and write C ∈ F for referring to a clause or cube C in a formula F
and � ∈ C where � is a literal in C. The empty CNF formula and the empty
cube are denoted by 1, the empty DNF formula and the empty clause by 0.
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A total assignment is a mapping from the set of variables V to the truth
values 1 (true) and 0 (false). A trail I = �1 . . . �n is a non-contradictory sequence
of literals, which might also be interpreted as a (possibly partial) assignment,
where I(�) = 1 if � ∈ I and I(�) = 0 if ¬� ∈ I. We denote the empty trail by ε
and the set of variables of the literals on I by V (I). Trails and literals might
be concatenated, written I = JK and I = J�, provided V (J) ∩ V (K) = ∅ and
V (J) ∩ V (�) = ∅. We interpret I also as a set of literals and write � ∈ I to
denote a literal � on I. The residual of a formula F under a trail I, written F |I ,
is obtained by replacing the literals � in F , where V (�) ∈ V (I), by their truth
value, and by recursively propagating truth values through Boolean connectives.
In particular, for a CNF formula this consists in removing satisfied clauses as
well as falsified literals. By “=” in F |I = 1 and F |I = 0, notably by omitting
quantifiers, we explicitly mean syntactical equality and consider the (possibly
partial) assignment represented by I, i.e., only the literals on I. The notion of
residual is extended similarly to clauses and literals. We denote by X − I the
unassigned variables in X. By π(I,X) we refer to the projection of I onto X
and extend this notation to sets of literals.

The decision level function δ : V �→ N ∪ {∞} returns the decision level of a
variable v. If v is unassigned, we have δ(v) = ∞, and δ is updated whenever v
is assigned or unassigned. We define δ(�) = δ(V (�)) for a literal �, δ(C) =
max{δ(�) | � ∈ C} for a clause C 
= 0, and δ(I) = max{δ(�) | � ∈ I} for
a sequence of literals I 
= ε. Further, δ(L) = max{δ(�) | � ∈ L} for a set of
literals L 
= ∅. We define δ(0) = δ(ε) = δ(∅) = 0. The updated function δ,
in which V (�) is assigned to decision level d, is denoted by δ[� �→ d]. If all
literals in V are unassigned, we write δ[V �→ ∞] or δ ≡ ∞. The function δ is
left-associative, i.e., δ[I �→ ∞][� �→ d] first unassigns all literals on I and then
assigns literal � to decision level d. We mark the decision literals on I by a
superscript, i.e., �d, and denote the set consisting of the decision literals on I by
decs(I) = {� | �d ∈ I}. Similarly, we denote the set of unit literals in F or its
residual under I by units(F ) or units(F |I). Trails are partitioned into decision
levels, and I�n is the subsequence of I consisting of all literals � where δ(�) � n.

Following Sebastiani [28], we say that a (partial) assignment I entails a
formula F , if all total extensions of I satisfy F . In this work it was noticed
that, if I entails F , we can not conclude that F |I = 1, but only that F |I is
valid. Consider as an example F = (x ∧ y) ∨ (x ∧ ¬y) over variables X = {x}
and Y = {y} and the trail I = x ranging over X ∪ Y . The possible extensions
of I are I ′ = xy and I ′′ = x¬y. We have F |I′ = F |I′′ = 1, therefore I entails F .
Notice that F |I = y ∨ ¬y is valid but it syntactically differs from 1.

3 Early Pruning for Projected Model Enumeration

Our approach is inspired by how theory solvers and the SAT solver interact in
lazy SMT. A general schema is described in Fig. 1. Let F (X,Y ) be a formula
over relevant variables X and irrelevant variables Y such that X ∩Y = ∅. A SAT
solver executes enumeration, either DPLL-based [5,6] or CDCL-based [17,24],
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Input: formula F (X, Y ) over variables X ∪ Y such that X ∩ Y = ∅,
trail I, decision level function δ

Output: DNF M consisting of models of F projected onto X

Enumerate (F )
1 I := ε // empty trail
2 δ := ∞ // unassign all variables
3 M := 0 // empty DNF
4 forever do
5 C := PropagateUnits (F , I, δ )
6 if C �= 0 then // conflict
7 c := δ(C) // conflict level
8 if c = 0 then
9 return M

10 AnalyzeConflict (F , I, C, c )
11 else if all variables in X ∪ Y are assigned then // I is total model
12 if V (decs(I)) ∩ X = ∅ then // no relevant decision left
13 return M ∨ π(I, X) // record I projected onto X
14 M := M ∨ π(I, X)
15 b := δ(decs(π(I, X))) // highest relevant decision level
16 Backtrack ( I, b − 1 ) // flip last relevant decision
17 else if Entails ( I, F ) then // I is partial model
18 if V (decs(I)) ∩ X = ∅ then // no relevant decision left
19 return M ∨ π(I, X) // record I projected onto X
20 M := M ∨ π(I, X)
21 b := δ(decs(π(I, X))) // highest relevant decision level
22 Backtrack ( I, b − 1 ) // flip last relevant decision
23 else
24 Decide ( I, δ )

Fig. 1. Early pruning for projected model enumeration. Lines 1–16 and 23–24 list
CDCL-based model enumeration with chronological backtracking. If after unit propa-
gation no conflict occurs and not all variables are assigned, an oracle might be called
to check whether I entails F (line 17). If Entails returns 1, the relevant decision literal
with highest decision level might be flipped. Otherwise, a decision is taken (line 24).
Notice that lines 12–16 and lines 18–22 are identical.

on F , maintaining a trail I over variables X ∪ Y . In lines 1–16 and 23–24, we
consider the CDCL-based enumeration engine with chronological backtracking
of our framework [21]. Now assume unit propagation has been carried out until
completion, no conflict occurred and there are still unassigned variables (line 17).
The trail I already might entail F , although F |I 
= 1. We can check whether I
entails F by an incremental call to an “oracle” [16] Entails on I and F . If Entails
returns 1, then the procedure does not need to test any total extension of I, since
all of them are models of F . It can proceed and flip the relevant decision literal
with highest decision level (line 21–22). If Entails returns 0, a decision needs to
be taken (line 24). Notice that lines 12–16 and lines 18–22 are identical. Our
method is based on chronological backtracking and follows the scheme in our
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framework [21], the functions PropagateUnits() and AnalyzeConflict() are taken
from our previous work [20]. Entails plays the role of an “early pruning call” to a
theory solver in SMT, and F plays the role of the theory [29]. Redundant work
is saved by applying unit propagation until completion before calling Entails.
Quantified Entailment Condition. We use quantifiers with QBF semantics, and
quantified formulae are always closed. A closed QBF formula evaluates to either 1
or 0. Consider ϕ = ∀X∀Y [F |I ], where F is a formula over variables X ∪ Y and
the trail I ranges over X ∪ Y . In ϕ, the remaining variables (X ∪ Y ) − I are
quantified. Accordingly, by ∀X∀Y [F |I ] = 1, we express that all possible total
extensions of I satisfy F , in contrast to F |I = 1, expressing syntactic equality
according to Sect. 2. The latter fact implies the former, but not vice versa.
Entailment Under Projection. If Entails implements the notion of entailment
described in Sect. 2, then by calling it on I and F , we check whether F |J = 1
for all total extensions J of I, i.e., whether ∀X∀Y [F |I ] = 1. However, since
we are interested in the models of F projected onto X, it suffices to check that
for each possible assignment JX to the unassigned variables in X, there exists
one assignment JY to the unassigned variables in Y such that F |I′ = 1 where
I ′ = I ∪JX ∪JY . In essence, we need to determine the truth of the QBF formula
∀X∃Y [F |I ], which, in general, might be expensive, computationally. In some
cases, however, a computationally cheaper (but weaker) test might be sufficient.
Entails in line 17 of Enumerate can be seen as a black box pooling four entailment
tests of different strengths, which we discuss in the next section.

4 Testing Entailment

Consider the original entailment condition, ∀X∀Y [F |I ] = 1. Now we have that
∀X∀Y [F |I ] = 1 ⇐⇒ ∃X∃Y [¬F |I ] = 0. Therefore, to check whether I
entails F , a SAT solver might be called to check whether ¬F ∧ I is unsatisfiable.
The SAT solver returns “unsat”, if and only if I entails F . This observation
motivates the use of dual reasoning for testing entailment in cases where cheaper
tests fail. We present four flavors of the entailment test and provide examples.

1) F |I = 1 (syntactic check). If F |I = 1, also ∀X∀Y [F |I ] = 1, and I entails F .
2) F |I ≈ 1 (incomplete check in P). Alternatively, if F |I differs from 1, an

incomplete algorithm might be used, to check whether ¬F ∧I is unsatisfiable,
by for instance executing only unit propagation or aborting after a predefined
number of decision levels.

3) F |I ≡ 1 (semantic check in coNP). A SAT oracle runs on ¬F ∧ I until
termination. Basically, it checks the unsatisfiability of ¬F ∧ I, i.e., whether
it holds that ∃X∃Y [¬F |I ] = 0. If it answers “unsat”, then I entails F .

4) ∀X∃Y [F |I ] = 1 (check in ΠP
2 ). A QBF oracle is called to check whether

the 2QBF formula ∀X∃Y [F |I ] is 1.

Modern SAT solvers mostly work on CNFs. Thus, following our dualiza-
tion approach [19], we may convert F (X,Y ) and ¬F (X,Y ) into CNF formu-
lae P (X,Y, S) and N(X,Y, T ), where S and T denote the variables introduced
by the CNF encoding. Notice that I∧¬F is unsatisfiable iff I∧N is unsatisfiable.
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Table 1. Examples of formulae F over relevant variables X and irrelevant variables Y .
For a concise representation of formulae, we represent conjunction by juxtaposition and
negation by overline. In all examples, I entails F projected onto X. The entailment
tests are listed from left to right in ascending order by their strength. Here, “�” denotes
the fact that I passes the test in the column, if applied to the formula in the row.

F X Y I = 1 ≈ 1 ≡ 1 2QBF

(x1 ∨ y ∨ x2) {x1, x2} {y} x1 � � � �
x1y ∨ yx2 {x1, x2} {y} x1x2 � � �
x1(x2 y ∨ x2y ∨ x2y ∨ x2y) {x1, x2} {y} x1 � �
x1(x2 ↔ y) {x1, x2} {y} x1 �

Table 1 lists four examples, which differ in the strength of the required entail-
ment test. The first column lists the formula F , the second and third column
show the definitions of X and Y . For a concise representation of formulae, we
represent conjunction by juxtaposition and negation by overline. The fourth col-
umn contains the current trail I. The fifth to eighth column denote the tests, in
ascending order by their strength: F |I = 1, F |I ≈ 1, F |I ≡ 1, ∀X∃Y [F |I ] = 1.
In all examples, I entails F , and “�” denotes the fact that I passes the test in
the column, if applied to the formula in the row.

Consider the first example, F = (x1 ∨ y ∨ x2) and I = x1. We have F |I = 1,
and I entails F , which is detected by the syntactic check. For the second example,
F = x1y ∨ yx2, we have F |I = y ∨ y, which is valid, but it syntactically differs
from 1. The SAT solver therefore calls Entails on ¬F ∧ I. For ¬F = (x1 ∨ y)(y ∨
x2), we find ¬F |I = (y)(y). After propagating y, a conflict at decision level
zero occurs, hence Entails returns 1, and an incomplete test is sufficient. In this
example, ¬F is already in CNF. The key idea conveyed by it can easily be lifted
to the case where additional variables are introduced by the CNF transformation
of ¬F . For the third example, F = x1(x2 y ∨x2y ∨x2y ∨x2y), both P |I and N |I
are undefined and contain no units. However, N |I is unsatisfiable, the SAT oracle
call on N ∧I terminates with “unsat”, and Entails returns 1. Hence, this example
requires at least a SAT oracle. For the last example, F = x1(x2 ↔ y), we define

P = (x1)(s1 ∨ s2)(s1 ∨ x2)(s1 ∨ y)(s2 ∨ x2)(s2 ∨ y) with S = {s1, s2} and
N = (x1 ∨ t1 ∨ t2)(t1 ∨ x2)(t1 ∨ y)(t2 ∨ x2)(t2 ∨ y) with T = {t1, t2}

We have P |I 
= 1. Neither P |I nor N |I contains a unit literal, hence the incom-
plete test is too weak. Assume a SAT solver is called to check unsatisfiability
of N ∧ I, and x2 is decided first. After propagating t2, t1 and y, a total model
of N is found. The SAT solver answers “sat”, and Entails returns 0. A QBF
solver checking ϕ = ∀X∃Y [x2y ∨ x2 y ] returns 1. In fact, ϕ is true for I = x2y
and I = x2 y, and Entails answers 1. Thus, at least a QBF oracle is needed.
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EndTrue: (F, I, M, δ) �EndTrue M ∨ m if V (decs(I)) ∩ X = ∅ and
m

def= π(I, X) and ∀X∃Y [F |I ] = 1
EndFalse: (F, I, M, δ) �EndFalse M if exists C ∈ F and C|I = 0 and

δ(C) = 0

Unit: (F, I, M, δ) �Unit (F, I�, M, δ[� �→ a]) if F |I �= 0 and
exists C ∈ F with {�} = C|I and a

def= δ(C \ {�})

BackTrue: (F, I, M, δ) �BackTrue (F, UK�, M ∨ m, δ[L ∞→� ][� �→ b]) if
UV

def= I and D
def= π(decs(I), X) and b + 1 def= δ(D) � δ(I) and

� ∈ D and b = δ(D \ {�}) = δ(U) and m
def= π(I, X) and

K
def= V�b and L

def= V>b and ∀X∃Y [F |I ] = 1
BackFalse: (F, I, M, δ) �BackFalse (F, UK�, M, δ[L ∞→� ][� �→ j]) if

exists C ∈ F and exists D with UV
def= I and C|I = 0 and

c
def= δ(C) = δ(D) > 0 such that � ∈ D and � ∈ decs(I) and

�|V = 0 and F ∧ M |= D and j
def= δ(D \ {�}) and

b
def= δ(U) = c − 1 and K

def= V�b and L
def= V>b

DecideX: (F, I, M, δ) �DecideX (F, I�d, M, δ[� �→ d]) if F |I �= 0 and
units(F |I) = ∅ and δ(�) = ∞ and d

def= δ(I) + 1 and V (�) ∈ X

DecideY: (F, I, M, δ) �DecideY (F, I�d, M, δ[� �→ d]) if F |I �= 0 and
units(F |I) = ∅ and δ(�) = ∞ and d

def= δ(I) + 1 and V (�) ∈ Y and
X − I = ∅

Fig. 2. Rules for Enumerate.

5 Formalization

The algorithm listed in Fig. 1 can be expressed by means of a formal calculus
(Fig. 2). It extends our previous calculus [21] by projection and by a general-
ized precondition modeling an incremental call to an oracle for checking entail-
ment (lines 17–22 in function Enumerate). Notably, in our work [21], only total
models are found, while entailment in our actual work enables the detection of
partial models. The variables in Y and S (from the CNF encoding) are treated
equally with respect to unit propagation and decision. We therefore merge those
two variable sets into Y to simplify the formalization. This does not affect the
outcome of the entailment test. In favor of a concise description of the rules, we
emphasize the differences to our previous framework [21] and refer to this work
for more details.

The procedure terminates as soon as either a conflict at decision level zero
occurs (rule EndFalse) or a possibly partial model is found and I contains no
relevant decision literal (rule EndTrue). Requiring that no relevant decision is
left on the trail prevents the recording of redundant models. The projection
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of I onto X is recorded. Rule Unit remains unchanged except for the missing
precondition F |I 
= 1. If I entails F and contains relevant decision literals, the
one at the highest decision level is flipped, and the projection of I onto X
is recorded (rule BackTrue). Requiring that the last relevant decision literal is
flipped prevents the recording of redundant models. Rule BackFalse remains
unchanged. A decision is taken whenever F |I 
= 0 and F |I contains no unit. Rel-
evant variables are prioritized (rule DecideX) over irrelevant ones (rule DecideY).

Although not mandatory for correctness, the applicability of rule Unit might
be restricted to the case where F |I 
= 1. Similarly, a decision might be taken
only if I does not entail F . Notice that in rules Unit, DecideX, and DecideY, the
precondition F |I 
= 0 can also be omitted.

6 Conclusion

In many applications (projected) partial models play a central role. For this
purpose, we have presented an algorithm and its formalization inspired by how
theory solvers and the SAT solver interact in SMT. The basic idea was to detect
partial assignments entailing the formula on-the-fly. We presented entailment
tests of different strength and computational cost and discussed examples.

The syntactic check “F |I = 1” is cheapest, using clause watches or counters
for keeping track of the number of satisfied clauses or alternatively the number
of assigned variables (line 11 in Fig. 1). It is also weakest, since F |I must syntac-
tically coincide with 1. The incomplete check, denoted by “F |I ≈ 1”, is slightly
more involved. It calls a SAT solver on the negation of the formula, restricted,
e.g., to unit propagation or a limited number of decision levels, and also might
return “unknown”. The SAT oracle executes an unsatisfiability check of ¬F ∧ I,
given a (partial) assignment I, which might be too restrictive. The QBF oracle is
the most powerful test, but also the most expensive one. It captures entailment
under projection in a precise manner expressed by ∀X∃Y [F |I ] = 1. Combining
dual reasoning with oracle calls allows to avoid shrinking of total models. Finally,
chronological CDCL renders the use of blocking clauses superfluous.

We claim that this is the first method combining dual reasoning and chrono-
logical CDCL for partial model detection. It is anticipated that applications with
short partial models benefit most, since oracle calls might be expensive. We plan
to implement our method and validate its competitiveness on applications from
weighted model integration and model counting with or without projection. We
also plan to investigate methods concerning the implementation of QBF ora-
cles required by flavour 4), e.g., dependency schemes introduced by Samer and
Szeider [27] or incremental QBF solving proposed by Lonsing and Egly [15].
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