
Encoding the satisfiability of modal and description
logics into SAT: the case study of K(m)/ALC

Roberto Sebastiani and Michele Vescovi

DIT, Università di Trento, Via Sommarive 14, I-38050, Povo, Trento, Italy.
rseba@dit.unitn.it, vescovi@dit.unitn.it

Abstract. In the last two decades, modal and description logics have been ap-
plied to numerous areas of computer science, including artificial intelligence,
formal verification, database theory, and distributed computing. For this reason,
the problem of automated reasoning in modal and description logics has been
throughly investigated.
In particular, many approaches have been proposed for efficiently handling the
satisfiability of the core normal modal logic Km, and of its notational variant, the
description logic ALC . Although simple in structure, Km/ALC is computation-
ally very hard to reason on, its satisfiability being PSPACE-complete.
In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT, so
that to be handled by state-of-the-art SAT tools. We propose an efficient encoding,
and we test it on an extensive set of benchmarks, comparing the approach with
the main state-of-the-art tools available.
Although the encoding is necessarily worst-case exponential, from our experi-
ments we notice that, in practice, this approach can handle most or all the prob-
lems which are at the reach of the other approaches, with performances which are
comparable with, or even better than, those of the current state-of-the-art tools.

1 Introduction

In the last two decades, modal and description logics have been applied to numerous
areas of computer science, including artificial intelligence, formal verification, database
theory, and distributed computing. For this reason, the problem of automated reason-
ing in modal and description logics has been throughly investigated (see, e.g., [2, 9, 6,
10]). Many approaches have been proposed for efficiently handling the satisfiability of
modal and description logics, in particular of the core normal modal logic Km and of its
notational variant, the description logic ALC (see, e.g., [2, 10, 3, 4, 7, 8, 1, 12]). Notice
that, although simple in structure, Km/ALC is computationally very hard to reason on,
as its satisfiability is PSPACE-complete [6].

In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT, so
that to be handled by state-of-the-art SAT tools. We propose an efficient encoding,
with four simple variations. We test (the four variations of) it on an extensive set of
benchmarks, comparing the results with those of the main state-of-the-art tools for
Km-satisfiability available. Although the encoding is necessarily worst-case exponential
(unless PSPACE = NP), from our experiments we notice that, in practice, this approach
can handle most or all the problems which are at the reach of the other approaches,

with performances which are comparable with, or even better than, those of the current
state-of-the-art tools.

For lack of space, in this short version of the paper we omit the proof of Theorem 1,
the description of the empirical tests and results, and every reference to related work.
All such information can be found in the extended version of the paper [13], which is
publicly downloadable 1.

2 Background

We recall some basic definitions and properties of Km. Given a non-empty set of prim-
itive propositions A = {A1,A2, . . .} and a set of m modal operators B = {21, . . . ,2m},
the language of Km is the least set of formulas containing A , closed under the set
of propositional connectives {¬,∧} and the set of modal operators in B . Notation-
ally, we use the Greek letters α,β,ϕ,ψ,ν,π to denote formulas in the language of
Km (Km-formulas hereafter). We use the standard abbreviations, that is: “3rϕ” for
“¬2r¬ϕ”, “ϕ1∨ϕ2” for “¬(¬ϕ1∧¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1∧¬ϕ2)”, “ϕ1 ↔ ϕ2” for
“¬(ϕ1∧¬ϕ2)∧¬(ϕ2∧¬ϕ1)”, “>” and “⊥” for the constants “true” and “false”. (Here-
after formulas like ¬¬ψ are implicitly assumed to be simplified into ψ, so that, if ψ is
¬φ, then by “¬ψ” we mean “φ”.) We call depth of ϕ, written depth(ϕ), the maximum
number of nested modal operators in ϕ. We call a propositional atom every primitive
proposition in A , and a propositional literal every propositional atom (positive literal)
or its negation (negative literal).

In order to make our presentation more uniform, we adopt from [2, 10] the repre-
sentation of Km-formulas from the following table:

α α1 α2 β β1 β2 πr πr
0 νr νr

0
(ϕ1∧ϕ2) ϕ1 ϕ2 (ϕ1∨ϕ2) ϕ1 ϕ2 3rϕ1 ϕ1 2rϕ1 ϕ1
¬(ϕ1∨ϕ2) ¬ϕ1 ¬ϕ2 ¬(ϕ1∧ϕ2) ¬ϕ1 ¬ϕ2 ¬2rϕ1 ¬ϕ1 ¬3rϕ1 ¬ϕ1
¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2 (ϕ1 → ϕ2) ¬ϕ1 ϕ2

in which non-literal Km-formulas are grouped into four categories: α’s (conjunc-
tive), β’s (disjunctive), π’s (existential), ν’s (universal).

A Kripke structure for Km is a tuple M = 〈U,L ,R1, . . . ,Rm〉, where U is a set of
states, L is a function L : A ×U 7−→ {True,False}, and each Rr is a binary relation
on the states of U. With an abuse of notation we write “u ∈ M ” instead of “u ∈ U”.
We call a situation any pair M ,u, M being a Kripke structure and u ∈M . The binary
relation |= between a modal formula ϕ and a situation M ,u is defined as follows:

M ,u |= Ai, Ai ∈ A ⇐⇒ L(Ai,u) = True;
M ,u |= ¬Ai, Ai ∈ A ⇐⇒ L(Ai,u) = False;
M ,u |= α ⇐⇒ M ,u |= α1 and M ,u |= α2;
M ,u |= β ⇐⇒ M ,u |= β1 or M ,u |= β2;
M ,u |= πr ⇐⇒ M ,w |= πr

0 for some w ∈U s.t. Rr(u,w) holds in M ;
M ,u |= νr ⇐⇒ M ,w |= νr

0 for every w ∈U s.t. Rr(u,w) holds in M .
“M ,u |= ϕ” should be read as “M ,u satisfy ϕ in Km” (alternatively, “M ,u Km-satisfies
ϕ”). We say that a Km-formula ϕ is satisfiable in Km (Km-satisfiable from now on) if

1 Available at http://www.dit.unitn.it/˜rseba/sat06/extended.ps

2

and only if there exist M and u ∈ M s.t. M ,u |= ϕ. (When this causes no ambiguity,
we sometimes drop the prefix “Km-”.) We say that w is a successor of u through Rr iff
Rr(u,w) holds in M .

The problem of determining the Km-satisfiability of a Km-formula ϕ is decidable and
PSPACE-complete [9, 6], even restricting the language to a single boolean atom (i.e.,
A = {A1}) [5]; if we impose a bound on the modal depth of the Km-formulas, the prob-
lem reduces to NP-complete [5]. For a more detailed description on Km— including,
e.g., axiomatic characterization, decidability and complexity results — see [6, 5].

A Km-formula is said to be in Negative Normal Form (NNF) if it is written in terms
of the symbols 2r, 3r, ∧, ∨ and propositional literals Ai, ¬Ai (i.e., if all negations occur
only before propositional atoms in A). Every Km-formula ϕ can be converted into an
equivalent one NNF(ϕ) by recursively applying the rewriting rules: ¬2rϕ=⇒3r¬ϕ,
¬3rϕ=⇒2r¬ϕ, ¬(ϕ1∧ϕ2)=⇒(¬ϕ1∨¬ϕ2), ¬(ϕ1∨ϕ2)=⇒(¬ϕ1∧¬ϕ2), ¬¬ϕ=⇒ϕ.

A Km-formula is said to be in Box Normal Form (BNF) [11, 12] if it is written
in terms of the symbols 2r, ¬2r, ∧, ∨, and propositional literals Ai, ¬Ai (i.e., if no
diamonds are there, and all negations occurs only before boxes or before propositional
atoms in A). Every Km-formula ϕ can be converted into an equivalent one BNF(ϕ) by
recursively applying the rewriting rules: 3rϕ=⇒¬2r¬ϕ, ¬(ϕ1∧ϕ2)=⇒(¬ϕ1∨¬ϕ2),
¬(ϕ1∨ϕ2)=⇒(¬ϕ1∧¬ϕ2), ¬¬ϕ=⇒ϕ.

3 The Encoding

We borrow some notation from the Single Step Tableau (SST) framework [10]. We
represent univocally states in M as labels σ, represented as non empty sequences of
integers 1.nr1

1 .nr2
2nrk

k , s.t. the label 1 represents the root state, and σ.nr represents
the n-th successor of σ through the relation Rr.

Notationally, we often write “(
V

i li) →
W

j l j” for the clause “
W

j¬li ∨
W

j l j”, and
“(
V

i li)→ (
V

j l j)” for the conjunction of clauses “
V

j(
W

i¬li∨ l j)”.

3.1 The Basic Encoding

-Let A[,] be an injective function which maps a pair 〈σ,ψ〉, s.t. σ is a state label and ψ
is a Km-formula which is not in the form ¬φ, into a boolean variable A[σ, ψ]. Let L[σ, ψ]
denote ¬A[σ, φ] if ψ is in the form ¬φ, A[σ, ψ] otherwise. Given a Km-formula ϕ, the
encoder Km2SAT builds a boolean CNF formula as follows:

Km2SAT (ϕ) := A[1, ϕ]∧De f (1, ϕ), (1)
De f (σ, Ai), := > (2)

De f (σ, ¬Ai) := > (3)
De f (σ, α) := (L[σ, α] → (L[σ, α1]∧L[σ, α2]))∧De f (σ, α1)∧De f (σ, α2) (4)
De f (σ, β) := (L[σ, β] → (L[σ, β1]∨L[σ, β2]))∧De f (σ, β1)∧De f (σ, β2) (5)

De f (σ, πr, j) := (L[σ, πr, j] → L[σ. j, πr, j
0])∧De f (σ. j, πr, j

0) (6)

De f (σ, νr) :=
^

〈σ:πr,i〉
((L[σ, νr]∧L[σ, πr,i])→ L[σ.i, νr

0]) ∧
^

〈σ:πr,i〉
De f (σ.i, νr

0). (7)

3

Here by “〈σ : πr,i〉” we mean that πr,i is the j-th dinstinct πr formula labeled by σ.
We assume that the Km-formulas are represented as DAGs, so that to avoid the

expansion of the same De f (σ, ψ) more than once. Moreover, following [10], we as-
sume that, for each σ, the De f (σ, ψ)’s are expanded in the order: α,β,π,ν. Thus, each
De f (σ, νr) is expanded after the expansion of all De f (σ, πr,i)’s, so that De f (σ, νr)
will generate one clause ((L[σ, πr,i] ∧ L[σ, 2rνr

0]) → L[σ.i, νr
0]) and one novel definition

De f (σ.i, νr
0) for each De f (σ, πr,i) expanded.

Theorem 1. A Km-formula ϕ is Km-satisfiable if and only if the corresponding boolean
formula Km2SAT (ϕ) is satisfiable.

Notice that, due to (7), the number of variables and clauses in Km2SAT (ϕ) may grow
exponentially with depth(ϕ). This is in accordance to what stated in [5].

3.2 Variants

Before the encoding, some potentially useful preprocessing can be performed.
First, the input Km-formulas can be converted into NNF (like, e.g., in [10]) or into

BNF (like, e.g., in [3, 11]). One potential advantage of the latter is that, when one 2rψ
occurs both positively and negatively (like, e.g., in (2rψ∨ ...)∧ (¬2rψ∨ ...)∧ ...), then
both occurrences of 2rψ are labeled by the same boolean atom A[σ, 2rψ], and hence
they are always assigned the same truth value by DPLL; with NNF, instead, the negative
occurrence ¬2rψ is rewritten into 3r¬ψ, so that two distinct boolean atoms A[σ, 2rψ]
and A[σ, 3r¬ψ] are generated; DPLL can assign them the same truth value, creating a
hidden conflict which may require some extra boolean search to reveal.

Example 1 (NNF).
Let ϕnn f be (3A1 ∨3(A2 ∨A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3.2 It is easy to see that
ϕnn f is K1-unsatisfiable. Km2SAT (ϕnn f) is:

1. A[1, ϕnn f]
2. ∧ (A[1, ϕnn f] → (A[1, 3A1∨3(A2∨A3)]∧A[1, 2¬A1]∧A[1, 2¬A2]∧A[1, 2¬A3]))
3. ∧ (A[1, 3A1∨3(A2∨A3)] → (A[1, 3A1]∨A[1, 3(A2∨A3)]))
4. ∧ (A[1, 3A1] → A[1.1, A1])
5. ∧ (A[1, 3(A2∨A3)] → A[1.2, A2∨A3])
6. ∧ ((A[1, 2¬A1]∧A[1, 3A1])→¬A[1.1, A1])
7. ∧ ((A[1, 2¬A2]∧A[1, 3A1])→¬A[1.1, A2])
8. ∧ ((A[1, 2¬A3]∧A[1, 3A1])→¬A[1.1, A3])
9. ∧ ((A[1, 2¬A1]∧A[1, 3(A2∨A3)])→¬A[1.2, A1])

10. ∧ ((A[1, 2¬A2]∧A[1, 3(A2∨A3)])→¬A[1.2, A2])
11. ∧ ((A[1, 2¬A3]∧A[1, 3(A2∨A3)])→¬A[1.2, A3])
12. ∧ (A[1.2, A2∨A3] → (A[1.2, A2]∨A[1.2, A3]))

After a run of BCP, 3. reduces to the implicate disjunction. If the first element A[1, 3A1]
is assigned, then by BCP we have a conflict on 4.,6. If the second element A[1, 3(A2∨A3)]
is assigned, then by BCP we have a conflict on 12. Thus Km2SAT (ϕnn f) is unsatisfiable.
¦
2 For K1 formulas, we omit the box and diamond indexes.

4

Example 2 (BNF).
Let ϕbn f = (¬2¬A1∨¬2(¬A2∧¬A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3. It is easy to see
that ϕbn f is K1-unsatisfiable. Km2SAT (ϕbn f) is:

1. A[1, ϕbn f]
2. ∧ (A[1, ϕbn f] → (A[1, (¬2¬A1∨¬2(¬A2∧¬A3))]∧A[1, 2¬A1]∧A[1, 2¬A2]∧A[1, 2¬A3]))
3. ∧ (A[1, (¬2¬A1∨¬2(¬A2∧¬A3))] → (¬A[1, 2¬A1]∨¬A[1, 2(¬A2∧¬A3)]))
4. ∧ (¬A[1, 2¬A1] → A[1.1, A1])
5. ∧ (¬A[1, 2(¬A2∧¬A3)] →¬A[1.2, (¬A2∧¬A3)])
6. ∧ ((A[1, 2¬A1]∧¬A[1, 2¬A1])→¬A[1.1, A1])
7. ∧ ((A[1, 2¬A2]∧¬A[1, 2¬A1])→¬A[1.1, A2])
8. ∧ ((A[1, 2¬A3]∧¬A[1, 2¬A1])→¬A[1.1, A3])
9. ∧ ((A[1, 2¬A1]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A1])

10. ∧ ((A[1, 2¬A2]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A2])
11. ∧ ((A[1, 2¬A3]∧¬A[1, 2(¬A2∧¬A3)])→¬A[1.2, A3])
12. ∧ (¬A[1.2, (¬A2∧¬A3)] → (A[1.2, A2]∨A[1.2, A3]))

Unlike with NNF, Km2SAT (ϕbn f) is found unsatisfiable directly by BCP. Notice that the
unit-propagation of A[1, 2¬A1] from 2. causes ¬A[1, 2¬A1] in 3. to be false, so that one of
the two (unsatisfiable) branches induced by the disjunction is cut a priori. With NNF,
the corresponding atoms A[1, 2¬A1] and A[1, 3A1] are not recognized to be one the nega-
tion of the other, s.t. DPLL may need exploring one boolean branch more. ¦

Second, the (NNF or BNF) Km-formula can also be rewritten by recursively apply-
ing the validity-preserving “box/diamond lifting rules”:

(2rϕ1∧2rϕ2) =⇒ 2r(ϕ1∧ϕ2), (3rϕ1∨3rϕ2) =⇒ 3r(ϕ1∨ϕ2). (8)

This has the potential benefit of reducing the number of πr,i formulas, and hence the
number of labels σ.i to take into account in the expansion of the De f (σ, νr)’s.

Example 3 (BNF with LIFT).
Let ϕbn f li f t = ¬2(¬A1∧¬A2∧¬A3) ∧ 2(¬A1∧¬A2∧¬A3). It is easy to see that

ϕbn f li f t is K1-unsatisfiable. Km2SAT (ϕbn f li f t) is:
1. A[1, ϕbn f li f t]
2. ∧ (A[1, ϕbn f li f t] → (¬A[1, 2(¬A1∧¬A2∧¬A3)]∧A[1, 2(¬A1∧¬A2∧¬A3)]))
3. ∧ (¬A[1, 2(¬A1∧¬A2∧¬A3)] →¬A[1.1, (¬A1∧¬A2∧¬A3)])
4. ∧ (¬A[1.1, (¬A1∧¬A2∧¬A3)] → (A[1.1, A1]∨A[1.1, A2]∨A[1.1, A3]))

Km2SAT (ϕbn f li f t) is found unsatisfiable by BCP. ¦
One potential drawback of applying the lifting rules is that, by collapsing (2rϕ1 ∧
2rϕ2) into 2r(ϕ1∧ϕ2) and (3rϕ1∨3rϕ2) into 3r(ϕ1∨ϕ2), the possibility of sharing
box/diamond subformulas in the DAG representation of ϕ is reduced.

4 Conclusions and future work

In this paper (see also the extended version) we have explored the idea of encoding
Km/ALC -satisfiability into SAT, so that to be handled by state-of-the-art SAT tools. We

5

have showed that, despite the intrinsic risk of blowup in the size of the encoded formu-
las, the performances of this approach are comparable with those of current state-of-
the-art tools on a rather extensive variety of empirical tests. (Notice that, as a byproduct
of this work, the encoding of hard Km-formulas could be used as benchmarks for SAT
solvers.)

We see many possible direction to explore in order to enhance and extend this ap-
proach. First, our current implementation of the encoder is very straightforward, and
optimizations for making the formula more compact can be introduced. Second, tech-
niques implemented in other approaches (e.g., the pure literal optimization of [12])
could be imported. Third, hybrid approaches between Km2SAT and KSAT-style tools
could be investigated.

Another important open research line is to explore encodings for other modal and
description logics. Whilst for logics like Tm the extension should be straightforward,
logics like S4m, or more elaborated description logics than ALC , should be challenging.

References

1. S. Brand, R. Gennari, and M. de Rijke. Constraint Programming for Modelling and Solving
Modal Satisfability. In Proc. CP 2003, volume 3010 of LNAI. Springer, 2003.

2. M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishg, 1983.
3. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propo-

sitional decision procedures - the case study of modal K. In Proc. CADE’13. Springer, 1996.
4. F. Giunchiglia and R. Sebastiani. Building decision procedures for modal logics from propo-

sitional decision procedures - the case study of modal K(m). Information and Computation,
162(1/2), 2000.

5. J. Y. Halpern. The effect of bounding the number of primitive propositions and the depth of
nesting on the complexity of modal logic. Artificial Intelligence, 75(3):361–372, 1995.

6. J.Y. Halpern and Y. Moses. A guide to the completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence, 54(3):319–379, 1992.

7. I. Horrocks and P. F. Patel-Schneider. Optimizing Description Logic Subsumption. Journal
of Logic and Computation, 9(3):267–293, 1999.

8. U. Hustadt, R. A. Schmidt, and C. Weidenbach. MSPASS: Subsumption Testing with
SPASS. In Proc. DL’99, pages 136–137, 1999.

9. R. Ladner. The computational complexity of provability in systems of modal propositional
logic. SIAM J. Comp., 6(3):467–480, 1977.

10. F. Massacci. Single Step Tableaux for modal logics: methodology, computations, algorithms.
Journal of Automated Reasoning, Vol. 24(3), 2000.

11. G. Pan, U. Sattler, and M. Y. Vardi. BDD-Based Decision Procedures for K. In Proc. CADE,
LNAI. Springer, 2002.

12. G. Pan and M. Y. Vardi. Optimizing a BDD-based modal solver. In Proc. CADE, LNAI.
Springer, 2003.

13. R. Sebastiani and M. Vescovi. Encoding the satisfiability of modal and descrip-
tion logics into SAT: the case study of K(m)/ALC. Extended version. Tech-
nical Report DIT-06-033, DIT, University of Trento., May 2006. Available at
http://www.dit.unitn.it/˜rseba/sat06/extended.ps.

6

