
Journal of Automated Reasoning (2020) 64:423–460
https://doi.org/10.1007/s10817-018-09508-6

OPTIMATHSAT: A Tool for Optimization Modulo Theories

Roberto Sebastiani1 · Patrick Trentin1

Received: 27 September 2018 / Accepted: 8 December 2018 / Published online: 15 December 2018
© Springer Nature B.V. 2018

Abstract
Optimization Modulo Theories (OMT) is an extension of SMT which allows for finding
models that optimize given objectives. OptiMathSAT is an OMT solver which allows for
solving a list of optimization problems on SMT formulas with linear objective functions—
on the Boolean, the rational and the integer domains, and on their combination thereof—
including (partial weighted)MaxSMT. Multiple and heterogeneous objective functions can
be combined together and handled either independently, or lexicographically, or in linear
or min–max/max–min combinations. OptiMathSAT provides an incremental interface, it
supports both an extended version of the SMT- LIBv2 language and a subset of the FlatZinc
language, and can be interfaced via an API. In this paper we describe OptiMathSAT and
its usage in full detail.

Keywords OptiMathSAT · Optimization Modulo Theories · OMT · MaxSMT · Sorting
networks · Multi-objective optimization

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of first-
order formulas with respect to background theories. In the last 15years very efficient SMT
solvers have been developed, that combine the power of modern conflict-driven clause-
learning (CDCL) SAT solvers [55] with the expressiveness of dedicated decision procedures
(T -solvers) for several first-order theories of practical interest and their combinations—e.g.,
linear arithmetic over the rationals (LRA), the integers (LIA) or their combination (LIRA),
non-linear arithmetic over the reals (NRA) or the integers (NLIA), arrays (AR), bit-vectors
(BV), floating-point arithmetic (FP) (see [17,62,69] for an overview). This has brought
previously-intractable problems at the reach of state-of-the-art SMT solvers, in particular in
the domain of formal verification.

This paper describes OptiMathSAT 1.4.2, which is the latest version available when it was submitted.

B Patrick Trentin
patrick.trentin@unitn.it

Roberto Sebastiani
roberto.sebastiani@unitn.it

1 DISI, University of Trento, via Sommarive 9, 39123 Trento, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-09508-6&domain=pdf
http://orcid.org/0000-0001-9209-9172

424 R. Sebastiani, P. Trentin

Many SMT problems of interest, however, require the capability of finding models that
are optimum wrt. some objective functions. These problems are grouped under the umbrella
term of Optimization Modulo Theories—OMT [22,23,32,35,48,51,61,70–73]. For instance,
in SMT-basedmodel checkingwith timed or hybrid systems, youmaywant to find executions
which optimize the value of some parameter while fulfilling/violating some property—e.g.,
to find the minimum opening time interval for a rail-crossing causing a safety violation [71].
A non-exhaustive list of OMT applications can be found in [22,32,35,48,51,61,70,71,73,74].

In this paper we present OptiMathSAT, an OMT tool extending the MathSAT5 SMT
solver [36], implementing the OMT procedures described in [70–74].OptiMathSAT allows
for solving a list of optimization problems on SMT formulaswith linear objective functions—
on the Boolean, the rational and the integer domains, and on their combination thereof—
including (partial weighted)MaxSMT. Multiple and heterogeneous objective functions can
be combined together and handled either independently, or lexicographically, or in linear or
min–max/max–min combinations.

OptiMathSAT provides a push/pop interface for adding and removing objectives and
pieces of formulas from the formula stack, which allows for reusing information from one
optimization search to another to improve the global performance of the search. The tool can
be used in two ways: via file exchange through its command line interface, or through its
API. The former supports both an extended version of the SMT- LIBv2 language [16] and a
subset of the FlatZinc language [4].

OptiMathSAT is freely available for research and evaluation purposes [7], and it is
currently used in some innovative projects [19,59,60,76].
Content The rest of this paper is structured as follows. Section 2 describes the main
OMT procedures and functionalities which are implemented in OptiMathSAT; Sect. 3
describes OptiMathSAT in detail; Sect. 4 presents some empirical evaluations to showcase
OptiMathSAT functionalities and performance; Sect. 5 briefly reviews some interesting
applications of OptiMathSAT; Sect. 6 summarizes the related work; Sect. 7 concludes the
paper and hints some future developments.

Amuch shorter (7 pages) andmuch less-detailed tool paper onOptiMathSAT has already
been published at CAV 2015 conference [72]. OptiMathSAT is build on top of theMath-

SAT5 SMT solver [36], so that it inherits all MathSAT5 SMT functionalities (including,
e.g., solving, unsat-core extraction [38], interpolation [37], predicate abstraction [47], and
others), for which it behaves like a wrapper. Therefore, in this paper we describe only the
functionalities of OptiMathSAT which are not in MathSAT5.

2 OptimizationModulo Theories

In order to make the paper self-contained, in this section we describe the main OMT pro-
cedures and functionalities which are implemented in OptiMathSAT and which will be
referred to in the next sections [70–74].

2.1 Basics on Lazy SMT Solving

We recall some background knowledge on lazy SMT solving.We assume a basic background
knowledge on first-order logic and on CDCL SAT solving. We consider some first-order
theory T , and we restrict our interest to ground formulas/literals/atoms in the language of T
(T -formulas/literals/atoms hereafter). Theories of particular interest are, e.g., those of linear
arithmetic over the rationals (LRA), over the integers (LIA) or their combination (LIRA).

123

OptiMathSAT: A Tool for Optimization Modulo Theories 425

A theory solver for T , T -solver, is a procedure able to decide the T -satisfiability of a
conjunction/set μ of T -literals. If μ is T -unsatisfiable, then T -solver returns unsat and a
set/conjunction η of T -literals inμwhich was found T -unsatisfiable; η is called a T -conflict
set, and ¬η a T -conflict clause. If μ is T -satisfiable, then T -solver returns sat; it may also
be able to return some unassigned T -literal l /∈ μ from a set of all available T -literals, s.t.
{l1, ..., ln} |�T l, where {l1, ..., ln} ⊆ μ. We call this process T -deduction and (

∨n
i=1 ¬li ∨l)

a T -deduction clause. Notice that T -conflict and T -deduction clauses are valid in T . We call
them T -lemmas.

Given a T -formula ϕ, the formula ϕ p obtained by rewriting each T -atom in ϕ into a
fresh atomic proposition is the Boolean abstraction of ϕ, and ϕ is the refinement of ϕ p .
Notationally, we indicate by ϕ p and μp the Boolean abstractions of ϕ and μ, and by ϕ and μ

the refinements of ϕ p andμp respectively.We say that the truth assignmentμ propositionally
satisfies the formula ϕ, written μ |�p ϕ, if μp |� ϕ p .

In a lazy SMT(T) solver, the Boolean abstraction ϕ p of the input formula ϕ is given as
input to a CDCLSAT solver, andwhenever a satisfying assignmentμp is found s.t.μp |� ϕ p ,
the corresponding set of T -literals μ is fed to the T -solver; if μ is found T -consistent, then
ϕ is T -consistent; otherwise, T -solver returns a T -conflict set η causing the inconsistency,
so that the clause ¬ηp is used to drive the backjumping and learning mechanism of the
SAT solver. The process proceeds until either a T -consistent assignment μ is found (ϕ is
T -satisfiable), or no more assignments are available (ϕ is T -unsatisfiable).

Important optimizations are early pruning and T -propagation. The T -solver is invoked
also when an assignment μ is still under construction: if it is T -unsatisfiable, then the proce-
dure backtracks, without exploring the (possibly many) extensions of μ; if it is T -satisfiable,
and if the T -solver is able to perform a T -deduction {l1, ..., ln} |�T l, then l can be unit-
propagated, and the T -deduction clause (

∨n
i=1 ¬li ∨ l) can be used in backjumping and

learning. To this extent, in order to maximize the efficiency, most T -solvers are incremental
and backtrackable, that is, they are called via a push/pop interface, maintaining and reusing
the status of the search from one call to the other.

Many modern SMT solvers, including MathSAT5, provide a stack-based incremental
interface (see e.g. [41]), by which it is possible to push/pop sub-formulas φi into a stack of
formulasΦ

def= {φ1, ..., φk}, and then to check incrementally the satisfiability of
∧k

i=1 φi . The
interface maintains the status of the search from one call to the other, in particular it records
the learned clauses (plus other information). Consequently, when invoked on Φ, the solver
can reuse a clause C which was learned during a previous call on some Φ ′ if C was derived
only from clauses which are still in Φ.

2.2 OMT (LRA∪T)

In what follows, T is some stably-infinite theory with equality (or a combination thereof)
s.t. LRA and T are signature-disjoint. Here we consider only the minimization of objec-
tives, since maximization is dual. We call an Optimization Modulo LRA ∪ T problem,
OMT(LRA ∪ T), a pair 〈ϕ, obj〉 such that ϕ is an SMT(LRA ∪ T) formula and obj is an
LRA variable occurring in ϕ, representing the cost to be minimized. The problem consists
in finding an LRA-model M for ϕ (if any) whose value of obj is minimum. If ϕ is in the
form ϕ′ ∧ (obj < c) [resp. ϕ′ ∧ ¬(obj < c)] for some value c ∈ Q, then we call c an upper
bound [resp. lower bound] for obj . If ub [resp. lb] is the minimum upper bound [resp. the
maximum lower bound] for ϕ, we also call the interval [lb, ub[the range of obj .

123

426 R. Sebastiani, P. Trentin

Notice that with regard to upper and lower bounds we follow the same convention which
was established in [70,71]. Therefore, in minimization the upper bound ub is always con-
sidered to be strict, since this value is typically derived from a previous iteration of the
optimization search in which a model I with cost ub was found, whereas the lower bound lb
is always considered non-strict, since this is usually derived from a previous iteration of the
optimization search in which the conjunction ϕ ∧ (obj < lb) was found to be unsatisfiable.
The interpretation of upper and lower bounds is dual when maximizing. For consistency
reasons, the same interpretation is also applied on any user-provided value.

2.2.1 The Inline OMT Schema

Unlike with the offline OMT schema taken by other OMT solvers [22,23,51], in which the
SMT solver is used as a black-box and the optimization proceeds through a sequence of
incremental SMT calls, OptiMathSAT implements the inline OMT schema of [70,71], in
which the whole optimization procedure is pushed inside the SMT solver by embedding
the range-minimization loop inside the CDCL Boolean-search loop of the standard lazy
SMT schema [17,69]. Although harder to maintain, in our experience the online schema
architecture has better performance than the offline one for OptiMathSAT [71].

The procedure takes as input a pair 〈ϕ, obj〉, plus optionally values for lb and ub (which
are implicitly considered to be −∞ and +∞ if not present), and returns the model M of
minimum cost and its cost u

def= M(obj); it returns the value +∞ and an empty model if ϕ

is LRA-inconsistent. The standard CDCL-based schema of the SMT solver, which is thus
called only once, is modified as follows.
Initialization The variables l, u and pivot (current values of lower bound, upper bound
and pivot) are added inside the SMT solver, and are initialized as l ← lb, u ← ub, and
pivot ← ub.
Range Updating and Pivoting Every time the search of the CDCL SAT solver gets back
to decision level 0, the range [l, u[is updated s.t. u [resp. l] is assigned the lowest [resp.
highest] value ui [resp. li] such that the atom (obj < ui) [resp. ¬(obj < li)] is currently
assigned at level 0. Then a heuristic function BinSearchMode() is invoked, which decides
whether to work in linear-search mode or in binary-search mode in the current branch: in
the latter case, a heuristic function ComputePivot() computes a value pivot ∈]l, u[, and
the (possibly new) atom PIV

def= (obj < pivot) is decided to be true (level 1) by the internal
SAT solver. This restricts temporarily the cost range to [l,pivot[.
Termination If u ≤ l, or two literals l,¬l are both assigned at level 0, then the procedure
terminates, returning the current value of u and M.
Decreasing the Upper Bound When an assignment μ is generated s.t. μp |� ϕ p and which
is found LRA-consistent by LRA-Solver, μ is also fed to LRA-Minimize, returning the
minimum costmin of μ; then the unit clause

Cμ
def= (obj < min) (1)

is learned and fed to the backjumping mechanism, which forces the SAT solver to backjump
to level 0 and unit-propagate (obj < min). This restricts the cost range to [l,min[. LRA-
Minimize is embedded within the LRA-Solver—it is a simple extension of the LP algorithm
in [39]—so that it is called incrementally after it, without restarting its search from scratch.
Notice that the clauses Cμ ensure progress in the minimization every time that a new LRA-
consistent assignment is generated.

We also have the following typical scenario, which is depicted in Fig. 1.

123

OptiMathSAT: A Tool for Optimization Modulo Theories 427

Fig. 1 One piece of possible execution of the inline OMT procedure. (i) Pivoting on (obj < pivot0). (ii)
Increasing the lower bound to pivot0. (iii) Decreasing the upper bound to minobj(μi)

123

428 R. Sebastiani, P. Trentin

Increasing the Lower Bound In binary-search mode, when a conflict occurs and the conflict
analysis of the SAT solver produces a conflict clause in the form¬(obj < pivot)∨¬η′ s.t. all
literals in η′ are assigned true at level 0 (i.e.,ϕ∧(obj < pivot) isLRA-inconsistent), then the
SAT solver backtracks to level 0, unit-propagating ¬(obj < pivot). This case permanently
restricts the cost range to [pivot, u[.

We recall a few facts about binary search [70,71]. First, binary search can be activated
only when u �= +∞ and l �= −∞: when not so, BinSearchMode() returns false so that
binary-search mode is not activated.

Second, to avoid getting stuck into Zeno’s infinite loops,1 each time halving the cost
range right-bound—e.g., [−1, 0[, [− 1

2 , 0[, [− 1
4 , 0[, [− 1

8 , 0[, ...—binary-search steps are
interleaved with linear-search ones (we have empirically experienced the best performance
with one linear-search step after every binary-search one, always starting the search in linear-
search mode).

Third, a binary-search step may improve relevantly and cheaply the current minimum if
ϕ ∧ (obj < pivot) is satisfiable, but can be very expensive otherwise, because detecting
T -unsatisfiability is typically much more expensive than finding one more model2. To this
extent, the aggressiveness of binary search steps can be established by setting the value
returned by ComputePivot(): the nearer pivot is to the current lower bound l, the higher the
improvement if satisfiable, the higher the chances of being unsatisfiable. Also, an adaptive
version of BinSearchMode() can decide the next searchmode according to the ratio between
the progress obtained in the latest binary- and linear-search steps and their respective costs.

We refer the reader to [71] for details and for a description of further improvements to the
OMT inline procedure.

2.2.2 Handling OMT(LRA ∪ T): Theory Combination

As described in [71], the implementation of an inline OMT(LRA ∪ T) procedure comes
nearly for free if the SMT solver handlesLRA∪T -solving by Delayed Theory Combination
[28], with the strategy of automatically case-splitting disequalities ¬(xi = x j) into the
two inequalities (xi < x j) and (xi > x j), which is implemented in MathSAT5. If so,

the solver enumerates truth assignments in the form μ′ def= μLRA ∪ μeid ∪ μT , where
(i) μ′ propositionally satisfies ϕ, (ii) μeid is a set of interface equalities (xi = x j) and
disequalities ¬(xi = x j), containing also one inequality in {(xi < x j), (xi > x j)} for every
¬(xi = x j) ∈ μeid ; then μ′

LRA
def= μLRA ∪ μei and μ′

T
def= μT ∪ μed are passed to the

LRA-Solver and T -solver respectively, μei and μed being obtained from μeid by dropping
the disequalities and inequalities respectively.

If this is the case, it suffices to apply LRA-Minimize to μ′
LRA, then learn (obj < min)

and use it for backjumping, as in Sect. 2.2.1.
A much more detailed description and justification is presented in [71].

2.3 OMT (LIA∪T)

The inlineOMT(LRA) schema in Sect. 2.2.1 is adapted toLIA andLIRA by exploiting the
efficient LIRA-Solver implemented in MathSAT5 [43], by embedding into it an LIRA-
specific minimizing procedure, namely LIRA-Minimize, which is called after the LIRA-

1 In the famous Zeno’s paradox, Achilles never reaches the tortoise for a similar reason.
2 This observation is empirical and based on our experience with OMT (LIRA) (see, e.g., [70,71,73]).

123

OptiMathSAT: A Tool for Optimization Modulo Theories 429

Solver each time the latter has checked the LIRA-consistency of an assignment μ, s.t.
μp |� ϕ p .
Check for lower-boundedness The first step performed by LIRA-Minimize is to check
whether obj is lower bounded or not. Since a feasible MILP problem is unbounded if and
only if its corresponding continuous relaxation is unbounded [31],3 we run LRA-Minimize
on the relaxation of μ. If the continuous relaxation of μ is unbounded, then LIA-Minimize
returns−∞; otherwise,LRA-Minimize returns theminimumvalue c ofobj in the continuous
relaxation of μ . If every Integer variable in the problem is already assigned an integral
value in the tableau found by LRA-Minimize, then c is also the optimal solution for LIA-
Minimize and can be returned to the caller. Otherwise, c is a lower bound for obj in the
propositional model μ currently being considered, and it is thus set as initial lb for obj in
the subsequent branch&bound search. Similarly, the initial upper bound ub for obj in the
subsequent branch&bound search is initialized to the integral value M(obj), where M is
the model returned by the most recent call to the LIRA-Solver on μ.
Branch&Bound Thenwe explore the solution space bymeans of anLP-basedBranch&Bound
procedure that reduces the original MILP problem to a sequence of smaller sub-problems,
which are solved separately. This is built on top of the LIRA-Solver of MathSAT5 and
takes advantage of all the advanced features for performance optimization that are already
implemented there [43]. In particular, we re-use its very-efficient internal Branch&Bound
procedure for LIRA-solving, which exploits historical information to drive the search and
achieves higher pruning by back-jumping within the Branch&Bound search tree, driven by
the analysis of unsatisfiable cores (we refer the reader to [43] for details).
Truncated Branch&Bound We have also implemented a “sub-optimum” variant of LIRA-
Minimize in which the inner LIRA-Solver minimization procedure stops as soon as either
it finds its first solution or it reaches a certain limit on the number of branching steps. This
is typically much faster than the complete B&B procedure. The drawback is that, in some
cases, it analyzes a truth assignment μ (augmented with the extra constraint (obj < ub))
more than once.

We refer the reader to [73] for details.

2.4 OMT(PB)/MAXSMT

An important sub-case of OMT is that with pseudo-Boolean objective functions obj
def=∑

i wi Ai , OMT(PB), where the wi s are rational constants and the Ai s are Boolean variables
whose values are interpreted as {0, 1}. Alternatively, the same problem can be formulated as
a (partial weighted)MaxSMT given by a pair 〈ϕh, ϕs〉, where ϕh is a set of “hard” T -clauses
and ϕs is a set of positive-weighted “soft” T -clauses Ci each associated with some positive
weight wi , and the goal is to find the maximum-weight set of T -clauses ψs , ψs ⊆ ϕs , s.t.
ϕh ∪ ψs is T -satisfiable [14,32,35,61].

The two problems can be reduced to each other. Given an OMT(PB) problem
〈ϕ,

∑
i wi Ai 〉, we can set 〈ϕh, ϕs〉 s.t.

ϕh
def= ϕ, ϕs

def= {Ci }i s.t . Ci
def= ¬Ai of weight wi . (2)

3 As in [31], by “continuous relaxation”—henceforth simply “relaxation”—we mean that the integrality
constraints on the integer variables are relaxed, so that they can take fractional values.

123

430 R. Sebastiani, P. Trentin

Vice versa, a MaxSMT problem 〈ϕh, ϕs〉 can be encoded into an OMT(PB) problem
〈ϕ,

∑
i wi Ai 〉 as follows:

ϕ
def= ϕh ∪ ⋃

Ci ∈ϕs
{(Ai ∨ Ci)}, Ai fresh Boolean variables. (3)

2.4.1 MAXSMT-specific techniques

One approach for dealing with MaxSMT and OMT with PB objectives is to embed some
MaxSAT engine within the SMT solver itself, and use it in combination with dedicated
T -solvers [22,23,35]. Some examples of this approach can be found in the literature:

– Lemma-Lifting [35]. Cimatti et al. [35] presented a “modular” approach for MaxSMT,
combining a lazy SMT solver with a MaxSAT solver, which can be used as black-boxes,
where the SMT solver is used as an oracle generating T -lemmas that are then learned by
the MaxSAT solver so as to progressively narrow the search space toward the optimal
solution.

– SMT with Core-Guided MaxSAT Resolution (MaxRes) [22,58]. In [58], Narodytska
et al. first presented a core-guided MaxSAT approach based on MaxSAT resolution,
where they used this inference rule to construct a sequence of SAT formulas that only
results in a linear growth of the initial formula. This very efficientMaxSAT engine was
later on integrated in the Z3 OMT solver by Bjorner et al., [22], to deal with MaxSMT

problems.

2.4.2 MAXSMT as OMT

As described in [71], an alternative approach for dealing with a MaxSMT problem 〈ϕh, ϕs〉
is to encode it into an OMT(LRA ∪ T) problem, by first encoding it into OMT(PB) as in
(3), and then encoding the problem into the pair 〈ϕ, obj〉 defined as:

ϕ
def= ϕ∗ ∧ ∧

i ((¬Ai ∨ (xi = wi)) ∧ (Ai ∨ (xi = 0))) ∧ (4)
∧

i ((0 ≤ xi) ∧ (xi ≤ wi)) ∧ (5)

(obj = ∑
i xi), xi , obj fresh rational variables. (6)

where ϕ∗ def= ϕh ∪ ⋃
Ci ∈ϕs

{(Ai ∨ Ci)} and each Ai is a fresh Boolean variable.
Notice that, although redundant from a logical perspective, the constraints in (5) serve the

important purpose of allowing early-pruning calls to the LRA-Solver (see [17]) to detect a
possibleLRA inconsistency among the current partial truth assignment over variables Ai and
linear cuts in the form ¬(ub ≤ obj) that are pushed on the formula stack by the OMT solver
during the minimization of obj . The presence of such constraints improves performance
significantly.

2.4.3 MAXSMT as OMT plus Sorting Networks

On the one hand, although MaxSAT-based approaches to MaxSMT can be very efficient
(see [22,23,35,74]), they can be an unfeasible choice in some OMT applications in which the
objective function is given by either a linear combination of Pseudo-Boolean and arithmetic
terms (like, e.g., for Linear Generalized Disjunctive Programming problems [71]) or a non-
trivial combination of several PB sums as in [76].

123

OptiMathSAT: A Tool for Optimization Modulo Theories 431

Fig. 2 The basic schema of a sorting network relation

On the other hand, the OMT-based approach for MaxSMT problems 〈ϕh, ϕs〉, described
in Sect. 2.4.2, can suffer from poor performance when dealing with PB objectives where all
soft constraints share the same weight value w:

obj = w ·
n−1∑

i=0

Ai . (7)

As a matter of fact, the OMT solver can end up generating exponentially many Theory
Lemmas along the optimization search for objective obj [74].

The solution to this efficiency issue we adopted in OptiMathSAT is to better exploit
Boolean Constraint Propagation (BCP) by means of bidirectional sorting-networks [74].

A sorting-network relation, depicted in Fig. 2, takes A0, ..., An−1 Boolean variables as
input and returns out0, ..., outn−1 variables as output s.t., if in the current (partial) truth
assignment μ, k variables are set to True, n − m variables are set to False and m − k
are unassigned, then by Boolean Constraint Propagation out0, ..., outk−1 are set to True,
outm, ..., outn−1 are set to False and outk, ..., outm−1 are not propagated. In a bidirectional
sorting-network, if outk−1 is forced to be True (that is, at least k inputsmust be True) and n−k
inputs Ai are False, then by Boolean Propagation all other unassigned Ai s are automatically
set to True; vice-versa, if outk+1 is forced to be False (that is, at most k inputs can be True)
and n − k inputs Ai are True, then all other unassigned Ai s are automatically set to False.

Given a bidirectional sorting network C , an OMT problem 〈ϕ,w · ∑n−1
i=0 Ai 〉 can be

encoded as 〈ϕ′, obj〉 where obj is a fresh rational variable:

ϕ′ = ϕ ∧ C ∧
k=n−1∧

k=0

⎧
⎪⎨

⎪⎩

outk → ((k + 1) · w ≤ obj)

¬outk → (obj ≤ k · w)

¬((k + 1) · w ≤ obj) ∨ ¬(obj ≤ k · w).

(8)

The benefit of this extension is that, whenever the optimization search finds a new satisfiable
truth assignment μ which sets k variables Ai to True, so that a unit clause in the form
(obj < k · w) is learned, then as soon as k − 1 inputs Ai are assigned to True the remaining
n − k + 1 inputs are set to False by BCP. (A dual case occurs when some lower-bound unit
clause (obj > k · w) is learned.)

This extension generalizes to the case in which groups of terms share the same weight, in
which one cardinality network is generated for every group (see [74] for details):

obj =
∑

k

wk ·
⎛

⎝
Nk∑

ik=1

Aik

⎞

⎠ . (9)

123

432 R. Sebastiani, P. Trentin

In OptiMathSAT we have implemented two bidirectional sorting-networks: the sequen-
tial counter encoding [75] of size O(n2), and the cardinality network encoding [11] of size
O(n log2 n). We refer the reader to [74] for more details.

2.5 OMTwith Multiple Objectives

OMT is not limited to dealing with a unique objective function, in fact, each formula ϕ

might contain several objectives obj1, ..., objN which are then combined according to a set
of configurable strategies. Importantly, notice that each obji can be indifferently an LRA,
an LIA, an LIRA or a PB/MaxSMT objective. Currently, OptiMathSAT supports the
following forms of multi-objective OMT.

2.5.1 Multiple-independent-objective OMT

A multiple–independent-objective OMT problem [22,51,73], a.k.a. boxed OMT, is given by a
pair 〈ϕ,O〉 s.t.O def= {obj1, ..., objN }, and consists in finding in one single run a set of models
{M1, ...,MN } s.t. eachMi makes obji minimum on the common formula ϕ. Although the
same result can be obtained by sequentially solving the sequence 〈ϕ, obj1〉, ..., 〈ϕ, objN 〉
of single-objective OMT problems, in practice this optimization technique significantly
improves the global performance because it allows for factorizing the search [22,51,73].

In OptiMathSAT the algorithm proceeds as follows. Initially, we set a list of watched
objectivesO′ = O and, for every obji ∈ O, the initial upper bound ui of obji is set to+∞ and
the model Mi is set to ∅. Every time a novel consistent truth assignment μ propositionally
satisfying ϕ is found, the minimizer is invoked on μ for each watched objective obji ∈ O′,
returning themodelM′

i and the correspondingminimum value u′
i . If u′

i < ui , then we update
ui = u′

i and Mi = M′
i . If u′

i = −∞, then we update ui = u′
i and Mi = M′

i and obji
is removed from the list of watched objectives O′. After all watched objectives have been
checked, OptiMathSAT learns the clause:

Cμ
def=

∨

obji ∈O′
(obji < ui) (10)

and the SMT solver proceeds the search for another satisfiable truth assignment. The search
terminates whenO′ is empty or when the SMT engine returns unsat. In either case, each ui

is the optimum solution value of the corresponding objective obji .
We refer the reader to [73] for more details and some improvements.

2.5.2 Lexicographic OMT

In lexicographic optimization a model M is produced which minimizes a prioritized list of
objectives {obj1, ..., objN }.

OptiMathSAT handles the lexicographic minimization in rounds, starting with obj1.
At each optimization round, OptiMathSAT finds the minimum value ui for obji and the
corresponding optimum modelMi . If ui is unbounded, or the there is no possible satisfiable
solution, the search terminates. Otherwise, a clause in the form (costi = ui) is learned, and
OptiMathSAT proceeds by incrementally optimizing the next objective obji+1 in the list,
if any. As described in more detail in [73], in both cases OptiMathSAT can apply a number
of heuristic techniques to improve the search time.

123

OptiMathSAT: A Tool for Optimization Modulo Theories 433

It is worth noticing that each objective {obj1, ..., objN } can be of arbitrary type among the
supported ones (e.g., some can be LRA costs, some be the sums of penalties of subgroups
of soft clauses in a MaxSMT sub-problem). For this reason, the lexicographic optimization
framework described in this section does not (yet) contemplate specialized optimization
techniques for the case in which all objective functions have the same type (e.g. when all
obji are MaxSMT goals, some of the lexicographic extensions to MaxSAT presented in
[54] could be adapted to deal with it).

2.5.3 OMT with Linear Combinations of Objectives

Given a list of objectives {obj1, ..., objN }, it is possible to minimize arbitrary weighted sums∑
i wi · obji .
In OptiMathSAT this is solved by simply encoding it into the OMT problem 〈ϕ′, obj〉,

where ϕ′ = ϕ ∧ (obj = ∑
i wi · obji) and obj is a fresh objective variable.

2.5.4 OMT with Min–Max andMax–Min Combination of Objectives

Given a list of objectives {obj1, ..., objN }, Min–Max OMT consists in finding a model M
whichminimizes the maximum value of the obji ’s (withMax–Min OMT,Mmaximizes their
minimum value).

InOptiMathSATMin–MaxOMT is solved by simply encoding it into the OMT problem
〈ϕ ∧ ∧N

i=1(obji ≤ obj), obj〉, where obj is a fresh objective variable (the encoding forMax–
Min OMT is dual).

2.6 Incrementality in OMT

OptiMathSAT provides a push/pop interface for adding and removing objectives and pieces
of formulas from the formula stack, which allows for reusing information from one optimiza-
tion search to another to improve the global performance of the search [73]. This exploits
MathSAT5 incremental interface (see Sect. 2.1), and it is based on the very simple observa-
tion that in our inlineOMT schema all learned clauses are either T -lemmas or they are derived
from T -lemmas and some of the input subformulas φi ’s, with the exception of the clauses
Cμ

def= (obj < min) (Sect. 2.2) [resp. Cμ
def= ∨

obji ∈C∗(obji < ui) (Sect. 2.5)] which are
“artificially” introduced to ensure progress in the minimization steps, and for the unit clauses
(obj < pivot) and ¬(obj < pivot) which may be learned in binary search (Sect. 2.2). Thus,
in order to exploitMathSAT5 incrementality, it suffices to drop only these clauses from one
OMT call to the other, while preserving all the others, as with incremental SMT.

For a more detailed description of how incrementality is efficiently implemented inOpti-
MathSAT we refer the reader to [73].

3 OPTIMATHSAT

Like MathSAT5, OptiMathSAT is developed in C++ and its binaries are made available
for download on OptiMathSAT’s web-page [7]. Currently, we support both 32- and 64-bit
x86 platforms for both Linux and Windows operating systems, and 64-bit x86 only for Mac
OS X, which is also linked against Clang’s libc++ instead of libstc++.

123

434 R. Sebastiani, P. Trentin

Fig. 3 High-level overview of OptiMathSAT architecture.
Legend: black components are part of the underlying SMT solver, blue ones are exclusively part of our
OMT solver, and the only red component is an independent extension to MathSAT5 that we ported to
OptiMathSAT’s code-base [35]

OptiMathSAT inherits the license conditions of MathSAT5, and it is thus made freely
available for research and evaluation purposes only.

3.1 Architecture

A high-level overview of OptiMathSAT architecture is shown in Fig. 3. OptiMathSAT

extends the SMT Interface of MathSAT5 with an OMT Interface implementing the opti-
mization functionalities described in this paper, keeping the access to all functionalities of
the underlying SMT solver (thusOptiMathSAT behaves as a wrapper of MathSAT5when
none of its optimization, MaxSMT and Pseudo-Boolean extensions are used).

The inline OMT schema of Sect. 2 is implemented by modifying the CDCL SAT solver
in MathSAT5 and its interface with the theory solvers (inline optimization block) and the
T -solver for linear arithmetic, which is enhanced with optimization procedures described in
Sects. 2.2 and 2.3 (optimizer block).

The Objective block acts as a wrapper for the objective function and is meant to decouple
the optimization search within the CDCL SAT engine from the specific type of the objective
being optimized, making it more easily extensible to support new objectives (other than
LIRA and PB/MaxSMT) in the future.

Most of the remaining functionalities introduced by OptiMathSAT are contained in its
OMT Interface block, which is expanded in the right-hand side of Fig. 3 and implemented as
a set of self-contained components arranged in a stack of independent layers.

At the top level of the OMT Interface, an input/output layer (I/O block) contains the novel
optimization extensions to both the External C API (Sect. 3.3.3) and the SMT-LIBv2 parser
(Sect. 3.3.1), in addition to a brand-new parser for a subset of the FlatZinc standard (Sect.
3.3.2).

123

OptiMathSAT: A Tool for Optimization Modulo Theories 435

In the level below, the Optimization Context block manages the stack of objective func-
tions, the configuration of the optimization search and other implementation details pertaining
the OMT state.

The Multi-objective Handling block is responsible for the high-level management of
the optimization search. In particular, it selects the correct optimization algorithm for the
given multi-objective combination (Sect. 2.5) selected in the configuration (e.g. Lexico-
graphic/Boxed).4 Moreover, in case the objective stack includes compatible MaxSMT/ PB
goals, it can forward these objectives to one of the available MaxSMT engines, according
to the configuration.

The MAXSMT handling block has three main components: a set of generator functions
for Sorting Networks (Sect. 2.4.3), a Maximum Resolution engine based on [58] and the
porting intoOptiMathSAT of the lemma-lifting approach presented in [35], which requires
an external MaxSAT engine and was originally implemented as an independent extension
to MathSAT5.

TheOMTSearchHandling blockmainly consists in appropriate hookswith the underlying
SMT solver for enabling the optimization features within the CDCL SAT engine, and the
retrieval of the optimum models.

3.2 Objectives inOPTIMATHSAT: A Compositional Approach

In OptiMathSAT, the availability of specialized techniques for dealing with MaxSMT

makes it desirable to encode PB objectives as MaxSMT (Sect. 2.4). Nevertheless, in some
OMT applications the objectives to optimize may be defined in terms of complex combi-
nations of PB and LIRA objectives. This is the case, e.g., of Structured Learning Modulo
Theories [76] (Sect. 5.1), where the objective function may take complex forms like that
shown in (11) (see Sect. 4.3), or of Linear Generalized Disjunctive Programming (LGDP)
[65], in which a goal is given by the linear combination ofmixed Boolean/numeric objectives.

OptiMathSAT deals with this issue by adopting a compositional definition of objectives,
according to which objective functions are no longer special, independent entities separated
from the rest of the formula; rather, they are reusable objects that are treated in the same way
as terms appearing in the original formula. As a consequence,OptiMathSAT allows for the
arbitrary composition of objectives, bymeans of linear andMax–Min/Min–Max composition
(Sect. 2.5), and for their Boxed or Lexicographic optimization (Sect. 2.5), regardless of the
fact they are LIRA or PB objectives, or MaxSMT goals implicitly defined by the weights
on soft constraints.

InOptiMathSAT, an objective function can be viewed as a term occurring in the formula.
We internally associate each objectivewith a fresh termof the correct type,which is optionally
made available to the developer for later use. Semantically, we guarantee that the value of
the associated term matches that of the objective function for the whole duration of the
optimization search, thus acting as an alias for the objective itself.

Since setting constraints on objective functions has an impact on the outcome of the opti-
mization search, OptiMathSAT normally protects the end user from improper inadvertent
use by using masked internal variables. This safety guard can be circumvented by explicitly
assigning a label to the objective function in the extended SMT- LIBv2 language, e.g.

4 Notice that the Linear, Max–Min and Min–Max combinations of objectives are handled instead by the
Optimization Context block because this consists in a simple encoding, see Sect. 2.5.

123

436 R. Sebastiani, P. Trentin

(minimize (+ var_1 ... var_N) :id my_label)
...
(assert (= total (+ my_label ...)))

or by using one of the available C API functions, e.g.

msat_term internal_term = msat_objective_get_term(env, obj);

The reification of objectives into terms, which include MaxSMT goals, allows for com-
bining an objective function with other terms in a formula so as to impose novel constraints or
compose novel objectives. This can be done by linear and Max–Min/Min–Max composition
(Sect. 2.5) because for any given set {obj1, ..., objN } of LIRA and MaxSMT/PB goals the
optimum value is always of numerical type.

3.3 Input Interfaces

It is possible to use OptiMathSAT in two ways: directly, using its command line interface,
or through its API. The command line interface accepts problem files encoded in

– an extended version of the SMT- LIBv2 format, and
– a subset of the FlatZinc language.

3.3.1 Extended SMT-LIBv2

One of the cornerstones of SMT is represented by the SMT- LIBv2 initiative, which devel-
oped and promoted common input and output languages for all SMT solvers. Conversely,
the spectrum of OMT solvers is fragmented: there currently does not yet exist a common
language that is both accepted by all OMT solvers and handled in the same way. In an effort
to guarantee the maximum interoperability among solvers, and possibly move towards a
de-facto standard, we redesigned the input language accepted by OptiMathSAT to be as
compatible as possible with that of Z3 . Even so, as a consequence of the compositional
approach adopted by OptiMathSAT (Sect. 3.2), there are still important and irreconcil-
able differences in the input formats accepted by OptiMathSAT and Z3 that may require
additional design care and translation effort.

We provide a comprehensive list of the syntactic extensions to SMT- LIBv2 adopted
by OptiMathSAT, together with a brief explanation. We use square brackets to highlight
optional syntactic elements that can be omitted when not needed. Moreover, we allow for
a <numeral> to be used in place of a <decimal> when the decimal part of the latter
number is equal to zero.

(minimize <term> [:id <string>]
[:local-lb <decimal>] [:local-ub <decimal>])

(maximize <term> [:id <string>]
[:local-lb <decimal>] [:local-ub <decimal>])

minimize pushes the linear arithmetic <term> on the internal objective function stack
to be minimized at the next (check-sat) call. Dual for maximize.

(minmax <term> ... <term> [:id <string>]
[:local-lb <decimal>] [:local-ub <decimal>])

(maxmin <term> ... <term> [:id <string>]
[:local-lb <decimal>] [:local-ub <decimal>])

123

OptiMathSAT: A Tool for Optimization Modulo Theories 437

minmax5 pushes a fresh <term>, which optimum value matches the minimum maximum
value of the argument list of terms <term> ...<term>, on the internal objective function
stack. Dual for maxmin.

(assert-soft <term> [:id <string>]
[:weight <decimal>] [:dweight <decimal>])

assert-soft adds term on the stack of soft clauses with weight <decimal> (1 if
omitted).

All soft clauseswith the same id are grouped into the sameMaxSMT/PB objective; if no id
is provided they are added to the default group I . dweight is completely interchangeable
with weight, and it is kept for compatibility with legacy versions of Z3 . Moreover, in
order to lift the burden of re-scaling weight values from the developer, we allow for zero
and negative weights to be set on soft constraints and then we internally map the objective
function to a purely-positive weighted PB term when optimizing.

An important difference wrt. Z3 is that, in OptiMathSAT theMaxSMT or PB objective
term that is defined with assert-soft is not implicitly minimized. Instead, we require the
user to explicitly invoke theminimization of theMaxSMT group identified by< string >,
using the latter as a term. The advantage of this approach is that it enables arbitrary composi-
tions of MaxSMT objectives and other LIRA objectives, which can be useful in particular
applications, e.g. to build mixed Boolean/numeric objective functions [59,76] (see Sect. 3.2).

(set-option :opt.priority lex|box)

opt.priority configures the multi-objective combination to be used: lex stands for
lexicographic combination, whereas box stands for the (default) multi-independent com-
bination. This option has no effect until (check-sat) is called, at which point all the
objective functions previously pushed on the objective function stack (using one or more
calls to minimize, maximize, minmax, or maxmin)—that were also not previously
destroyed as a consequence to one (or more) pop—are combined on-the-fly and optimized
as described in Sect. 2.5.

(set-model <numeral>)

set-model loads in the environment the satisfiable model associated with the objective
having index <numeral> in the internal objective function stack (starting from 0). For
easier handling of incremental formulas, a negative numeral is interpreted counting the
objectives on the stack in the reverse order. Thus, indexes 0 and−1 always point to the oldest
and most recent objective on the stack, respectively.
Objective NamingThe attribute :id can be used to name an objective function, and associate
a term with the same name and type to it. This has two useful applications. First, it can be
used to retrieve the model value of the objective function using the standard SMT 2 command
(get−value(<string>)). Second, it allows for linearly combining objective functions
with one another, as described in Sect. 3.2.6

5 This is a purely syntactic sugar extension for easiness of use.
6 Notice that SMT- LIBv2 makes available the define-fun command, which can be used to achieve
similar goals. The “id” attribute was introduced over arbitrary objectives for consistency with the case of
MaxSMT/PB goals definedwithassert-soft. It alsomakes it simpler to identify objectives recombination
at the implementation level, which may allow for introducing new techniques exploiting this knowledge in
the future.

123

438 R. Sebastiani, P. Trentin

Binary/Adaptive Search Attributes :local-lb and :local-ub are optional supplemen-
tary information that the user can add to restrict the domain of an objective function. For
minimize and maxmin, the lower bound is considered not strict, whereas the upper
bound is considered strict. Dual for maximize and minmax. The non-strict bound is
required by OptiMathSAT in order to perform the optimization search in either binary-
or adaptive-search modes, as described in Sect. 2.2.1. For MaxSMT and PB-objectives,
OptiMathSAT automatically determines local lower and upper bounds at runtime when
the option -opt.asoft.detect_bounds is enabled. We remark that, in boxed multi-
objective optimization, local bounds defined over an objective function do not affect the
domain of other objectives in the same formula, even when two or more objective functions
have one or more variables in common (e.g. x and 2x) . This is because in boxed multi-
objective optimization each objective is considered an independent goal within the same
formula. Conversely, in single-objective and lexicographic optimization mode, local bounds
can be thought to be equivalent to bounds with a global scope over the formula.

An Example A small company wants to process an order of 1100 goods for a customer
that needs the delivery to be made by the next day. For this task, it can allocate 3 identical
machines M0, M1, M2 with a maximum production capacity of 800 items per day and a
small machine M3 with a capacity of 200 items per day. Due to maintenance reasons, the
expected production capacity of machines M1 and M2 is estimated to be temporarily limited
to 500 and 600 items each. The company manager estimates the operating cost for machines
M0, M1, M2, and M3 to be respectively 8, 9, 9, and 5 euro per each produced unit. One goal
is to find a production allocation that meets the demand such that (A) the overall production
cost is minimized and, at tie, (B) the least number of machines is used, to limit wear.

An alternative goal, for the same problem, is to minimize the total cost (C), which includes
both the production cost and the compensation for the employees processing this order. The
company has already planned to employ 8 workers to package the goods, plus additional 2
workers for each machine that needs to be operated. The average daily cost for each worker,
including taxes and other fees, is estimated to be equal to 78.5 euro.

This simple problem can be encoded in a lexicographic OMT formula, as shown in Fig. 4.
Figure 5, instead, shows a sample of OptiMathSAT output when given this problem, which
is solved in negligible time.

Solving for (A) reveals that 8300 euro is the minimum production cost that meets the
demand. However, due to the symmetry among machines M1 and M2, there are several ways
to allocate the production so that it meets the demand at same minimum cost. The tie is
broken by the secondary goal (B), which imposes a preference on a solution that allows
either M1 or M2 to be completely shut down. We show that this is effectively the case by
separately printing the optimum model found right after solving for goal (A), selected with
(set-model 0), and the optimum model after lexicographically optimizing for goal (B),
selected with (set-model 1).

The total cost (C) for processing the order is found to be equal to 9399 euro. Here, it
should be noted that the particular encoding of goal (C) that we used in our example is made
possible by the compositional approach of OptiMathSAT (see Sect. 3.2), which allows us to
express total_cost as a linear combination of aLIRA term and theMaxSMT objective. This
encoding is currently not legal in Z3, because it does not allow for linearly combining the id
of aMaxSMT goal with other terms in the formula. Moreover, Z3 assumes that aMaxSMT

goal is to be implicitly minimized at the location corresponding to the assert-soft
definition. Therefore, as opposed to OptiMathSAT, Z3 assigns a higher priority value to
used_machines than to production_cost in the lexicographic optimization of this example.

123

OptiMathSAT: A Tool for Optimization Modulo Theories 439

Fig. 4 Sample SMT2 example

In order to properly express the third goal (C) of this example, in Z3 one would have to define
used_machines as a PB objective, without using the assert-soft statement.

3.3.2 FlatZinc/MiniZinc

Since version 1.4.0, OptiMathSAT supports a subset of the FlatZinc 1.6 standard [4],
the easily-parsable and flattened counterpart of MiniZinc [6], a widely adopted high-level
declarative language for modeling CSP problems. MiniZinc supports an extensive library

123

440 R. Sebastiani, P. Trentin

Fig. 5 Sample SMT2 example output

of global constraints, three scalar types (Booleans, integers and floats), two compound types
(sets and fixed-size arrays), if-then-else, let expressions, user-defined predicates and much
more. For an in-depth overview of the FlatZinc and MiniZinc languages, we refer the
reader to [4,6] respectively.
FlatZinc Supported Subset OptiMathSAT currently supports only a subset of the FlatZ-
inc language, which does not include any constraint making use of some trigonometric,
power or logarithmic function. All other constraints are fully supported, except when they
introduce some form of non-linear arithmetic in the encoding. In this case, the problem cannot
be solved, asOptiMathSAT does not handleNRA yet. For what concerns basic FlatZinc
types, bool is mapped into Boolean, int into Integer, float into high-precision
Real, and sets are encoded with an occurrence representation using additional Boolean

123

OptiMathSAT: A Tool for Optimization Modulo Theories 441

variables as witnesses of existence within the set (similarly to [12]). A more comprehensive
list of the supported functionalities is available at [9].
Multi-objective Extension OptiMathSAT accepts an extended version of the FlatZinc

format which allows for multiple objectives to be present in the same problem. These goals
should be specified in a comma-separated list within the same solve constraint, e.g.

solve minimize goal_1, maximize goal_2;

The value of the opt.priority priority can be conveniently configured as in Sect. 3.4,
so as to select the desired multi-objective optimization combination among the available
independent and lexicographic approaches (see Sect. 2.5).
FlatZinc to SMT- LIBv2By exploiting the internal API tracing capabilities,OptiMathSAT

can be used as a tool for converting supported FlatZinc problems into SMT- LIBv2 for-
mulas enriched with optimization extensions. This can be accomplished with the following
command:

$ optimathsat -input=fzn \
-debug.api_call_trace=1 \
-debug.api_call_trace_dump_config=False \
-debug.solver_enabled=False \
-debug.api_call_trace_filename=output.smt2 \
< input.fzn

Cutstock Example We hereby show with an example how OptiMathSAT can be used to
solve an instance of the well-known NP-hard Cutstock problem, taken from the MiniZinc

distributed package [56]. The goal in this problem is to minimize the number of fixed-length
stock material units used to obtain a number of fixed-size pieces.

Figure 6 contains the originalMiniZinc formulation of the problem instance we consider,
which we found within MiniZinc installation files. Constraint C .1 encodes the fact that the
number of pieces carved out of each stock material unit cannot be negative, C .2 requires
the number of produced pieces to be large enough to meet their corresponding demand, C .3
constraints the solution to not exceed the amount of stock material available for each unit,
and last C .4 binds obj to be equal to the number of stock material units used.

We compile this code-sample into FlatZinc using the mzn2fzn tool distributed with
MiniZinc:

$ mzn2fzn cutstock.mzn

and obtain its equivalent problem instance in the FlatZinc format, shown in Fig. 7. We run
OptiMathSAT over this formula using the following command:

$ optimathsat -input=fzn < cutstock.fzn

and get the optimal solution value of 4, as witnessed by the sample output in Fig. 8.

3.3.3 API

OptiMathSATAPI consists ofMathSAT5’sC API extendedwith additional commands for
accessing the novel optimization functionalities. In addition to its native C API,OptiMath-

SAT is distributed with the same scripts of MathSAT5 for building python API bindings
and library using swig. A detailed documentation of the C API, beyond the scope of this
paper, is available on OptiMathSAT website [7].

123

442 R. Sebastiani, P. Trentin

Fig. 6 Sample MiniZinc code

123

OptiMathSAT: A Tool for Optimization Modulo Theories 443

Fig. 7 Sample FlatZinc code

Example Figure 9 shows a C API code sample which encodes the first two goals of the
problem described in Sect. 3.3.1. (In this example, we chose to omit some parts making use
of functionalities that are shared with the underlying SMT solver MathSAT5, and focused
instead on the new optimization features introduced with OptiMathSAT.)

The source code is divided up in 6 sections. In the first section, an instance of the Opti-
MathSAT solver is created and conveniently configured to optimize multiple objectives in
a lexicographic fashion, as well as to generate a model for the optimal solution. The for-
mulation of the problem through the API is done in Sect. 2, however we omitted the bulk
of this code because it is completely equivalent to what one would write for a regular SMT
problem in MathSAT5. In Sect. 3, two objective sums are created: production_cost
and used_machines. While the first goal is encoded as a regular LRA term, the second
Pseudo-Boolean objective is constructed using theassert-soft statement. This encoding
allows OptiMathSAT to use its advanced techniques for MaxSMT/OMT with PB goals.
The objectives are then pushed on the formula stack in Sect. 4. Here, it should be noted that in
order to refer to the created Pseudo-Boolean goal we retrieve the associated term by calling
msat_from_string with the same id used at declaration time. At last, a single call to

123

444 R. Sebastiani, P. Trentin

Fig. 8 Sample FlatZinc output

msat_solve() fires the optimization search in Sect. 5 of the code. After the search status
code is checked for correctness, the optimum model of the lexicographic optimization—
which corresponds to that of the top-most objective on the formula stack—is loaded in the
environment so as to allow the user to inspect its content. As it is usual in MathSAT5, the
allocated resources are then cleared before termination.

3.4 OPTIMATHSAT Functionalities and Options

In this section, we describe how the OMT techniques described in Sect. 2 can be accessed in
OptiMathSAT, focusing in particular on its configurable options. Similarly toMathSAT5,
on which OptiMathSAT is based, there are several ways in which an option can be set:

– with a command line argument, e.g. -option=VALUE
– stored in a newline-separated configuration file, e.g. option=VALUE
– through the SMT- LIBv2 format, e.g. (set-option :config option=VALUE)
– through the C API, e.g. msat_set_option(cfg, "option", "VALUE")

Multi-objective Combination In the presence of multiple objectives within the same input
formula, it is possible to instruct OptiMathSAT wrt. the preferential multi-objective com-
bination to be used, among those illustrated in Sect. 2.5.

-opt.priority=STR [default: box]

Sets the multi-objective combination to be used. Possible values are box, for the boxed
multi-independent objective combination, and lex for lexicographic optimization.

Search Strategies As described in Sect. 2.2.1, the search can advance towards the optimum
goal according to several strategies. In OptiMathSAT, the search strategy can be selected
using the option

123

OptiMathSAT: A Tool for Optimization Modulo Theories 445

Fig. 9 Sample C API code

123

446 R. Sebastiani, P. Trentin

-opt.strategy=STR [default: lin]

Possible values for this option are: lin for linear-search, bin for binary-search and ada
for adaptive-search. When minimizing, in order to use binary- and adaptive-search strate-
gies, a local lower bound must be imposed on the objective function. Dual requirements
hold for maximization. The behavior of the binary- and adaptive-search can be additionally
configured with the following options:

-opt.bin.pivot_position=FLOAT [default: 0.5]

This option allows for adjusting the desired aggressiveness of pivoting cuts used in binary-
and adaptive-search (see Sect. 2.2.1). Valid parametric values are contained in the]0, 1]
interval, and express the relative position of the cut in the interval of values that goes from
the local lower bound to the local upper bound of a given objective function. A value of 0.5
means that the pivoting cut bisects the search space in two exactly equal halves.

-opt.bin.first_step_linear=BOOL [default: true]

This option forces the first search step to be linear. In minimization, it allows for quickly
finding an initial local upper bound estimate for a given objective, which can be smaller than
the user-provided value (if any), yielding a better placement of the initial pivoting value.

-opt.bin.max_consecutive=INT [default: 1]

This option configures the maximum number of consecutive pivoting steps before a linear-
search step is performed. This option is used to avoid “Zenoness” of the search when dealing
with OMT (LRA) objectives (see Sect. 2.2.1).

Search Learning An important property of some OMT solvers is incrementality (see Sect.
2.6), that is the ability of exploiting learned information acrossmultiple optimization searches
to improve the search performance. To this extent,OptiMathSAT provides one useful option
whose aim is to increase the chance of fruitfully re-using learned information when the tool
is used incrementally:

-opt.learn_trivial_implications=BOOL [default: true]

When this option is true, it enables the learning of LIRA-valid clauses in the form (obji <

ui) → (obji < u′
i), where ui is the most recent satisfiable value of obji found during

minimization and u′
i is the previous value of ui . As soon as the literal corresponding to

(obji < ui) is assigned to true, this clause allows for “activating” all previously-learned
clauses in the form ¬(obji < u′

i) ∨ C . See [73].

Search Termination As described in Sect. 2.2, normallyOptiMathSAT performs a complete
optimization search, which can roughly divided in two phases: in the first phase, the solver
enumerates a number of satisfiable solutions which get closer and closer to the optimal
solution, whereas in the second phase the optimality of the latest solution found is certified.
In this regard, the common experience is that the certification step takes in general as much
search time as the initial enumeration phase.

In some applications, due to the particular time-demanding characteristic of the optimiza-
tion search, the need for a certified optimal solution might be relaxed in favor of “good
enough” approximations of the optimal solution [76]. For this reason, OptiMathSAT pro-
vides a number of useful options that allow for early terminating the optimization search.

123

OptiMathSAT: A Tool for Optimization Modulo Theories 447

-opt.no_optimization=BOOL [default: false]

When this option is enabled, the optimization search stops at the first (possibly not optimal)
satisfiable solution.

-opt.soft_timeout=BOOL [default: false]

If this flag is activated, the search timeout is ignored when it occurs before each objective has
at least one (possibly sub-optimal) solution. If this is the case, the search is then automatically
terminated as soon as the condition becomes true. In essence, this option is meant to postpone
an otherwise hard timeout which could terminate the optimization search even before the
solver is able to determine the satisfiability of the input formula, a situation which may occur
since the timer starts ticking from the moment the tool is launched. This feature can be used,
in combination with the timeout=FLOAT option inherited from MathSAT5, to handle
those OMT applications in which an approximated optimal solution is acceptable but the
absence of any solution is not.

-opt.abort_interval=FLOAT [default: 0.0]

This option makes the optimization search stop as soon as the search interval size for a given
objective is below the configured threshold absolute value, thus yielding an approximated
value of the actual optimal solution.

-opt.abort_tolerance=FLOAT [default: 0.0]

Similarly to the previous one, this option makes the search stop as soon as the ratio among
the current search interval size and the initial search interval size is smaller than the given
threshold value.

General T -Optimization Normally, for each satisfiable Boolean assignment that is enumer-
ated during the optimization search,OptiMathSAT invokes a T -Solver optimizer that yields
the corresponding optimal value of a given objective function, as described in Sect. 2.2. This
behavior can be globally adjusted using the following option:

-opt.theory.no_optimization=BOOL [default: false]

If this option is enabled, the T -Solver optimizer is not called and the objective function is
assigned an arbitrary value that is consistent with the current Boolean assignment. Impor-
tantly, disabling the T -Solver optimization might cause non-termination on Theories with
infinitely-many enumerable satisfiable solutions over a closed interval (e.g. LRA).

LIRA -Optimization The optimization procedures for OMT(LRA) and OMT(LIA)
described in Sects. 2.2 and 2.3 respectively, can be tuned with the following options:

-opt.theory.la.ignore_non_improving=BOOL [default: true]

When this flag is enabled, the T -Solver optimizer is not invoked for a given objective function
if the current Boolean assignment does not allow for an improving solution. In order to test
for this condition, OptiMathSAT performs a quick satisfiable check using the most recent
optimal solution approximation for the objective function. This option can be useful in boxed
multi-objective optimization to avoid wasting time within the (usually more expensive) T -
Solver optimizer when it is not profitable.

-opt.theory.la.lar_always_optimize=BOOL [default: false]

123

448 R. Sebastiani, P. Trentin

This option forces the LRA tableau to be T -optimized after each satisfiability check in
single-objective mode, including early-pruning calls, so as to always leave it in an optimal
configuration wrt. the objective function. It has no effects in multi-objective mode.

-opt.theory.la.laz_mode=STR [default: part]

This option sets the aggressiveness of Branch&Bound optimization in theLIA theory solver,
as described in Sect. 2.3. The value: part corresponds to a quick, incomplete search—a.k.a.
truncated B&B in Sect. 2.3—whereas full stands for the complete, but possibly expensive,
Branch&Bound search.

OptiMathSAT offers additional fine-tuning capabilities for controlling the value of
LIRA variables in the optimummodel associatedwithLIRA-objectives. These two options
are used exclusively at model-construction time.

-opt.theory.la.infinite_pow=INT [default: 9]

This option sets the finite representation of infinite LIRA values to be equal to 10N , where
N is the input value.

-opt.theory.la.delta_pow=INT [default: 6]

This other option, sets the value of delta to be equal to 10−N , where N is the input value.Given
an infinite-precisionLRA variable 〈real, eps〉, its model value is set to be real +eps ·delta.
OMT(PB) / MaxSMT. At the present time, OptiMathSAT supports three different
approaches for dealing with MaxSMT/OMT + Pseudo Boolean objectives (Sect. 2.4). It
is possible to select the desired engine using the following option:

-opt.maxsat_engine=STR [default: omt]

Valid values for this option are omt for standard OMT techniques, maxres for the
Maximum Resolution engine and ext for an external MaxSAT solver engine using the
Lemma Lifting approach described in [35]. Importantly, OptiMathSAT takes advantage of
these specialized routines only when the MaxSMT or Pseudo Boolean goals are defined
in the input formula with the aid of soft clauses. When the omt approach is selected, as
described in Sect. 2.4.2 and Sect. 2.4.3, the following options can be used to fine-tune the
encoding of MaxSMT and OMT + PB objectives into OMT:

-opt.asoft.encoding=STR [default: car]

This option selects the preferred encoding of Pseudo-Boolean / MaxSMT cardinality con-
straints induced by the soft-clauses appearing in the input formula. Valid options are seq
and car for the sorting network encoding respectively based on the sequential counter and
cardinality network circuits described in Sect. 2.4.3, and la for the plain linear arithmetic
encoding.

-opt.asoft.circuit_limit=INT [default: 20]

If greater than zero, this option imposes an upper-bound on the maximum number of inputs
that each generated sorting network circuit can have. If there exist MaxSMT or Pseudo-
Boolean terms using more than the given threshold of variables, these are encoded with
a number of smaller sorting network circuits combined by means with linear arithmetic
techniques. This option serves the purpose of limiting the amount of memory used by Sorting
Networks, and has been shown to significantly improve the performance when the sequential
counter encoding for sorting networks is being used [74].

123

OptiMathSAT: A Tool for Optimization Modulo Theories 449

-opt.asoft.no_bidirection=BOOL [default: false]

If this flag is enabled, the encoding of Pseudo-Boolean / MaxSMT objectives is not bidirec-
tional, and it is guaranteed to yield a correct value only if the objective is minimized. This
feature reduces the number of clauses used, and it can positively affect the search performance
in some situations.

-opt.asoft.prefer_pbterms=BOOL [default: true]

When this option is activated, the Boolean label associated with each soft-clause is added to
the list of variables preferred for branching within the CDCL/SAT engine, which typically
improves the search performance. This option has no effect ifopt.asoft.reduce_vars
is also set.

-opt.asoft.reduce_vars=BOOL [default: false]

If this flag is true, then no Boolean label is associated with each soft-clauses, thus decreasing
the number of variables used by the encoding.

-opt.asoft.detect_bounds=BOOL [default: false]

If this option is true, then OptiMathSAT automatically computes the local lower and upper
bounds for MaxSMT and Pseudo-Boolean objectives defined in terms of soft-clauses. This
feature relieves the end-user from manually computing and inserting the correct values in
order to use binary- and adaptive-search strategies.

Miscellaneous Functionalities We conclude with a short list of additional options available
in OptiMathSAT that have no clear grouping reference.

-opt.verbose=BOOL [default: false]

If this flag is enabled, OptiMathSAT shows progress information along the optimization
search, printing in particular each update to the local lower and upper bounds of any objective
function.

-opt.fzn.use_asoft_encoding=BOOL [default: true]

If this option is true, Pseudo-Boolean terms induced by FlatZinc global constraints are
encoded using soft clauses rather than with linear programming.

-opt.fzn.use_ite_encoding=BOOL [default: true]

When this option is enabled, 0-1 variables appearing in the original formula are replaced with
the corresponding ITE terms whenever possible. This is a work-around which aims to avoid
non-linear constraints, which might appear in the formula as a result of the 0-1 encoding,
since they are not supported by OptiMathSAT. For best results, all bool2int constraints
in the input problem should be sorted to appear at the beginning of the constraints section.

-opt.debug.expand_soft=BOOL [default: false]

When this flag is enabled, the API Tracing functionality expands soft-clauses in the corre-
sponding SMT- LIBv2 generated formula, which can then be fed as input to other OMT
solvers which lack support for the assert-soft statement or handle it differently.

123

450 R. Sebastiani, P. Trentin

4 Experimental Evaluations

In order to showcase OptiMathSAT functionalities and performance in different scenarios,
we present some previously published empirical evaluations. The first evaluation is taken
from [73], and depicts a performance comparison among the single-objective, incremen-
tal and boxed multi-objective optimization modes. The second and third experiments are
taken from [74], and provide two samples of OptiMathSAT applications unsuitable for
MaxSAT-based optimization approaches, for which OMT-based techniques must be used.
All the benchmarks, the experimental data and the scripts necessary to reproduce the three
experiments are made available at [3].

4.1 Single-Objective, Incremental andMulti-objective OMT

In this experiment, we report the performance of single-objective, incremental and multi-
objective optimization with OMT-based techniques over the set of benchmarks used in [51].
Each of these benchmarks, generated from a set of C programs used at the SW Verification
Competition of 2013, is a multi-objective problem which computes an over-approximation
of the feasible domain of a number of variables.

Given a multi-objective problem 〈ϕ, obj1, ..., objN 〉, we consider three different OMT-
based approaches for solving it:

– single- objective: the problem is split in N independent problems 〈ϕ, obji 〉 which are
sequentially solved, and the cumulative time is taken;

– incremental: as above, this time leveraging on the incremental interface to pop the
definition of the previous obj before pushing a new one;

– multi- objective: the original problem is fed to the OMT solver configured to run in
boxed multi-objective mode, as explained in 2.5.

We tested each configuration with both Z3 and OptiMathSAT, and compared their
performance with that of the two best-performing versions of Symba presented in [51], that
is Symba(100) and Symba(40)+opt- z3.

Figure 10 shows the global performance data of all procedures under test (top) and the
corresponding pairwise comparisons (bottom).

In the top-left plot in Fig. 10, we observe thatmoving from non-incremental to incremental
OMT results in an uniformly relevant speedup. This improvement can be explained by the
chance of reusing learned clauses across multiple incremental searches, which can save
considerable efforts as explained in Sect. 2.6.

The performance speedup is even more drastic—about one order of magnitude—when
boxed multi-objective configuration is considered, as shown in the top-center plot. We also
notice, in the top-right plot, that this performance improvement is significantly better than
that obtained with incremental OMT.

In the bottom row of Fig. 10, we observe that compared with the other scrutinized OMT
solvers, OptiMathSAT- multi- objective performs much better than the default configu-
ration of Symba (right), and significantly better than both Symba(40)+opt- z3 (center) and
Z3 - multi- objective (left).

123

OptiMathSAT: A Tool for Optimization Modulo Theories 451

Fig. 10 [Table:] comparison amongOptiMathSAT,Symba andZ3 onSWverification problems in [51]. [Top
Plots:] pairwise comparisons between different versions of OptiMathSAT. [Bottom Plots:] pairwise com-
parisons between OptiMathSAT- multi- objective, the two versions of Symba and Z3 - multiobjective

4.2 CGMs with Max–Min Goal + PB Objectives

Here we consider a variant of the problem of computing a lexicographically-optimum real-
ization of a constrained goal model [59,60]. In this comparison, the three PB/MaxSMT

objectives appearing in the original set of formulas are normalized so that their respective
range is equal to [0, 1] and combined in a single max–min goal rather than lexicographically
optimized.

To the best of our knowledge, none of the most-efficient MaxSAT-based techniques
described in Sect. 2.4.1 is applicable on this problem. Therefore, we settled on using OMT-
based techniques presented in Sects. 2.4.2 and 2.4.3 only.

Looking at the table and the scatter-plot on the left in Fig. 11, we observe a significant
performance improvement when the baseline OMT-based technique of OptiMathSAT is
enhanced with cardinality networks. We notice also that this approach, when implemented
in OptiMathSAT, yields equivalent or slightly better performance than Z3 by looking at
both the table and the scatter-plot on the right.

123

452 R. Sebastiani, P. Trentin

Fig. 11 [Table:] results of various solvers with OMT-based configurations on CGM-encoding problems of
[59,60] with max-min objective functions. [Left scatterplot:] OptiMathSAT + card. network versus plain
OptiMathSAT. [Right scatterplot:] Z3 versus OptiMathSAT + card. network

4.3 LMTs withmixed complex objective functions.

In this experiment we consider a benchmark set of 500 formulas generated with PyLMT

[8], a tool for Structured Learning Modulo Theories [76]—doing inference in the context of
machine learning in hybrid domains—which uses OptiMathSAT as a black-box engine.

The optimization goal obj used in these formulas is a complex arithmetic combination of
several PB terms and has the following general form:

obj
def= ∑

j w j · B j + cover − ∑
k vk · Ck − |K − cover |,

cover
def= ∑

i zi Ai , (11)

where Ai , B j , Ck are Boolean atoms and wi , v j , zk, K are rational constants.
The results are presented in Fig. 12. Similarly to the other experiments, by looking at

the table and the scatter-plot on the left we observe that the performance of the OMT-based
technique in OptiMathSAT is improved by cardinality networks. In this case, however, the
performance gain is not dramatic.We explain this by observing that on this set of benchmarks
the values of weights wi , vi , zi can be very heterogeneous, and this limits the viability of the
sorting-networkswhich are used onlywhen severalweights share the same value (Sect. 2.4.3).
We notice also that, even without the help of sorting networks, the OMT-based technique of
OptiMathSAT performs significantly better than that of Z3 .

5 Applications

Webrieflymention a few examples of recent applications—someofwhich are very innovative
in their respective domains—that have been technologically enabled by OMT and by the

123

OptiMathSAT: A Tool for Optimization Modulo Theories 453

Fig. 12 [Table:] results of various solvers with OMT-based configurations on LMT-encoding problems of
[76] with complex objective functions. [Left scatterplot:] OptiMathSAT + card. network versus plain Opti-
MathSAT. [Right scatterplot:] Z3 versus OptiMathSAT + card. network

usage of OptiMathSAT as backend automated-reasoning engine. Some such applications
were of primary importance to solicit and drive the development of some of the ideas and
techniques in Sects. 2 and 3.

5.1 LearningModulo Theories

In Machine Learning applications, performing inference and learning in hybrid domains—
characterized by both continuous and Boolean/discrete variables—is a particularly daunting
task. Structured Learning Modulo Theories (SLMT) [76] addresses the problemby combining
(Structured-Output) Support Vector Machines (SVNs) with OMT, so that the latter plays the
role of inference and separation oracle for the former. The tool LMT implementing the
SLMT method [5] uses OptiMathSAT as backend OMT engine. An example application
to automatic character drawing via LMT with OptiMathSAT taken from [76] is reported
in Fig. 13. Interestingly, as reported in Sect. 4.3, SLMT required defining objectives which
were complex arithmetic combinations of several PB terms (like, e.g., (11)). We refer the
reader to [76] for details.

5.2 Constrained Goal Models

GoalModels (GM) are used inRequirements Engineering to represent software requirements,
objectives, and design qualities [77]. Constrained Goal Models (CGM) [59,60] are a novel,
formal version of GM, representing AND/OR goal decomposition graphs which are enriched
with constraints so that to handle preferences, numerical attributes and resources (e.g., scores,
financial cost, workforce, etc.).

123

454 R. Sebastiani, P. Trentin

Fig. 13 An example from [76] of SLMT application to the hybrid domain of automatic character drawing.
Results for the “C” 12 × 12-pixel character drawing task

Fig. 14 An example from [59] of a simple CGM and its realization which minimizes lexicographically the
numerical objective 〈Penalty − Reward,workTime, cost〉. The realization is highlighted in yellow. (Color
figure online)

OptiMathSAT is used as a backend reasoning engine of CGM- Tool [1,59,60], a tool
for building and reasoning on CGMs, allowing for automatically verifying the realizability of
a CGM and for finding optimal realizations according to some specified criterion. A simple
example ofCGMfor ameeting scheduling example taken from [59,60] is presented in Fig. 14.
We refer the reader to [59,60] for details.

5.3 WCET

In the context of real-time systems, it is often necessary to compute an upper bound on the
worst-case execution time (WCET) of programs with hard time constraints. In [45], Henry et
al. presented a novel approach for computing upper bounds for loop-free C programs based
onOptimizationModulo Theories and Z3. By taking into account the semantics of a program,

123

OptiMathSAT: A Tool for Optimization Modulo Theories 455

which allows for pruning infeasible paths from the search space, and conjoining appropriate
cuts to the formula, to bring it to a tractable size, they were able to obtain tighter estimates
of the WCET, in some cases with an impressive improvement.

Recently, there has been an attempt to expand on the research of [45] with a new project,
which is still work in progress, which uses OptiMathSAT at its core [10]. In this work,
OptiMathSAT has been extended with the capability of learning a new set of T -lemmas,
starting from subsequent T -conflicts, which relax the need for conjoining cuts to the initial
formula to bring it to a tractable size. Unpublished preliminary experimental results show
the usefulness of this approach.

5.4 Quantum Annealing

Quantum annealers (QA) are specialized quantum computers that minimize objective func-
tions over binary variables by physically exploiting quantum effects [18,46]. Current QA
platforms like D-Wave 2000Q [2] allow for the optimization of quadratic objectives defined
over binary variables (qubits), solving quadratic unconstrained binary optimization (QUBO)
problems. In the last decade QA systems have scaled with Moore-like growth, s.t. current
architectures provide 2048 sparsely-connected qubits, and continued exponential growth is
anticipated.

Bian et al. [19] have investigated the problem of effectively encoding SAT and MaxSAT
problems into QUBOs to be fed to and solved by state-of-the-art D-Wave 2000Q QAs. To
this extent, OptiMathSAT is used off-line to create libraries of QUBO encodings of useful
Boolean functions by automatically computing an optimum choice of (a) the QUBO input
parameter values and of (b) variable-to-qubit placement, so that to maximize a parameter
(gap) stating the robustness of the system wrt. noise. The two problems (a) and (a)+(b) are
addressed by solving an OMT(LRA) and an OMT(LIRA∪UF) problem respectively. We
refer the reader to [19] for details.

6 RelatedWork

MaxSMT and OMT(PB) The idea of optimization in SMT was first introduced by
Nieuwenhuis & Oliveras [61], who presented an abstract logical framework of “SMT with
progressively stronger theories” and presented implementations for MaxSMT based on this
framework. Cimatti et al. [32] introduced the notion of “Theory of Costs” C to handle PB
cost functions and constraints by an ad-hoc and independent “C-solver” in the standard lazy
SMT schema, and implemented a variant of MathSAT tool able to handle SMT with PB
constraints and to minimize PB cost functions. Cimatti et al. [35] presented a “modular”
approach for MaxSMT, combining a lazy SMT solver with a MaxSAT solver, which can be
used as blackboxes. We recall that SMT with PB functions and MaxSMT can be encoded
into each other, and that both are strictly less general than the OMT(LRA ∪ T) problems
(see [70,71]).

O MT (LIRA ∪ T) Sebastiani and Tomasi [70,71] introduced a wider notion of opti-
mization in SMT, namely Optimization Modulo Theories (OMT) with LRAcost functions,
OMT(LRA ∪ T), which allows for finding models minimizing some LRA cost term—T
being some (possibly empty) stably-infinite theory s.t. T and LRA are signature-disjoint—
and presented novel OMT(LRA ∪ T) tools which combine standard SMT with LP
minimization techniques. (T can also be a combination of Theories

⋃
i Ti .) Importantly,

123

456 R. Sebastiani, P. Trentin

bothMaxSMT and SMTwith PB objectives can be encoded into OMT(LRA∪T), whereas
the contrary is not possible [70,71]. Eventually, OMT(LRA∪ T) has been extended so that
to handle costs on the integers, incremental OMT, multi-objective, and lexicographic OMT
and Pareto-optimality [22,23,48,51,72,73].

OMT Tools To the best of our knowledge only four OMT solvers are currently implemented:
bclt [48],Z3 (a.k.a.Z3Opt) [22,23],OptiMathSAT [72,73], and Symba [51]. Remarkably,
bclt,Z3 andOptiMathSAT currently implement also specialized procedures forMaxSMT,
leveraging to SMT level state-of-the-art MaxSAT procedures; in addition, Z3 features a
Pseudo-Boolean T -solverwhich can generate sorting circuits on demand for Pseudo-Boolean
inequalities featuring sums with small coefficients when a Pseudo-Boolean inequality is used
some times for unit propagation/conflicts [21,23].

MILP and LGDP Mixed Integer Linear Programming (MILP) is an extension of Linear Pro-
gramming (LP) involvingboth discrete and continuous variables.A large variety of techniques
and tools for MILP are available, mostly based on efficient combinations of LP, branch-
and-bound search mechanism and cutting-plane methods (see e.g. [52]). SAT techniques
have also been incorporated into these procedures for MILP (see [13]). Linear Disjunctive
Programming (LDP) problems are LP problems where linear constraints are connected by
conjunctions and disjunctions [15]. Closest to our domain, Linear Generalized Disjunctive
Programming (LGDP), is a generalization of LDP which has been proposed in [65] as an
alternative model to the MILP problem. Unlike MILP, which is based entirely on algebraic
equations and inequalities, the LGDP model allows for combining algebraic and logical
equations with Boolean propositions through Boolean operations, providing a much more
natural representation of discrete decisions. Current approaches successfully address LGDP
by reformulating and solving it as aMILP problem [65,67,68,78]; these reformulations focus
on efficiently encoding disjunctions and logic propositions into MILP, so as to be fed to an
efficient MILP solver like Cplex. An extensive empirical comparison of OMT(LRA) vs
LGDP was presented in [71].

To this extent, we believe that OMT solvers can play as an interesting alternative to MILP
oneswhen the addressed problems (i) have a strongBoolean component (see e.g. the empirical
results in [71]), or (ii) require dealing with other theories, in particular non-numerical ones,
or (iii) require incremental calls –or in any combination of the above cases.

FlatZinc and MiniZinc The study in [24,26,27] represents one of the earliest attempts
to investigate the effectiveness of SMT on problems typically solved with CP and MILP

techniques. In those papers, Bofill et Al. presented SIMPLY, a compiler for translating CSP
problems into the SMT- LIBv2 format and showed that SMT tools can scale up well on
benchmarks requiring substantial Boolean reasoning. In a following study [25], Bofill et Al.
presented a novel translation framework achieving the same goal, but this time targeting
MiniZinc, a widely adopted high-level declarative language for modeling CSP problems.
Remarkably,MiniZinc supports an extensive library of global constraints, several data types
(floats, bools, integers, sets and multidimensional arrays), user-defined predicates, if-then-
else and let expressions. MiniZinc is also the language used at the MiniZinc Challenge
[56], an yearly competition among CSP tools dealing with a vast library of benchmarks
about planning, scheduling, logistics and more. Differently than with SIMPLY, the approach
adopted in [25] is to combine an existingmzn2fzn tool, which compilesMiniZinc problems
into an easily-parsable format called FlatZinc, with a novel fzn2smt compiler mapping
FlatZinc models into SMT- LIBv2 formulas. In order to deal with optimization goals, the
latter tool was complemented with an optimization procedure built on top of an external

123

OptiMathSAT: A Tool for Optimization Modulo Theories 457

SMT solver used as a black-box. Remarkably, fzn2smt—paired with the SMT solver Yices
[40]—was able to score two silvermedals for 2years consecutively in theMiniZincChallenge
(2011 and 2012).

Other Related Approaches In the literature, there exist several research attempts to inte-
grate the very successful achievements obtained in the last decades by SAT communities
within Finite Domain Propagator (FDP) and Integer Linear Programming (ILP) solvers. For
instance, both [42,63,64] presented an FDP solver with a SAT engine, used for lazy clause
generation, fast back-jumping and recording of clauses learned along the search. In [53],
instead, Manolios et Al. presented Integer Linear Programming Modulo Theories (IMT), a
sound and complete framework for combining ILP with a background solver for a theory T,
and Inez, a novel IMT tool. Differently than SMT, which is centered around the SAT solver,
the search in an IMT solver is guided by a Branch and Cut procedure that communicates
with some T -solver by means of interface difference logic inequalities. An experimental
evaluation, conducted over a set of benchmarks derived from the problem of synthesizing
architectural models for a Boeing 787 Dreamliner, showed that IMT can be competitive wrt.
state-of-the-art SMT solvers.

7 Conclusions and Future Developments

In this paper, we presented OptiMathSAT, a state-of-the-art OMT solver which supports
both single- andmulti-objective optimization ofLRA,LIA,LIRA or PB/MaxSMT objec-
tives. In addition, we explored the concept of compositional definition of objectives, currently
one of the distinguished features of OptiMathSAT, that we believe it should become a stan-
dard for all OMT solvers in the future. In our overview of OptiMathSAT, we focused on
its high-level architecture and its tool-set of functionalities. To this extent, the presentation is
complemented with both an introduction to OMT, tailored around OptiMathSAT specific
set of techniques and heuristics, and a selected review of experimental results published in
previous papers.

OptimizationModulo Theories is an exciting, albeit young, technologywith largemargins
for improvement.We are planning to to investigate novelOMT techniques and hence to extend
OptiMathSAT capabilities along several directions.

First, we plan to extend OptiMathSAT to handle objectives defined on other theo-
ries than linear arithmetic that are already supported by MathSAT5: Bit-Vectors [57] and
floating-point arithmetic [29,30,44]. Also, we plan to investigate—and to integrate intoOpti-
MathSAT if successful—OMT versions of the novel SMT procedures for NRA [33] and
forNRA plus transcendental functions [34] which have been implemented on top of Math-

SAT5.
Another opportunity is represented by the introduction of a Pareto optimization scheme in

OptiMathSAT, similarly to what is already available in Z3 [22,23], possibly adapting some
well-known algorithm to our needs (e.g., [49,50,66]). This extension could be matched with
a more general combination of OMTwith the so-called all-SMT functionality [47], currently
supported by MathSAT5, which would allow for easily enumerating all the equivalently-
optimal solutions of a given problem.

Finally, we plan to further expand our support for MiniZinc, making OptiMathSAT

the bridge of two worlds that are now seemingly distinctly separated. In order to do so, we
strive for improving the efficiency and expressiveness of OptiMathSAT so as to cover the
largest possible subset of the FlatZinc language. This may require extending our OMT

123

458 R. Sebastiani, P. Trentin

tool with dedicated procedures for dealing with global constraints and sets, and possibly
investigating more efficient techniques or heuristics for dealing with heavily ILP-focused
problems. This work should be validated with a serious extensive empirical comparison and
possibly by making OptiMathSAT participate to the annual MiniZinc competition [56], if
deemed eligible.

References

1. CGM-Tool. http://www.cgm-tool.eu
2. D-wave 2x tecnology overview. https://www.dwavesys.com/sites/default/files/D-Wave
3. Experimental data. http://disi.unitn.it/trentin/resources/jar2017.tar.gz
4. FlatZinc 1.6. http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
5. LMT. http://disi.unitn.it/~teso/lmt/lmt.tgz
6. MiniZinc 1.6. http://www.minizinc.org/downloads/doc-1.6/zinc-spec.pdf
7. OptiMathSAT. http://optimathsat.disi.unitn.it
8. PyLMT. http://www.bitbucket.org/stefanoteso/pylmt
9. FlatZinc support in OptiMathSAT. http://optimathsat.disi.unitn.it/pages/fznreference.html

10. WCET OMT. https://github.com/PatrickTrentin88/wcet_omt
11. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for smaller and

better encodings of cardinality constraints. In: 19th International Conference on Principles and Practice
of Constraint Programming, CP’13 (2013)

12. Achterberg, T.: Scip: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
13. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to

integrate CP and MIP. In: Proceedings of CPAIOR’08, LNCS, pp. 6–20. Springer (2008)
14. Ansótegui, C., Bofill, M., Palahí, M., Suy, J., Villaret, M.: Satisfiability modulo theories: an efficient

approach for the resource-constrained project scheduling problem. In: SARA (2011)
15. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math.

89(1–3), 3–44 (1998)
16. Barrett, C., Ranise, S., Stump, A., Tinelli, C.: The satisfiability modulo theories library (smt-lib) (2010).

http://www.smtlib.org
17. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories, chapter 26. In: Biere,

A., et al. (eds.) Handbook of Satisfiability, pp. 825–885. IOS Press, Amsterdam (2009)
18. Bian, Z., Chudak, F., Israel, R., Lackey, B.,Macready,W.G., Roy,A.:Discrete optimization using quantum

annealing on sparse Ising models. Front. Phys. 2, 56 (2014)
19. Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R., Varotti, S.: Solving SAT and MaxSAT with

a quantum annealer: foundations and a preliminary report. In: Dixon, C., Finger, M. (eds.) Frontiers of
Combining Systems, LNCS, vol. 10483, pp. 153–171. Springer, Berlin (2017)

20. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Ams-
terdam (2009)

21. Bjorner, N.: Personal communication, 02 (2016)
22. Bjorner, N., Phan, A.-D.: νZ—Maximal satisfaction with Z3. In: Proceedings of International Sympo-

sium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014. EasyChair
Proceedings in Computing (EPiC). http://www.easychair.org/publications/?page=862275542

23. Bjorner, N., Phan, A.-D., Fleckenstein, L.: Z3—an optimizing SMT solver. In: Proceedings of TACAS,
LNCS, vol. 9035. Springer, Berlin (2015)

24. Bofill,M., Palahı,M., Suy, J., Villaret,M.: Simply: a compiler from a cspmodeling language to the smt-lib
format. In: Proceedings of the 8th International Workshop on Constraint Modelling and Reformulation,
pp. 30–44 (2009)

25. Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems with SAT modulo
theories. Constraints 17(3), 273–303 (2012)

26. Bofill, M., Palahı, M., Villaret, M.: A system for CSP solving through satisfiability modulo theories. IX
Jornadas sobre Programación y Lenguajes (PROLE09), pp. 303–312 (2009)

27. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems with SMT. In:
Theory and Applications of Satisfiability Testing-SAT 2010, pp. 300–305 (2010)

28. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.:
Efficient theory combination via Boolean search. Inf. Comput. 204(10), 1493–1525 (2006)

123

http://www.cgm-tool.eu
https://www.dwavesys.com/sites/default/files/D-Wave
http://disi.unitn.it/trentin/resources/jar2017.tar.gz
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://disi.unitn.it/~teso/lmt/lmt.tgz
http://www.minizinc.org/downloads/doc-1.6/zinc-spec.pdf
http://optimathsat.disi.unitn.it
http://www.bitbucket.org/stefanoteso/pylmt
http://optimathsat.disi.unitn.it/pages/fznreference.html
https://github.com/PatrickTrentin88/wcet_omt
http://www.smtlib.org
http://www.easychair.org/publications/?page=862275542

OptiMathSAT: A Tool for Optimization Modulo Theories 459

29. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Interpolation-based verification of floating-
point programs with abstract CDCL. In: SAS, pp. 412–432 (2013)

30. Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point logic with abstract
conflict driven clause learning. Form. Methods Syst. Des. 45(2), 213–245 (2014)

31. Byrd, R.H., Goldman, A.J., Heller, M.: Technical note–recognizing unbounded integer programs. Oper.
Res. 35(1), 140–142 (1987)

32. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs:
Foundations and applications. In: TACAS, LNCS, vol. 6015, pp. 99–113. Springer, Berlin (2010)

33. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant Checking of NRA Transition
Systems via Incremental Reduction to LRA with EUF, pp. 58–75. Springer, Berlin (2017)

34. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability modulo transcendental func-
tions via incremental linearization. In: Proceedings of International Conference onAutomated Deduction,
CADE-26, LNCS. Springer, Berlin (2017)

35. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: Amodular approach to maxsat modulo theories.
In: International Conference on Theory and Applications of Satisfiability Testing, SAT, LNCS, vol. 7962
(2013)

36. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT 5 SMT solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’13., LNCS, vol. 7795, pp. 95–109.
Springer, Berlin (2013)

37. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of craig interpolants in satisfiability modulo
theories. ACM Trans. Comput. Logics TOCL 12(1), 7 (2010)

38. Cimatti, A., Griggio, A., Sebastiani, R.: Computing small unsatisfiable cores in SAT modulo theories. J.
Artif. Intell. Res. JAIR 40, 701–728 (2011)

39. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV, LNCS, vol. 4144 (2006)
40. Dutertre, B., de Moura, L.: System description: Yices 1.0. In: Proceedings on 2nd SMT competition,

SMT-COMP’06 (2006). https://www.yices.csl.sri.com/papers/yices-smtcomp06.pdf
41. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of Satisfiability Testing

(SAT 2003), LNCS, vol. 2919, pp. 502–518. Springer, Berlin (2004)
42. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Proceedings of the 15th International

Conference on Principles and Practice of Constraint Programming, CP’09, pp. 352–366. Springer, Berlin
(2009)

43. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic. J. Satisf. Boolean
Model. Comput. JSAT 8, 1–27 (2012)

44. Haller, L., Griggio, A., Brain,M., Kroening, D.: Deciding floating-point logic with systematic abstraction.
In: Proceedings of FMCAD (2012) (to appear)

45. Henry, J., Asavoae, M., Monniaux, D., Maïza, C.: How to compute worst-case execution time by opti-
mization modulo theory and a clever encoding of program semantics. SIGPLAN Not. 49(5), 43–52, 06
(2014)

46. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J.,
Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky,
N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J.,
Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194–198 (2011)

47. Lahiri, S.K.,Nieuwenhuis, R., Oliveras,A.: SMT techniques for fast predicate abstraction. In: Proceedings
of CAV, LNCS 4144. Springer, Berlin (2006)

48. Larraz, D., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: Minimal-model-guided approaches to solv-
ing polynomial constraints and extensions. In: SAT (2014)

49. Laumanns,M., Thiele, L., Zitzler, E.: An adaptive scheme to generate the pareto front based on the epsilon-
constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R.E.: (eds.), Practical Approaches to
Multi-Objective Optimization, number 04461 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
(2005). Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany

50. Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the pareto front of multi-criteria opti-
mization problems. In: Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, LNCS, vol. 6015, pp. 69–83. Springer, Berlin (2010)

51. Li, Y., Albarghouthi, A., Kincad, Z., Gurfinkel, A., Chechik, M.: Symbolic Optimization with SMT
Solvers. In: POPL (2014)

52. Lodi, A.: Mixed integer programming computation. In: Jünger, M., et al. (eds.) 50 Years of Integer
Programming 1958–2008, pp. 619–645. Springer, Berlin (2009)

53. Manolios, P., Papavasileiou, V.: Ilp modulo theories. In: CAV, pp. 662–677 (2013)

123

https://www.yices.csl.sri.com/papers/yices-smtcomp06.pdf

460 R. Sebastiani, P. Trentin

54. Marques-Silva, J., Argelich, J., Graa, A., Lynce, I.: Boolean lexicographic optimization: algorithms &
applications. Ann. Math. Artif. Intell. 62(3–4), 317–343 (2011)

55. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers, chapter 4. In: Biere,
M., et al. (eds.) Handbook of Satisfiability, pp. 131–153. Springer, Berlin (2009)

56. MiniZinc. www.minizinc.org
57. Nadel, A., Ryvchin, V.: Bit-vector optimization. In: Chechik, M., Raskin, J.F. (eds.) Tools and Algorithms

for the Construction and Analysis of Systems, TACAS 2016, LNCS, vol. 9636. Springer, Berlin (2016)
58. Narodytska,N., Bacchus, F.:Maximumsatisfiability using core-guidedmaxsat resolution. In: Proceedings

of theTwenty-EighthAAAIConference onArtificial Intelligence, July 27–31, 2014,QuébecCity,Québec,
Canada, pp. 2717–2723. AAAI Press (2014)

59. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.: Multi-object reasoning with constrained goal
models. Requirements Engineering, 2016. In print. Published online (24 December 2016). https://doi.
org/10.1007/s00766-016-0263-5

60. Nguyen, C.M., Sebastiani, R., Giorgini, P.,Mylopoulos, J.: Requirements evolution and evolution require-
ments with constrained goal models. In: Proceedings of the 37nd International Conference on Conceptual
Modeling-ER16, LNCS. Springer (2016)

61. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Proceedings of
Theory and Applications of Satisfiability Testing-SAT 2006, LNCS, vol. 4121. Springer (2006)

62. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract
Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

63. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation, pp. 544–558. Springer,
Berlin (2007)

64. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3),
357–391 (2009)

65. Raman, R., Grossmann, I.:Modelling and computational techniques for logic based integer programming.
Comput. Chem. Eng. 18(7), 563–578 (1994)

66. Rayside, D., Estler, H.-C., Jackson, D.: The guided improvement algorithm for exact, general-purpose,
many-objective combinatorial optimization. Technical Report, Massachusetts Institute of Technology,
Cambridge, 07 (2009)

67. Sawaya, N.W., Grossmann, I.E.: A cutting plane method for solving linear generalized disjunctive pro-
gramming problems. Comput. Chem. Eng. 29(9), 1891–1913 (2005)

68. Sawaya, N.W., Grossmann, I.E.: A hierarchy of relaxations for linear generalized disjunctive program-
ming. Eur. J. Oper. Res. 216(1), 70–82 (2012)

69. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Comput. JSAT 3(3–4),
141–224 (2007)

70. Sebastiani, R., Tomasi, S.: Optimization in SMTwith LA(Q) cost functions. In: IJCAR, LNAI, vol. 7364,
pp. 484–498. Springer (2012)

71. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs. ACM Trans. Comput.
Logics 16(2), 12 (2015)

72. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. In: Proceedings of
International Conference on Computer-Aided Verification, CAV 2015, LNCS, vol. 9206. Springer (2015)

73. Sebastiani, R., Trentin, P.: Pushing the envelope of optimization modulo theories with linear-arithmetic
cost functions. In: Proceedings of International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’15, LNCS, vol. 9035. Springer (2015)

74. Sebastiani,R., Trentin, P.:Onoptimizationmodulo theories,maxsmt and sortingnetworks. In: Proceedings
of International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’17, LNCS, vol. 10205. Springer (2017)

75. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.)
Principles and Practice of Constraint Programming, CP, LNCS, vol. 3709, pp. 827–831. Springer, Berlin
(2005)

76. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244, 166–187
(2017)

77. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceedings of the Fifth
IEEE International Conference on Requirements Engineering, RE’01, pp. 249. IEEE Computer Society
(2001)

78. Vecchietti, A., Grossmann, I.: Computational experience with logmip solving linear and nonlinear dis-
junctive programming problems. In: Proceedings of FOCAPD, pp. 587–590 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

www.minizinc.org
https://doi.org/10.1007/s00766-016-0263-5
https://doi.org/10.1007/s00766-016-0263-5

	OptiMathSAT: A Tool for Optimization Modulo Theories
	Abstract
	1 Introduction
	2 Optimization Modulo Theories
	2.1 Basics on Lazy SMT Solving
	2.2 OMT (mathcalLRA mathcalT)
	2.2.1 The Inline OMT Schema
	2.2.2 Handling OMT(mathcalLRA mathcalT): Theory Combination

	2.3 OMT (mathcalLIA mathcalT)
	2.4 OMT(PB)/MaxSMT
	2.4.1 MaxSMT-specific techniques
	2.4.2 MaxSMT as OMT
	2.4.3 MaxSMT as OMT plus Sorting Networks

	2.5 OMT with Multiple Objectives
	2.5.1 Multiple-independent-objective OMT
	2.5.2 Lexicographic OMT
	2.5.3 OMT with Linear Combinations of Objectives
	2.5.4 OMT with Min–Max and Max–Min Combination of Objectives

	2.6 Incrementality in OMT

	3 OptiMathSAT
	3.1 Architecture
	3.2 Objectives in OptiMathSAT: A Compositional Approach
	3.3 Input Interfaces
	3.3.1 Extended SMT-LIBv2
	3.3.2 FlatZinc/MiniZinc
	3.3.3 API

	3.4 OptiMathSAT Functionalities and Options

	4 Experimental Evaluations
	4.1 Single-Objective, Incremental and Multi-objective OMT
	4.2 CGMs with Max–Min Goal + PB Objectives
	4.3 LMTs with mixed complex objective functions.

	5 Applications
	5.1 Learning Modulo Theories
	5.2 Constrained Goal Models
	5.3 WCET
	5.4 Quantum Annealing

	6 Related Work
	7 Conclusions and Future Developments
	References

