
JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.1 (1-34)

Information and Computation ••• (••••) ••••••
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Solving SAT (and MaxSAT) with a quantum annealer:

Foundations, encodings, and preliminary results

Zhengbing Bian a,1, Fabian Chudak a, William Macready a,1, Aidan Roy a,1,
Roberto Sebastiani b,∗, Stefano Varotti b

a D-Wave Systems Inc., 3033 Beta Ave., Burnaby V5G 4M9, Canada
b DISI, University of Trento, via Sommarive 9, I-38123 Povo (TN), Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 November 2018
Received in revised form 20 June 2020
Accepted 19 July 2020
Available online xxxx

Keywords:
Quantum annealing (QA)
Quadratic unconstrained binary
optimization (QUBO)
Ising model
Satisfiability modulo theories
Optimization modulo theories
SAT
MaxSAT
Chimera graph

Quantum annealers (QAs) are specialized quantum computers that minimize objective
functions over discrete variables by physically exploiting quantum effects. Current QA
platforms allow for the optimization of quadratic objectives defined over binary variables
(qubits), also known as Ising problems. In the last decade, QA systems as implemented by
D-Wave have scaled with Moore-like growth. Current architectures provide 2048 sparsely-
connected qubits, and continued exponential growth is anticipated, together with increased
connectivity.
We explore the feasibility of such architectures for solving SAT and MaxSAT problems as
QA systems scale. We develop techniques for effectively encoding SAT –and, with some
limitations, MaxSAT– into Ising problems compatible with sparse QA architectures. We
provide the theoretical foundations for this mapping, and present encoding techniques that
combine offline Satisfiability and Optimization Modulo Theories with on-the-fly placement
and routing. Preliminary empirical tests on a current generation 2048-qubit D-Wave system
support the feasibility of the approach for certain SAT and MaxSAT problems.

© 2020 Elsevier Inc. All rights reserved.

1. Motivations and goals

Quantum Computing (QC) promises significant computational speedups by exploiting the quantum-mechanical phenomena
of superposition, entanglement and tunneling. QC relies on quantum bits (qubits). As opposed to bits, qubits can be in a
superposition state of 0 and 1.2 Theoretically, quantum algorithms can outperform their classical counterparts. Examples
of this are Shor’s algorithm [1] for prime-number factoring and Grover’s algorithm [2] for unstructured search. Once the
technology is fully developed, it is expected that quantum computing will replace classical computing for some complex
computational tasks.

However, despite large investment, the development of practical gate-model quantum computers is still in its infancy
and current prototypes are limited to less than 20 qubits. An alternative approach to standard gate-model QC is Quantum
Annealing, a form of computation that efficiently samples the low-energy configurations of a quantum system [3–5]. In

* Corresponding author.
E-mail address: roberto.sebastiani@unitn.it (R. Sebastiani).

1 Present affiliation: Sanctuary AI, Vancouver, Canada.
2 Superposition is perhaps the best-known and most surprising aspect of quantum physics (e.g. the famous Schrödinger’s cat which is both dead and

alive prior to observation).
https://doi.org/10.1016/j.ic.2020.104609
0890-5401/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2020.104609
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:roberto.sebastiani@unitn.it
https://doi.org/10.1016/j.ic.2020.104609

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.2 (1-34)

2 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Fig. 1. Top: Moore-like progress diagram of the development of D-Wave’s quantum annealers. X axis: year of release. Y axis: # of qubits. Notice the
logarithmic scale of the Y axis. Bottom: The state-of-the-art D-Wave 2000Q quantum annealer. (Courtesy D-Wave Systems Inc.)

particular, D-Wave Systems Inc.3 has developed special-purpose Quantum Annealers (QAs) which draw optima or near-
optima from certain quadratic cost functions on binary variables. Since 2007, this approach has allowed D-Wave to improve
QAs at a Moore-like rate, doubling the number of qubits roughly every 1.2 years, and reaching 2048 qubits in the state-of-
the-art D-Wave 2000Q annealer in January 2017 (Fig. 1). These sophisticated devices are nearly-completely shielded from
magnetic fields (≤ 10−9 T) and are cooled to cryogenic temperatures (≤ 20 mK).

D-Wave’s QAs can be used as specialized hardware for solving the Ising problem:

argmin
z∈{−1,1}|V |

H(z), (1)

H(z)
def=
∑
i∈V

θi zi +
∑

(i, j)∈E

θi j zi z j, (2)

where each variable zi ∈ {−1,1} is associated with a qubit; G = 〈V , E〉 is an undirected graph, the hardware graph, whose
edges correspond to the physically allowed qubit interactions; and θi , θi j are programmable real-valued parameters. H(z) is
known as the Ising Hamiltonian or Ising model. Ising problems are equivalent to Quadratic Unconstrained Binary Optimization
(QUBO) problems, which use {0, 1}-valued variables rather than {−1, 1}-valued ones.4 In current 2000Q systems, θi and θi j
must be within the ranges [−2, 2] and [−1, 1] respectively, and G is a lattice of 16 × 16 8-qubit bipartite modules (tiles)
known as the Chimera topology, shown in Figs. 2 and 3. The quadratic term in (2) is restricted to the edges of G , which is
very sparse (vertices have degree at most 6). Despite this restriction, the Chimera Ising problem (1) is NP-hard [6].

Theory suggests that quantum annealing may solve certain optimization problems faster than state-of-the-art algorithms
on classical computers [5]. Quantum effects such as tunneling and superposition provide QAs with novel mechanisms for
escaping local minima, thereby potentially avoiding sub-optimal solutions commonly found by classical algorithms based on

3 http://www.dwavesys .com.
4 Ising variables zi are related to QUBO variables xi through zi = 2xi − 1.

http://www.dwavesys.com

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.3 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 3
Fig. 2. The 2048-qubit connection graph of the D-Wave 2000Q quantum annealer architecture.

Fig. 3. Example of the Chimera topology: the hardware graph for system of 72 qubits in a 3-by-3 grid of 8-qubit tiles. (D-Wave 2000Q systems have 2048
qubits in a 16-by-16 grid.)

bit-flip operations (including WalkSAT, simulated annealing and others [7–9]). Although practical QA systems do not return
optimal solutions with probability 1, the D-Wave processor has been shown to outperform a range of classical algorithms
on certain problems designed to match its hardware structure [10,11]. This suggests the possible use of QAs to address hard

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.4 (1-34)

4 Z. Bian et al. / Information and Computation ••• (••••) ••••••
combinatorial decision/optimization problems, in particular NP-hard problems like SAT and MaxSAT [12,13], by encoding
them into the Ising problem (1).

Our goal is to exploit quantum annealing as an engine for solving SAT, MaxSAT, and other NP-hard problems. Since
current QAs have a limited number of qubits and connections, we target problem instances which are relatively small but
computationally hard enough to be out of the reach of state-of-the-art classical solvers. Since QAs are not guaranteed to
find an optimum and hence cannot certify the unsatisfiability of an encoded formula (§2.1), we target SAT problems such
as cryptanalysis [14–16] or radio bandwidth repacking [17] which are surely or most-likely satisfiable, but whose solution
is hard to find.

In this paper, we investigate the problem of encoding the satisfiability of an input Boolean formula F (x) into an Ising
problem (1) from both theoretical and practical perspectives. In principle, converting SAT to Ising with an unbounded num-
ber of fully-connected qubits is straightforward. In practice, these encodings must be done both effectively (i.e., in a way that
uses only the limited number of qubits and connections available within the QA architecture, while optimizing performance
of the QA algorithm), and efficiently (i.e., using a limited computational budget for computing the encoding). We provide
the necessary theoretical foundations, in which we analyze and formalize the problem and its properties. Based on this
analysis, we then provide and implement practical encoding procedures. Finally, we empirically evaluate the effectiveness of
these encodings on a D-Wave 2000Q quantum annealer.

We start from the observation that SATtoIsing can be formulated as a problem in Satisfiability or Optimization Modulo
Theories (SMT/OMT) [18,19] on the theory of linear rational arithmetic, possibly enriched with uninterpreted function sym-
bols. SATtoIsing is an intrinsically over-constrained problem, so a direct “monolithic” solution, encoding the whole input
Boolean formula F (x) in one step, would typically require the introduction of many additional ancillary Boolean variables.
These extra variables, in addition to wasting many qubits, would result in very large SMT/OMT formulas: solving the SAT-
toIsing via SMT would become computationally very hard, possibly even harder than the original SAT problem.

To cope with these issues, we adopt a scalable “divide-and-conquer” approach to SATtoIsing. First, we decompose the
input Boolean formula into a conjunction of smaller subformulas. Then, we encode each subformula into an Ising model and
place each subformula model into a disjoint subgraph of the hardware graph. Finally, we connect the qubits representing
common variables from different subformulas using chains of qubits that are constrained to be logically identical.

To exploit the intrinsic modularity of the architecture graph (Figs. 2, and 3), we partition the input formula F (x) into
subformulas which can be naturally encoded and placed into one or two adjacent 8-qubit tiles of the architecture, so
that the encoding of each subformula is small enough to be handled efficiently by an SMT/OMT solver, and the encoded
(sub)problems can be placed and interconnected within the modular structure of the graph. More concretely, we generate
a library of encodings of commonly-used and relatively-small Boolean subfunctions. This library is only built once and
consequently can use a large amount of computational resources. When presented with a SAT formula F (x), we decompose
it, use the library to obtain encoded (sub)functions and use place-and-routing techniques to place and connect the encoded
(sub)functions within the QA hardware graph.

We have implemented and made publicly available prototype encoders built on top of the SMT/OMT tool OptiMathSAT

[20]. We present an empirical evaluation, in which we have run SATtoIsing-encoded problems and MaxSATtoIsing-encoded
problems on a D-Wave 2000Q system. We have chosen input problems that are small enough to fit into the current ar-
chitecture but are very hard with respect to their limited size, requiring some computational effort using a state-of-the-art
solver.

We stress the fact that this evaluation is not meant to present a comparison with state-of-the-art of classic comput-
ing; rather, it is intended as a preliminary assessment of the challenges and potential of QAs to impact SAT and MaxSAT
solving. This assessment is “preliminary” due to the limitations in number of qubits and qubit-connections of current QAs;
however novel QAs currently under development at D-Wave have a more interconnected tile structure and higher per-qubit
connectivity (degree 15 instead of 6, see also §8).5

Empirical evaluation shows that most encoded SAT problems are solved by the quantum annealer within negligible an-
nealing time (≈ 10 μs). Although preliminary, the results confirm the feasibility of the approach. They also suggest that
quantum annealers run on SATtoIsing-encoded problems (and to a lower extent, MaxSATtoIsing-encoded ones) might out-
perform standard algorithms on classical computers for certain difficult classes of relevant problems as soon as QA systems
contain enough qubits and connections.

Content of the paper The rest of the paper is organized as follows: §2 presents necessary background on quantum annealing,
SAT, MaxSAT, SMT and OMT; §3 presents the theoretical foundations of this work; §4 describes SMT/OMT-based encoding
techniques for small Boolean formulas; §5 describes the process of encoding larger Boolean formulas by formula decompo-
sition, encoding, placement and routing; §6 summarizes the related work; §7 presents preliminary empirical evaluation; §8
suggests future developments.

Disclaimer A preliminary and much shorter version of this paper was presented at the 11th International Symposium on
Frontiers of Combining Systems, FroCoS’17 [21].

5 See https://www.dwavesys .com /sites /default /files /mwj _dwave _qubits2018 .pdf.

https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.5 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 5
Fig. 4. Top: implementation of two coupled qubits. (Courtesy of D-Wave Systems Inc.) Bottom: graphical representation of the tunneling effect within an
energy landscape.

2. Background

We provide the necessary background on quantum annealing (§2.1) SAT, MaxSAT, SMT and OMT (§2.2). For the readers’
convenience, the list of the symbols we have used throughout the paper is summarized in Table 5 in the Appendix, with
references to where each symbol is introduced.

2.1. Quantum annealing

As mentioned in §1, quantum annealers as currently implemented by D-Wave Systems are specialized chips that use
quantum effects to sample or minimize energy configurations over binary variables (qubits) in the form of an Ising model
(1) [6,22,23]. The qubits are interconnected in a grid of tightly connected groups of 8 qubits, called tiles, as displayed in
Figs. 2 and 3. Each tile consists of a complete bipartite graph between two sets of four qubits: the “vertical” set, which is
connected to the tiles above and below, and the “horizontal” set, which is connected to the tiles to the left and to the right.
Each qubit is connected to at most six other qubits, so that each variable zi occurs in at most 6 non-zero quadratic terms
θi j zi z j (or θ ji z j zi). The graphs in Figs. 2 and 3 are known as Chimera graphs.

Single qubits zi are implemented as inter-connected superconducting rings (Fig. 4, top), and a qubit’s ±1-value represents
the direction of current in its ring. The user-programmable values θi ∈ [−2, 2] (biases) and θi j ∈ [−1, 1] (couplings) in (1) are
real values within the specified interval, and are set by applying magnetic flux to the rings.6 Overall, H(z) in (2) defines the
energy landscape for a system of qubits whose global minima correspond to the solutions of problem (1).

During quantum annealing, the state of a qubit will be in a superposition of +1 and −1 simultaneously. The system of
|V | qubits is evolved from an initial Hamiltonian, whose lowest energy state is an equal superposition of all 2|V | classical
states, to a final, user-defined Hamiltonian as in (2). At the end of the annealing, the system is measured, and a single, clas-
sical state z ∈ {−1,1}|V | is observed. In theory, if the evolution is sufficiently slow,7 then the lowest energy state (the ground
state) is maintained throughout. As a result, the final state z is a solution to the Ising problem (1) (with some probability,
see below). Unlike classical minimization techniques such as simulated annealing [8], the QA energy-minimization process
can use quantum tunneling [24] to pass through tall, thin energy barriers, thereby avoiding trapping in certain classical local
minima (Fig. 4, bottom).

QA theory shows that in the limit of arbitrarily low temperature, arbitrarily small noise, and arbitrarily slow annealing,
the probability of obtaining a minimum energy solution converges to 1. In practice, these conditions cannot be achieved,

6 We consider normalized bounds without units of measure and scale because the only relevant information for us is that both ranges are symmetric
wrt. zero and that the bounds for the θi s are twice as big as these for the θi j s in (2).

7 Notice that here and elsewhere “slow” is intended in a quantum-physics sense, which is definitely not “slow” from a computer-science perspective:
e.g., a complete annealing process on a D-Wave 2000Q annealer may typically take ≈ 10 μs.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.6 (1-34)

6 Z. Bian et al. / Information and Computation ••• (••••) ••••••
and minimum energy solutions are not guaranteed. Indeed, practical QA systems are physical, analog devices, subject to
engineering limitations, and the optimal annealing rate is often determined empirically. Moreover, hardware performance is
dramatically affected by the choice of Ising model. Among the most relevant factors are:

Thermal and electromagnetic noise. Despite cooling and shielding, thermal and electromagnetic noise still have noticeable ef-
fects. One (approximate) model of these effects is based on Boltzmann sampling, in which the probability of seeing a
state z with energy H(z) in (2) is proportional to e−βH(z) , with β ∈ [3, 5] being observed for certain problem classes
[25–27].

Intrinsic parameter errors. Due to engineering limitations and sources of environmental noise, the Ising model realized in QA
hardware is not exactly the one programmed by the user. A simplified model of error is that each specified θi ∈ [−2, 2]
and θi j ∈ [−1, 1] value is subject to additive Gaussian noise with standard deviation 0.03 and 0.02 respectively.

Freeze-out. Because of the limited connectivity, we often use chains of several interconnected qubits to represent a single
Boolean variable (§3.4). However, the quantum tunneling effect on which quantum annealing is based is diminished for
chains [24], thereby reducing the hardware’s ability to find global minima. This effect can be mitigated by constructing
Ising models with chains that are as small as possible.

Energy gaps. From the Boltzmann model, we see that a larger energy gap gmin between ground and excited states leads to
a higher probability of an optimal solution, as a ground state is eβgmin times more likely than a first excited state. This
suggests producing Ising models with large gmin in order to maximize the probability of obtaining an optimal solution.

The fact that QAs are not guaranteed to return a minimum-energy solution is partially addressed by taking a sequence
of N samples from the same Ising model and selecting the result with smallest energy. Distinct samples are statistically
independent, so the probability Pmin[N] of obtaining at least one minimum solution over N samples converges exponentially
to 1 with N:

Pmin[N] = 1 − (1 − Pmin[1])N . (3)

Typical annealing times and readout times are very short (≈ 10 μs and ≈ 120 μs respectively), and many samples can be
drawn from the same Ising model within a single programming cycle, so is possible to obtain a large number of samples in
reasonable time.

2.2. SAT, MaxSAT, SMT and OMT

We assume the reader is familiar with the basic syntax, semantics and properties of Boolean and first-order logic and
theories. In the following we recall the main concepts of interest for our purposes, referring the reader to [12,28,13,18,19]
for more details.

SAT & MaxSAT Given some finite set of Boolean variables x (aka Boolean atoms) the language of Boolean logic (B) is the
set of formulas containing the atoms in x and closed under the standard propositional connectives {¬,∧,∨,→,↔,⊕} (not,
and, or, imply, iff, xor) with their usual meaning. A literal is an atom (positive literal) or its negation (negative literal). We
implicitly remove double negations: e.g., if l is the negative literal ¬xi , then by ¬l we mean xi rather than ¬¬xi . A clause is
a disjunction of literals. A formula is in conjunctive normal form (CNF) iff it is written as a conjunction of clauses.

A truth value assignment x satisfies F (x) iff it makes it evaluate to true. If so, x is called a model for F (x). A formula
F (x) is satisfiable iff at least one truth assignment satisfies it, unsatisfiable otherwise. F (x) is valid iff all truth assignments
satisfy it. F1(x), F2(x) are equivalent iff they are satisfied by exactly the same truth assignments.

A formula F (x) which is not a conjunction can always be decomposed into a conjunction of smaller formulas F ∗(x, y)

by means of Tseitin’s transformation [29]:

F ∗(x,y)
def=

m−1∧
i=1

(yi ↔ Fi(xi,yi)) ∧ Fm(xm,ym), (4)

where the Fi s are formulas which decompose the original formula F (x), and the yi s are fresh Boolean variables each label-
ing the corresponding Fi . (If the input formula is itself a conjunction, then Tseitin’s transformation can be applied recursively
to each conjunct.) Tseitin’s transformation (4) guarantees that F (x) is satisfiable if and only if F ∗(x, y) is satisfiable, and that
if x, y is a model for F ∗(x, y), then x is a model for F (x). To this extent, it is pervasively used also as a main recursive step
for efficient CNF conversion of formulas [29].

A quantified Boolean formula (QBF) is defined inductively as follows: a Boolean formula is a QBF; if F (x) is a QBF, then
∀xi F (x) and ∃xi F (x) are QBFs. ∀xi F (x) is equivalent to (F (x)xi=� ∧ F (x)xi=⊥) and ∃xi F (x) is equivalent to (F (x)xi=� ∨
F (x)xi=⊥) (aka Shannon’s expansion).

Propositional Satisfiability (SAT) is the problem of establishing whether an input Boolean formula is satisfiable or not. SAT
is NP-complete [30]. Efficient SAT solvers are publicly available, most notably those based on Conflict-driven clause-learning

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.7 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 7
(CDCL) [28] and on stochastic local search [31]. Most solvers require the input formula to be in CNF, implementing a CNF pre-
conversion based on Tseitin’s transformation (4) when this is not the case. See [12] for a survey of SAT-related problems
and techniques.

Weighted MaxSAT {〈Fk, ck〉}k is an optimization extension of SAT, in which the input formula is a (typically unsatisfiable)
conjunction of subformulas F

def= ∧
k Fk such that each conjunct Fk is given a positive penalty ck if Fk is not satisfied, and an

assignment minimizing the sum of the penalties is sought. (Often F is in CNF and the Fks are single clauses or conjunctions
of clauses.) Partial Weighted MaxSAT is an extension of Weighted MaxSAT in which some conjuncts, called hard constraints,
have penalty +∞. Efficient MaxSAT tools are publicly available (see, e.g., [13,9]).

SMT and OMT Satisfiability Modulo Theories (SMT) is the problem of checking the satisfiability of first order formulas
in a background theory T (or combinations of theories thereof). We focus on the theories of interest for our purposes.
Given x as above and some finite set of rational-valued variables v, the language of the theory of Linear Rational Arithmetic
(LRA) extends that of Boolean logics with LRA-atoms in the form (

∑
i ci vi �� c), ci being rational values, vi ∈ v and

�� ∈ {=, �=,<,>,≤,≥}, with their usual meaning. In the theory of linear rational-integer arithmetic with uninterpreted functions
symbols (LRIA∪UF) the LRA language is extended by adding integer-valued variables to v (LRIA) and uninterpreted
function symbols.8 (E.g., (xi → (3v1 + f (2v2) ≤ f (v3))) is a LRIA ∪ UF formula.) Notice that B is a sub-theory of LRA
and LRA is a sub-theory of LRIA∪UF . The notions of literal, assignment, clause and CNF, satisfiability, equivalence and
validity, Tseitin’s transformation and quantified formulas extend straightforwardly to LRA and LRIA∪UF .

Satisfiability Modulo LRIA ∪ UF (SMT(LRIA ∪ UF)) [18] is the problem of deciding the satisfiability of arbitrary
formulas on LRIA∪UF and its sub-theories. Efficient SMT(LRIA∪UF) solvers are available, including MathSAT5 [32].

Optimization Modulo LRIA ∪ UF (OMT (LRIA ∪ UF)) [19] extends SMT(LRIA ∪ UF) searching solutions which
optimize some LRIA objective(s). Efficient OMT(LRA) solvers like OptiMathSAT [33] are available.

3. Theoretical foundations

Let F (x) be a Boolean function on a set of n Boolean variables x
def= {x1, ..., xn}. We represent Boolean value ⊥ with −1

and � with +1, so that we can assume that each xi ∈ {−1,1}. Suppose first that we have a QA system with n qubits defined
on a hardware graph G = (V , E), for instance, any n-vertex subgraph of the Chimera graph of Figs. 2 and 3. Furthermore,
we assume that the state of each qubit zi corresponds to the value of variable xi , i = 1, . . . , n = |V |. One way to determine
whether F (x) is satisfiable using the QA system is to find an energy function as in (2) whose ground states z correspond to
the satisfying assignments x of F (x).

Example 1. Suppose F (x) def= x1 ⊕ x2. Since F (x) = � if and only if x1 + x2 = 0, the Ising model H(z1, z2) = z1 · z2 in a
graph containing 2 qubits z1, z2 joined by an edge (1, 2) ∈ E s.t. θ12 = 1 has two ground states (+1, −1) and (−1, +1),
which correspond to the satisfying assignments of F , and two excited states (+1, +1) and (−1, −1), corresponding to the
non-satisfying ones.

Because the energy H(z) in (2) is restricted to quadratic terms and graph G is typically sparse, the number of functions
F (x) that can be solved with this approach is very limited. To deal in part with this difficulty, we can use a larger QA system
with a number of additional qubits, say h, representing ancillary Boolean variables (or ancillas for short) a

def= {a1, ...,ah},
so that |V | = n + h. A variable placement is a mapping of the n + h input and ancillary variables into the qubits of V .
Since G is not a complete graph, different variable placements will produce energy functions with different properties.
We use Ising encoding to refer to the θi and θi j parameters in (2) that are provided to the QA hardware together with a
variable placement. The gap of an Ising encoding is the minimum energy difference between ground states (i.e., satisfying
assignments) and the other states (i.e., non-satisfying assignments). In general, larger gaps lead to higher success rates in the
QA process [34]. Thus, we define the encoding problem for F (x) as the problem of finding an Ising encoding with maximum
gap.

Note that the encoding problem is typically over-constrained. The Ising model (2) has to discriminate between m satis-
fying assignments and k non-satisfying assignments, with m + k = 2n , whereas the number of degrees of freedom is given
by the number of the θi and θi j parameters, which grows as O (n + h) in the Chimera architecture. Thus, in order to have a
solution, the number of ancilla variables needed (h) may grow exponentially with the number of x variables (n).

In the rest of this section, we assume that a Boolean function F (x) is given and that h qubits are used for ancillary
variables a.

8 An n-ary function symbol f () is said to be uninterpreted if its interpretations have no constraint, except that of being a function (congruence): if
t1 = s1,..., tn = sn then f (t1, ..., tn) = f (s1, ..., sn).

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.8 (1-34)

8 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Fig. 5. Mappings within the Chimera graph, penalty functions use only colored edges. 5(c) combines 5(a) and 5(b) using chained proxy variables y, y′. The
resulting penalty function is obtained by rewriting x4 ↔ (x3 ∧ (x1 ⊕ x2)) into its equi-satisfiable formula (x4 ↔ (x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y). (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Penalty functions

Here we assume that a variable placement is given, placing x∪a into the subgraph G . Thus, we can identify each variable
z j representing the binary value of the qubit associated with the jth vertex in V with either an original variable xk ∈ x or
as an ancilla variable a� ∈ a, writing z = x ∪ a.

Definition 1. A penalty function P F (x, a|θ) is an Ising model

P F (x,a|θ)
def= θ0 +

∑
i∈V

θi zi +
∑

(i, j)∈E

θi j zi z j (5)

with the property that for some gmin > 0,

∀x min{a} P F (x,a|θ)

{
= 0 if F (x) = �
≥ gmin if F (x) = ⊥ (6)

where θ0 ∈ (−∞, +∞) (“offset”), θi ∈ [−2, 2] (“biases”) and θi j ∈ [−1, 1] (“couplers”) such that zi, z j ∈ z, and gmin are rational-
valued parameters. The largest gmin such that P F (x, a|θ) satisfies (6) is called the gap of P F (x, a|θ).

Notice that a penalty function separates satisfying assignments from non-satisfying ones by a gap of at least gmin . The offset
value θ0 is added to set the value of P F (x, a|θ) to zero when F (x) = �, so that −θ0 corresponds to the energy of the ground
states of (2).

To simplify the notation we assume that θi j = 0 when (i, j) /∈ E , and use P F (x|θ) when a = ∅.

Example 2. The equivalence between two variables, F (x) def= (x1 ↔ x2), can be encoded without ancillas by means of a single
coupling between two connected vertices, with zero biases: P F (x|θ) def= 1 − x1x2, so that gmin = 2. In fact, P F (x|θ) = 0 if
x1, x2 have the same value; P F (x|θ) = 2 otherwise.

Penalty P F (x|θ) in Example 2 is also called a (equivalence) chain connecting x1, x2, because it forces x1, x2 to have the same
value.

The following examples show that ancillary variables are needed, even for small Boolean functions F (x) and even when
G is a complete graph.

Example 3. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2). If x1, x2, x3 could be all connected in a 3-clique, then F (x)

could be encoded without ancillas by setting P F (x|θ) = 3
2 − 1

2 x1 − 1
2 x2 + x3 + 1

2 x1x2 − x1x3 − x2x3, so that gmin = 2. In fact,
P F (x|θ) = 0 if x1, x2, x3 verify F (x), P F (x|θ) = 6 if x1 = x2 = −1 and x3 = 1, P F (x|θ) = 2 otherwise. Since the Chimera graph
has no cliques, the above AND function needs (at least) one ancilla a to be encoded as: P F (x, a|θ) = 5

2 − 1
2 x1 − 1

2 x2 + x3 +
1
2 x1x2 − x1x3 − x2a − x3a, which still has gap gmin = 2 and can be embedded, e.g., as in Fig. 5(a).

Example 4. Consider the XOR function F (x) def= x3 ↔ (x1 ⊕ x2). Even within a 3-clique, F (x) has no ancilla-free encoding.
Within the Chimera graph, F (x) can be encoded with three ancillas a1, a2, a3 as: P F (x, a|θ) = 5 + x3 + a2 − a3 + x1a1 −
x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3, which has gap gmin = 2 and is embedded, e.g., as in Fig. 5(b).

The following fact is a straightforward consequence of Definition 1.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.9 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 9
Proposition 1. Let P F (x, a|θ) be a penalty function of F (x) as in Definition 1. Then:

• If x,a is such that P F (x, a|θ) = 0, then F (x) is satisfiable and x satisfies it.
• If x,a minimizes P F (x, a|θ) and P F (x, a|θ) ≥ gmin, then F (x) is unsatisfiable.

Proposition 1 shows that the QA hardware can be used as a satisfiability checker for F (x) by minimizing the Ising model
defined by penalty function P F (x, a|θ). A returned value of P F (x, a|θ) = 0 implies that F (x) is satisfiable. If the QA hardware
guaranteed minimality, then a returned value of P F (x, a|θ) ≥ gmin would imply that F (x) is unsatisfiable. However, since
QAs do not guarantee minimality (§2.1), if P F (x, a|θ) ≥ gmin then there is still a chance that F (x) is satisfiable. Nevertheless,
the larger gmin is, the less likely this false negative case occurs [34].

A penalty function P F (x, a|θ) is normal if |θi | = 2 for at least one θi or |θi j| = 1 for at least one θi j . In order to maximize
gmin , it is important to use normal penalty functions to exploit the full range of the θ parameters. Any penalty function
P F (x, a|θ) can be normalized by multiplying all its coefficients by a normalization factor:

c
def= min

{
min

i

(
2

|θi|
)

,min
〈i j〉

(
1

|θi j|
)}

. (7)

Note that if P F (x, a|θ) is non-normal, then c > 1, so that the resulting gap c · gmin > gmin . Normalization also works in the
opposite direction to scale down some P F (x, a|θ) whose θ ’s do not fit into the allowable ranges (in which case c < 1).

Hereafter we assume w.l.o.g. that all penalty functions are normal.

3.2. Properties of penalty functions and problem decomposition

As it will be made clear in §4.1, after a variable placement is set, finding the values for the θ ’s implicitly requires
solving a set of equations whose size grows with the number of models of F (x) plus a number of inequalities whose size
grows with the number of counter-models of F (x). Thus, the θ ’s must satisfy a number of linear constraints that grows
exponentially in n. Since the θ ’s grow approximately as 4(n + h), the number of ancillary variables needed to satisfy (6) can
also grow very rapidly. This seriously limits the scalability of a solution method based on (5)-(6). We address this issue by
showing how to construct penalty functions by combining smaller penalty functions, albeit at the expense of introducing
extra variables.

The following properties are straightforward consequences of Definition 1.

Property 1. Let P F (x, a|θ) be a penalty function for F (x) and let F ∗(x) be logically equivalent to F (x). Then P F (x, a|θ) is a penalty
function also for F ∗(x) with the same gap gmin.

Property 1 states that a penalty function P F (x, a|θ) does not depend on the syntactic structure of F (x) but only on its
semantics.

Property 2. Let F ∗(x) def= F (x1, ..., xr−1, ¬xr, xr+1, ..., xn) for some index r. Assume a variable placement of x into V s.t. P F (x, a|θ) is
a penalty function for F (x) of gap gmin. Then P F ∗(x, a|θ) = P F (x, a|θ∗), where θ∗ is defined as follows for every zi, z j ∈ x, a:

θ∗
i =

{−θi if zi = xr

θi otherwise;
θ∗

i j =
{−θi j if zi = xr or z j = xr

θi j otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2] and θi j ∈ [−1, 1]) are symmetric, if θ is in range then θ∗
is as well.

Two Boolean functions that become equivalent by permuting or negating some of their variables are called NPN-
equivalent [35]. Thus, given the penalty function for a Boolean formula, any other NPN equivalent formula can be encoded
trivially by repeatedly applying Property 2. Notice that checking NPN equivalence is a hard problem in theory, but it is fast
in practice for small n (i.e., n ≤ 16) [36]. The process of negating a single variable in an Ising model as in Property 2 is
known as a spin-reversal transform.

Example 5. Consider the OR function F (x) def= x3 ↔ (x1 ∨ x2). We notice that this can be rewritten as F (x) = ¬x3 ↔ (¬x1 ∧
¬x2), that is, it is NPN-equivalent to that of Example 3. Thus, by Property 2 a penalty function for F (x) can be placed
as in Fig. 5(a) and defined by taking that in Example 3 and toggling the signs of the coefficients of the xi ’s: P F (x, a|θ) =
5
2 + 1

2 x1 + 1
2 x2 − x3 + 1

2 x1x2 − x1x3 + x2a + x3a, which still has gap gmin = 2.

Property 3. Let F (x) =∧K
k=1 Fk(xk) be a Boolean formula such that x = ∪kxk, the xks may be non-disjoint, and each sub-formula Fk

has a penalty function P Fk (xk, ak|θk) with minimum gap gk
min where the aks are all disjoint. Given a list wk of positive rational values

such that, for every zi, z j ∈ x ∪⋃K
k=1 ak:

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.10 (1-34)

10 Z. Bian et al. / Information and Computation ••• (••••) ••••••
θi
def=

K∑
k=1

wkθ
k
i ∈ [−2,2], θi j

def=
K∑

k=1

wkθ
k
i j ∈ [−1,1], (8)

then a penalty function for F (x) is:

P F (x,a1...aK |θ) =
K∑

k=1

wk P Fk (xk,ak|θk). (9)

The gap for P F is gmin ≥ minK
k=1 wk gk

min.

The choice of the set of weights wk in Property 3 is not unique in general. Also note that gmin may be greater than
minK

k=1 wk gk
min , because, for example, it might be the case that gmin = wk gk

min for some unique k and no truth assignment
violating Fk with cost wk gk

min satisfies all other Fi ’s.
Property 3 states that a penalty function for the conjunction of sub-formulas can be obtained as a (weighted) sum of

the penalty functions of the sub-formulas. The weights wk are needed because penalty functions of formulas that share
variables sum up biases or couplings, possibly resulting into out-of-range values (8). If the wk ’s are smaller than 1, then the
gap gmin of the final penalty function may become smaller. Also, Property 3 requires placing variables into qubits that are
shared among conjunct subformulas. This may restrict the chances of finding suitable placements for the variables in the
graph.

An alternative way of coping with this problem is to map shared variables into distinct qubits which are connected by
chains of equivalences. Consider F (x) =∧K

k=1 Fk(xk) as in Property 3. For every variable xi and for every Fk where xi occurs,
we can replace the occurrences of xi in Fk with a fresh variable xi

k∗
, obtaining a formula

∧K
k=1 Fk(xk∗

) such that the sets
xk∗

are all disjoint. Let

F ∗(x∗) def=
K∧

k=1

Fk(xk∗
) ∧

∧
〈xi

k∗
,xi

k′ ∗〉∈Eq(xi)

(xi
k∗ ↔ xi

k′ ∗
) (10)

where x∗ = ∪kxk∗
, and Eq(xi) is any set of pairs 〈xi

k∗
, xi

k′ ∗〉 of the variables replacing xi such that the conjunction of
equivalences in (10) states that of all of them are equivalent. By construction, F (x) is satisfiable if and only if F ∗(x∗) is
satisfiable, and from every model x∗ for F ∗(x∗) we have a model x for F (x) by simply assigning to each xi the value of the
corresponding xi

k∗
s.

Now assume we have a penalty function P Fk (xk∗
, ak|θk) for each k with disjoint ak . We recall from Example 2 that

(1 − xi
k∗

xi
k′ ∗

) are penalty functions of gap 2 for the (xi
k∗ ↔ xi

k′ ∗
) subformulas in (10). Thus we can apply Property 3 with

all weights wk = 1 and write a penalty function for F ∗(x∗) in the following way:

P F ∗(x∗,a|θ) =
K∑

k=1

P Fk (xk∗
,ak|θk) +

∑
〈xi

k∗
,xi

k′ ∗〉∈Eq(xi)

(1 − xi
k∗

xi
k′ ∗

). (11)

Note that the θ ’s stay within valid range because the xk∗
s and aks are all disjoint and the biases of the (1 − xi

k∗
xi

k′ ∗
)

terms are zero, so distinct sub-penalty functions in (11) involve disjoint groups of biases and couplings. Thus we have the
following.

Property 4. P F ∗(x∗, a|θ) in (11) is a penalty function for F ∗(x∗) in (10). The gap of P F ∗(x∗, a|θ) is gmin ≥ min(minK
k=1 gk

min, 2).

Thus, we can represent a single variable xi with a series of qubits connected by strong couplings (1 − xi x′
i). (For xi ↔ ¬x′

i ,
we use (1 + xi x′

i).) Notice that it is not necessary that every copy of variable xi be connected to every other one; rather, to
enforce the condition that all copies of xi are logically equivalent, it suffices that the copies of xi induce a connected graph.
Moreover, additional copies of xi may be introduced on unused vertices of the hardware graph G to facilitate connectedness.
A set of qubits all representing the same variable in this way is called a chain and is the subject of §3.4. Thus, it is possible
to implement P F ∗(x∗, a|θ) in (11) by placing the distinct penalty functions P Fk (xk∗

, ak|θk) into sub-graphs and connect
them with chains.

Recall from §2.2 that a formula F (x) which is not a conjunction can always be decomposed into a conjunction of smaller
formulas F ∗(x, y) by means of Tseitin’s transformation (4). By Properties 3 and 4, this allows us to AND-decompose F (x)

into multiple and smaller conjuncts that can be encoded separately and recombined. The problem thus reduces to choosing
Boolean functions (yi ↔ Fi(xi, yi)) and Fm(xm, ym) whose penalty functions are easy to compute, have large gap, and whose
combination keeps the gap of the penalty function for the original function as large as possible.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.11 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 11
Example 6. Let F (x) def= x4 ↔ (x3 ∧ (x1 ⊕ x2)). Applying (4) and (10) this can be rewritten as F∗(x, y, y′) = (x4 ↔
(x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y). The penalty functions of the three conjuncts can be produced as in Examples 3,
4 and 2 respectively, and summed as in Property 4:

P F ∗(x, y, y′,a|θ)

= 5

2
− 1

2
x3 − 1

2
y′ + x4 + 1

2
x3 y′ − x3x4 − y′a4 − x4a4

+ 5 + y + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + ya2 − ya3

+ 1 − yy′

= 17

2
− 1

2
x3 + x4 + y − 1

2
y′ + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2

−x2a3 − x3x4 + 1

2
x3 y′ − x4a4 + ya2 − ya3 − yy′ − y′a4

Notice that there is no interaction between the biases and couplings of the three components, only the offsets are summed
up. The resulting gap is min{2,2,2} = 2. Then they can be placed, e.g., as in Fig. 5(c).

Overall, these facts suggest a “divide-and-conquer” approach for addressing the SATtoIsing problem:

(i) AND-decompose the input formula, by rewriting every conjunct F (x) which is not small enough into an equivalently-
satisfiable one F ∗(x, y) as in (4) such that penalty functions for all its conjuncts can be easily computed;

(ii) rename shared variables and compute the global penalty functions as in Property 4;
(iii) place the sub-penalty functions into subgraphs and connect by chains equivalent qubits representing shared variables.

3.3. Exact penalty functions and MaxSAT

In order to encode MaxSAT, we require a stronger version of the penalty function in Definition 1.

Definition 2. A penalty function P F (x, a|θ) is exact if for all x such that F (x) = ⊥,

min{a} P F (x,a|θ) = gmin.

That is, an exact penalty function separates satisfying assignments from all non-satisfying ones by exactly the same gap
gmin .

Example 7. The penalty function of F (x) def= (x1 ↔ x2) in Example 2 is exact, whereas those of F (x) def= x3 ↔ (x1 ∧ x2) and
F (x) def= x3 ↔ (x1 ⊕ x2) in Examples 3 and 4 are not exact.

Exact penalty functions allow for the encoding of weighted MaxSAT problems, with some restrictions. The following fact
is a straightforward consequence of Property 3 and Definition 2.

Proposition 2. Let F (x) =∧K
k=1 Fk(xk) be a Boolean formula s.t. x = ∪kxk, and P F (x, a|θ) def=∑K

k=1 P Fk (xk, ak|θk), where a def= ∪kak

s.t. the ak are all disjoint, each P Fk (xk, ak|θk) is an exact penalty function for Fk of gap gk. Let x,a be a truth assignment which
minimizes P F (x, a|θ). Then x is a solution for the weighted MaxSAT problem {〈Fk, gk〉}k.

Proposition 2 allows for encoding a generic weighted MaxSAT problem {〈Fk, ck〉}k by setting P F (x, a|θ) def=∑K
k=1 wk P Fk (xk, ak|θk) where wk

def= ck
gk

· c and c is a normalization factor (7). Notice that in Proposition 2 the penalty
functions P Fk (xk, ak|θk) must be exact; otherwise, a solution x,a that is optimal for MaxSAT but violates some Fk might not
minimize P F (x, a|θ) if P Fk (xk, ak|θk) > gk .

In §3.2 we outlined a “divide-and-conquer” approach for SATtoIsing based on the idea of mapping shared variables
into distinct qubits which are then connected by chains of equivalences. Applying the same approach to MaxSAT is not as
straightforward, because Property 4 cannot always be combined with Proposition 2 in a useful way. Consider the scenario
in Property 4, and suppose we want to use (11) to solve the MaxSAT problem {〈Fk, gk〉}k as with Proposition 2. As the
following example shows, there may be minimum-energy solutions of (11) which violate some equivalence (xi

k∗ ↔ xi
k′ ∗

) in
(10) if this avoids violating one or more of the Fk ’s whose sum of gaps is greater than 2. Such a solution is not a solution
of the MaxSAT problem, because it corresponds to assigning different truth values to distinct instances of the same variable
in the original problem.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.12 (1-34)

12 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Example 8. Consider the trivial MaxSAT problem {〈Fi(x), c〉}4
i=1 for some penalty value c > 0 where F1(x) = F2(x) def= x, and

F3(x) = F4(x) def= ¬x. The two possible solutions x = � and x = ⊥ are both optimum with penalty 2c and falsify F3, F4

and F1, F2 respectively. We have the following normal and exact penalty functions: P F1 (x) = P F2 (x) = 2 − 2x and P F3 (x) =
P F4(x) = 2 + 2x, each of gap gi = 4. Suppose we want to encode the problem in such a way to fit into a linear chain of 4
qubits adopting the encoding in Property 4. We introduce four copies of x, namely x1, x2, x3, x4, and obtain:

F ∗(x1, x2, x3, x4) = x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ (x1 ↔ x2) ∧ (x2 ↔ x3) ∧ (x3 ↔ x4)

P F ∗(x1, x2, x3, x4) = (2 − 2x1) + (2 − 2x2) + (2 + 2x3) + (2 + 2x4) +
(1 − x1x2) + (1 − x2x3) + (1 − x3x4)

= 11 − 2x1 − 2x2 + 2x3 + 2x4 − x1x2 − x2x3 − x3x4.

The minimum-energy solution to P F ∗ is x1 = x2 = 1 and x3 = x4 = −1 with P F ∗(...) = 2, which violates the equivalence
(x2 ↔ x3). The correct MaxSAT solutions x1 = x2 = x3 = x4 = 1 and x1 = x2 = x3 = x4 = −1 both have P F ∗ (...) = 8.

In general, the problem arises when it is energetically cheaper to violate some equivalence (xk
i
∗ ↔ xk′

i
∗
) in a chain in

(10) than to violate all the penalty functions {Fk(xk) : xi ∈ xk} on one side of the equivalence. One solution to this problem
is to multiply the P Fk ’s by sufficiently small weights wk < 1, at the cost reducing their gaps gk . In the following we discuss
the bounds that can be placed on wk .

Let I denote the indices of the functions Fk(xk) that use the variable xi ; that is, I = {k : xi ∈ xk}. An equivalence (xk
i
∗ ↔

xk′
i

∗
) in the chain of xi splits the chain into two subchains, and splits I into two subsets Ik and Ik′ such that (xk

i
∗ ↔ xk′

i
∗
)

connects the functions of Ik to the functions of Ik′ . Assume we have a desired gap gdesired > 0 separating solutions with
broken chains from true solutions. Then a sufficiently large gap for the equivalence (xk

i
∗ ↔ xk′

i
∗
) is

g(k,k′) = min

⎛
⎝∑

j∈Ik

g j,
∑
j∈Ik′

g j

⎞
⎠+ gdesired,

as this gap ensures that it is gdesired cheaper to violate all the constraints in Ik or Ik′ then to violate (xk
i
∗ ↔ xk′

i
∗
). Recall

from (10) that Eq(xi) is the set of variable pairs (xk
i
∗
, xk′

i
∗
) that form equivalences (xk

i
∗ ↔ xk′

i
∗
) in the chain of xi . To ensure

that all equivalence constraints are not violated, a sufficient gap for the entire chain is

gchain = max
(xk

i
∗
,xk′

i

∗
)∈Eq(xi)

g(k,k′). (12)

Finally, recalling that each equivalence has gap 2, we update the weight definition in Proposition 2 for each k ∈ I9:

wk = 2 · ck

gk · gchain
(13)

An alternative bound on gchain is given in [37]. In the paper, the author bounds the chain strength required to ensure
that all minima of an embedded QUBO problem can be mapped to a minimum of the original QUBO problem (see §3.4
below). Let θ∗

i =∑k wkθi be the bias value obtained by sharing the xi variable as in Property 3.10 If xi is substituted by a
chain with li endpoints, QUBO minima are preserved if the chain gap is the following:

gchain = 2
li − 1

li

⎛
⎝ ∑

(i, j)∈E

|θ∗
i j| − |θ∗

i |
⎞
⎠+ gdesired (14)

This alternative bound is sometimes lower than (12), especially when |θ∗
i | is high. Note that, as the original paper

explains, if the bound value is negative then P F ∗ is monotonic on xi . If that is the case, then xi = −sgn(θ∗
i) always minimizes

P F ∗ , so we can fix the value of xi and there is no need for a chain.
In general, neither (12) nor (14) are typically very tight bounds on required chain gap, and finding the smallest viable

chain gap analytically appears to be a difficult problem. In practice gchain is often determined empirically; this is discussed
further in §7.

Overall, the MaxSATtoIsing problem is subject to some intrinsic limitations. Firstly, it requires the usage of exact penalty
functions for its sub-formulas, which are more difficult to obtain. Secondly, the need to re-weight penalty functions to

9 Note that the normalization factor c here is 1 as chains are normal.
10 For simplicity, we assume to share a single xi , so each θ∗

i j = wkθ
k
i j for some unique k.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.13 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 13
ensure chain equivalences are not violated typically results in smaller gaps. Thirdly, it is difficult to directly encode hard
constraints in a MaxSAT problem; this again requires re-weighting soft constraints by very small factors, reducing their gaps
accordingly.

3.4. Embedding into Chimera architecture

The process of representing a single variable xi by a collection of qubits connected in chains of strong couplings is
known as embedding, in reference to the minor embedding problem of graph theory [37,38]. More precisely, let P F (x|θ) be
a penalty function whose interactions define a graph G F (so xi and x j are adjacent iff θi j �= 0) and let G H be a QA hardware
graph. A minor embedding of G F in G H is a function � : V G F → 2V G H such that:

• for each G F -vertex xi , the subgraph induced by �(xi) is connected;
• for all distinct G F -vertices xi and x j , �(xi) and �(x j) are disjoint;
• for each edge (xi, x j) in G F , there is at least one edge between �(xi) and �(x j).

The image �(xi) of a G F -vertex is a chain, and the set of qubits in a chain are constrained to be equivalent using (1 −
xi

k∗
xi

k′ ∗
) couplings as in Equation (11).

Embedding generic graphs is a computationally difficult problem [39], although certain structured problem graphs may
be easily embedded in the Chimera graph [40,41] and heuristic algorithms may also be used [42]. A reasonable goal in
embedding is to minimize the sizes of the chains, as quantum annealing becomes less effective as more qubits are included
in chains [24].

A different approach to finding models for F (x), global embedding, is based on first finding a penalty function on a
complete graph G F on n + h variables, and secondly, embedding G F into a hardware graph G H using chains (e.g., using
[40]). Following [34], global embeddings usually need fewer qubits than the methods presented in this paper; however, the
final gap of the penalty function obtained in this way is generally smaller and difficult to compute exactly.

4. Encoding small Boolean sub-formulas

In this section we present general SMT/OMT-based techniques to address the encoding problem for small Boolean for-
mulas F (x).

4.1. Computing penalty functions via SMT/OMT(LRA)

Given x
def= {x1, ..., xn}, a

def= {a1, ...,ah}, F (x) as in Section 3, a variable placement in a Chimera subgraph s.t. z = x ∪ a,
and some gap gmin > 0, the problem of finding a penalty function P F (x, a|θ) as in (5) corresponds to solving the following
problem11:

For every i j, find θi ∈ [−2,2], θi j ∈ [−1,1] such that

∀x.

⎡
⎣ (F (x) → ∃a.(P F (x,a|θ) = 0)) ∧

(F (x) → ∀a.(P F (x,a|θ) ≥ 0)) ∧
(¬F (x) → ∀a.(P F (x,a|θ) ≥ gmin))

⎤
⎦ . (15)

By applying Shannon’s expansion (§2.2) to the quantifiers in (15), the problem reduces straightforwardly to solving the
following SMT(LRA) problem:

�(θ)
def=
∧

zi∈x,a

(−2 ≤ θi) ∧ (θi ≤ 2) ∧
∧

zi ,z j∈x,a
i< j

(−1 ≤ θi j) ∧ (θi j ≤ 1) (16)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨
a∈{−1,1}h

(P F (x,a|θ) = 0) (17)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧
a∈{−1,1}h

(P F (x,a|θ) ≥ 0) (18)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧
a∈{−1,1}h

(P F (x,a|θ) ≥ gmin). (19)

11 As in (5), we implicitly assume θi j = 0 when (i, j) /∈ E .

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.14 (1-34)

14 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Consequently, the problem of finding the penalty function P F (x, a|θ) that maximizes the gap gmin reduces to solving the
OMT(LRA) maximization problem 〈�(θ), gmin〉. Notice that, since gmin is maximum, P F (x, a|θ) is also normal.

Intuitively, (16) states the ranges of the θ ; (17) and (18) state that, for every x satisfying F (x), P F (x, a|θ) must be zero
for at least one “minimum” a and nonnegative for all the others; (19) states that for every x not satisfying F (x), P F (x, a|θ)

must be greater than or equal to the gap. Consequently, if the values of the θ in P F (x, a|θ) satisfy �(θ), then P F (x, a|θ)

complies with (6); if �(θ) is unsatisfiable, then there is no P F (x, a|θ) complying with (6) for the given placement.
Note that, if a = ∅, then the OMT(LRA) maximization problem 〈�(θ), gmin〉 reduces to a linear program because the

disjunctions in (17) disappear.

Example 9. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2) of Example 3 and its placement in Fig. 5(a), involving one
ancilla a. Then (15) is:∧3

i=1((−2 ≤ θxi) ∧ (θxi ≤ 2)) ∧ (−2 ≤ θa) ∧ (θa ≤ 2) ∧∧3
i=2(−1 ≤ θx1xi) ∧ (θx1xi ≤ 1) ∧∧3

i=2(−1 ≤ θxia) ∧ (θxia ≤ 1) ∧

∀x1
∀x2 .

∀x3

⎡
⎢⎢⎢⎢⎢⎢⎣

((x3 ↔ (x1 ∧ x2)) →
∃a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xixi +∑3

i=2 +θxiaxia = 0)) ∧
((x3 ↔ (x1 ∧ x2)) →
∀a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xi xi +∑3

i=2 +θxiaxia ≥ 0)) ∧
(¬(x3 ↔ (x1 ∧ x2)) →
∀a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xi xi +∑3

i=2 +θxiaxia ≥ gmin))

⎤
⎥⎥⎥⎥⎥⎥⎦

Example 10. Consider again the AND function F (x) def= x3 ↔ (x1 ∧ x2) of Example 3 and its placement in Fig. 5(a), involving
one ancilla a. Then �(θ) of (16)-(19) is:∧3

i=1((−2 ≤ θxi) ∧ (θxi ≤ 2)) ∧ (−2 ≤ θa) ∧ (θa ≤ 2) ∧ (16)∧3
i=2(−1 ≤ θx1xi) ∧ (θx1xi ≤ 1) ∧∧3

i=2(−1 ≤ θxia) ∧ (θxia ≤ 1) ∧(
(θ0 + θx1 + θx2 + θx3 + θa + θx1x2 + θx1x3 + θx2a + θx3a = 0) ∨
(θ0 + θx1 + θx2 + θx3 − θa + θx1x2 + θx1x3 − θx2a − θx3a = 0)

)
∧ (17)

...(
(θ0 − θx1 − θx2 − θx3 + θa + θx1x2 + θx1x3 − θx2a − θx3a = 0) ∨
(θ0 − θx1 − θx2 − θx3 − θa + θx1x2 + θx1x3 + θx2a + θx3a = 0)

)
∧(

(θ0 + θx1 + θx2 + θx3 + θa + θx1x2 + θx1x3 + θx2a + θx3a ≥ 0) ∧
(θ0 + θx1 + θx2 + θx3 − θa + θx1x2 + θx1x3 − θx2a − θx3a ≥ 0)

)
∧ (18)

...(
(θ0 − θx1 − θx2 − θx3 + θa + θx1x2 + θx1x3 − θx2a − θx3a ≥ 0) ∧
(θ0 − θx1 − θx2 − θx3 − θa + θx1x2 + θx1x3 + θx2a + θx3a ≥ 0)

)
∧(

(θ0 + θx1 + θx2 − θx3 + θa + θx1x2 − θx1x3 + θx2a − θx3a ≥ gmin) ∧
(θ0 + θx1 + θx2 − θx3 − θa + θx1x2 − θx1x3 − θx2a + θx3a ≥ gmin)

)
∧ (19)

...(
(θ0 − θx1 − θx2 + θx3 + θa + θx1x2 − θx1x3 − θx2a + θx3a ≥ gmin) ∧
(θ0 − θx1 − θx2 + θx3 − θa + θx1x2 − θx1x3 + θx2a − θx3a ≥ gmin)

)
.

To force P F (x, a|θ) to be an exact penalty function, we add the following conjunct inside the square brackets of (15):

(¬F (x) → ∃a.(P F (x,a|θ) = gmin)), (20)

which forces P F (x, a|θ) to be exactly equal to the gap for at least one a. Thus we conjoin the Shannon’s expansion of (20)
to �(θ) in (16)-(19):

... ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨
a∈{−1,1}h

(P F (x,a|θ) = gmin). (21)

4.2. Improving efficiency and scalability using variable elimination

In the SMT/OMT(LRA) formulation (16)-(19), �(θ) grows exponentially with the number of hidden variables h. For
practical purposes, this typically implies a limit on h of about 10. Here, we describe an alternative formulation whose size
dependence on h is O (h2tw), where tw is the treewidth of the subgraph of G spanned by the qubits corresponding to the

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.15 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 15
ancillary variables, Ga . For the Chimera graph, even when h is as large as 32, tw is at most 8 and therefore still of tractable
size.

The crux of the reformulation is based on the use of the variable elimination technique [43] to solve an Ising problem
on Ga . This method is a form of dynamic programming, storing tables in memory describing all possible outcomes to the
problem. When the treewidth is tw, there is a variable elimination order guaranteeing that each table contains at most
O (2tw) entries. Rather than using numerical tables, our formulation replaces each of its entries with a continuous variable
constrained by linear inequalities. In principle, we need to parametrically solve an Ising problem for each x ∈ {−1, 1}n ,
generating O (2nh2tw) continuous variables. However, by the local nature of the variable elimination process, many of these
continuous variables are equal, leading to a reduced (as much as an order of magnitude smaller) and strengthened SMT
formulation.

To describe the method, we first reformulate equations (18)-(19) by introducing witness binary variables β(x) ∈ {−1,1}h

to enforce the equality constraints (17), that is, P F (x, β(x)|θ) = 0. Thus, we can rewrite �(θ) as the SMT problem �(θ , β)

defined by12

�(θ ,β)
def= (16) ∧ (18) ∧ (19)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨
a∈{−1,1}h

(
(β(x) ≡ a) ∧ (P F (x,a|θ) = 0)

)
.

Consider first the case when the graph Ga has no edges. If, for i = 1, . . . , h, we define

f i(ai |x) = θiai + ai

∑
j:i j∈E

θi j x j,

then we can write

P F (x,a|θ) = c(x) +
h∑

i=1

f i(ai |x),

where c(x) does not depend on the ancillary variables. Thus,

min
a

P F (x,a|θ) = c(x) +
h∑

i=1

min
ai∈{−1,1} f i(ai|x). (22)

If θ is fixed, solving (22) is straightforward. However, since θ is a variable, the contribution minai∈{−1,1} f i(ai |x) is a function
of θ , for each i = 1, . . . , h. Each of these minimums will be associated with a continuous variable, denoted by mi(∅|x), and
referred to as a message variable (the naming will be clearer in the general case). To relate mi(∅|x) with minai∈{−1,1} f i(ai |x),
we impose the constraints

mi(∅|x) ≤ f i(−1|x) and mi(∅|x) ≤ f i(1|x).

Thus, if F (x) = ⊥, since the message variables are lower bounds on the true minimums of (22), to enforce (19) we need
simply add the constraints

c(x) +
h∑

i=1

mi(∅|x) ≥ gmin.

When F (x) = �, we need to ensure that the message variables take the minimums of (22). Note that variable βi(x) identifies
the value of the ancillary variable i that achieves the minimum in (22). To relate the values of β(x) and the message
variables m(∅|x) we add the SMT constraints

βi(x) ⇒ (
mi(∅|x) = f i(1|x)

)
,

¬βi(x) ⇒ (
mi(∅|x) = f i(−1|x)

)
.

Finally, to impose (17) and (18), we need that

c(x) +
h∑

i=1

mi(∅|x) = 0.

12 For vectors a, b, we use a ≡ b as a shorthand for (a1 = b1) ∧ (a2 = b2) ∧ (a3 = b3) ∧

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.16 (1-34)

16 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Since G is usually sparse, it is likely that two binary states x and x′ agree on the bits adjacent to a fixed ancillary variable i.
In this case, it is clear that mi(∅|x) = mi(∅|x′), and we can use a single message variable for both states. This observation
can be extended to the general case and will be valuable to reduce the size and strengthen the SMT problem formulation.

Next consider the general case when |E(Ga)| > 0. In what follows, c(x) and f i(ai |x) are defined as above. Assume first
θ is fixed. Given x, we want to solve the Ising model mina P F (x, a|θ). Variable elimination proceeds in order, eliminating
one ancillary variable at a time. Suppose that ancillary variables are eliminated in the order h, h − 1, . . . , 1. Each ancillary
variable i is associated with a set Fi of factors, which are functions that depend on ancillary variable i and none or more
ancillary variables with index less than i. The sets Fi are called buckets, and are updated throughout the computation.
Initially, each Fi consists of ancilla-ancilla edges13 f i,k(ai, ak) = θik aiak for ik ∈ E(Ga), k < i. Let Vi denote the set of
ancillary variables involved in the factors of bucket Fi other than variable i itself (thus, all variable indices in Vi are less
than i, or Vi = ∅). For a fixed a and a subset of ancillary variables U , we use aU to denote {ai : i ∈ U}. Variable h is
eliminated first. Note that once variables in Vh are instantiated to aVh

, the optimal setting of variable h is readily available
by solving

gh(aVh
) = min

ah
fh(ah|x) +

∑
f ∈Fh

f (aVh
,ah). (23)

Here f = f i,h ∈ Fh represents an edge ih between ancillary variables i and h, i < h (abusing notation we write f (ai, ah) as
f (aVh

, ah)), and Fh contains all edges adjacent to h. The 2|Vh | possible settings of aVh
define 2|Vh | values (23). These values

define new factor gh , a function of variables aVh
, that is added to the bucket Fi of variable i with largest index in Vh . For

each instantiation of aVh
we define the message mh(aVh

|x) as gh(aVh
). Iteratively, eliminating variable i is accomplished by

solving, for each setting of aVi
,

gi(aVi
) = min

ai
f i(ai|x) +

∑
f ∈Fi

f (aVi
,ai) (24)

generating a new factor gi , a function of aVi
. For each one of the 2|Vi | possible values of gi we define message mi(aVi

|x) to
be gi(aVi

). Factor gi is then added to bucket Fk where k is the largest index in Vi . When V i = ∅, (24) takes the form

min
ai

f i(ai|x) +
∑
f ∈Fi

f (ai) (25)

that determines the optimal value of ai ; the message corresponding to the value of this minimum is mi(∅|x). All variables
with V i = ∅ can be eliminated at the same time, so that, at termination, the value of the Ising problem mina P F (x, a|θ) is
equal to

c(x) +
∑

i:Vi=∅
mi(∅|x)

which will be equal to mina P F (x, a|θ). Notice that the number of additional messages is O (
∑

i 2|Vi |), where each Vi corre-
sponds to the time when variable i is eliminated. When Ga has treewidth t , there is an elimination order for which each
|Vi| ≤ t , which typically, by our low treewidth assumption, will be much smaller than 2h .

When θ is not fixed, as in the case when there were no edges, the messages are variables. Since these message variables
represent minimums, we upper bound the message variables adding the constraints

mi(aVi
|x) ≤ f i(−1|x) +

∑
f ∈Fi

f (aVi
,−1)

mi(aVi
|x) ≤ f i(1|x) +

∑
f ∈Fi

f (aVi
,1).

As before, if F (x) = ⊥, the constraint (19) can be replaced with

c(x) +
∑

i:Vi=∅
mi(∅|x) ≥ gmin, (26)

since the message variables provide a lower bound on (24). When F (x) = �, we must ensure that all the message variables
are tight. For a subset of ancillary variables U , let βU (x) = {βi(x) : i ∈ U}. Thus, we must have that for all aVi

13 Ga is an undirected graph. An edge is defined by a pair of vertices, say i and k; for convenience, in this section we associate this edge with the ordered
pair ik with k < i.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.17 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 17
Fig. 6. Unit cell with 5 ancillas. The subgraph, Ga , induced by the ancilla nodes is highlighted in bold. Pairwise factors f i, j(ai , a j) are associated with each
edge of Ga and unary factors f i(ai |x) with each node of Ga .[

βVi
(x) ≡ aVi

∧ βi(x)
]⇒ [

mi(aVi
|x) = f i(1|x) +

∑
f ∈Fi

f (aVi
,1)
]

[
βVi

(x) ≡ aVi
∧ ¬βi(x)

]⇒ [
mi(aVi

|x) = f i(−1|x) +
∑
f ∈Fi

f (aVi
− 1)

]
.

In this way, we can enforce that mina P F (x, a|θ) = 0 (that is, constraints (17) and (18)), with the constraint

c(x) +
∑

i:Vi=∅
mi(∅|x) = 0. (27)

Example 11. Consider a penalty over 3 variables with 5 ancillas embedded in a unit cell (see Fig. 6). For each x, ancilla vari-
ables are eliminated in the order a5, a4, · · · , a1. The buckets are F5 = { f1,5}, F4 = { f1,4}, F3 = { f1,3}, F2 = { f1,2}, and F1 =
{}. The dependent variable sets of each bucket are V5 = {a1}, V4 = {a1}, V3 = {a1}, V2 = {a1}, and V1 = {}. Elimination of a5
is accomplished by posting the message constraints m5(a1|x) ≤ f5(1|x) + f1,5(a1, 1) and m5(a1|x) ≤ f5(−1|x) + f1,5(a1, −1).
This elimination (for each choice of aV5 = a1) generates a new factor g5(a1) which is added to bucket F1. Next, we pro-
ceed to a4. In this example, no new factors have been added to bucket F4 and elimination proceeds as above where factor
g4(a1) is added to F1 and message constraints m4(a1|x) ≤ f4(1|x) + f1,4(a1, 1) and m4(a1|x) ≤ f4(−1|x) + f1,4(a1, −1) are
posted. This process repeats to the final ancilla a1 whose bucket now includes F1 = {g2, g3, g4, g5}. Elimination of a1 is
accomplished by adding the message constraints m1(∅|x) ≤ f1(1|x) +∑5

i=2 gi(1) and m1(∅|x) ≤ f1(−1|x) +∑5
i=2 gi(−1).

The minimal penalty value at the given x is then lower bounded by c(x) + m1(∅|x). This bound is made tight for infeasible
x by requiring c(x) + m1(∅|x) ≥ gmin and made tight for feasible x by imposing the constraints associated with the β(x)

variables.

As noted in the case when Ga has no edges, some message variables will always have the same values. In fact, significant
additional model reduction can be accomplished by identifying message variables that have to be the same across many
states x. For instance, mi(aVi

|x) = mi(aVi
|x′) if their corresponding upper bounds are the same (propagating from h down

to i). Because G is sparse, the number of message variables can typically be reduced by an order of magnitude or more in
this way.

In many cases, for counter-models x, F (x) = ⊥, some constraints (19) may be dropped or relaxed without altering the
optimal solution of the original SMT problem. For instance, we could include only constraints (19) for counter-models x
that are within Hamming distance at most d from all models of F . In our experiments, using d ≤ 3 sufficed in most cases.

Alternatively, also for counter-models, the variable elimination lower bounds (26) can be relaxed by weaker lower bounds
such as a linear programming relaxation of the corresponding Ising problem, that requires O (|V | +|E|) continuous variables
and inequalities per x, F (x) = ⊥. For instance, a linear programming lower bound on the QUBO formulation

min
yi∈{0,1}

∑
i∈V

ci yi +
∑

e={i, j}∈E

qe yi y j ,

is the following:

Minimize
∑
i∈V

ci xi +
∑
e∈E

qe ze (28)

subject to

ze − yi − y j ≥ −1 for each e = i j ∈ E , i < j (λe) (29)

−ze + yi ≥ 0 for each e = i j ∈ E , i < j (λh) (30)
e,i

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.18 (1-34)

18 Z. Bian et al. / Information and Computation ••• (••••) ••••••
−ze + y j ≥ 0 for each e = i j ∈ E , i < j (λt
e, j) (31)

−yi ≥ −1 for each i ∈ V (αi) (32)

yi, ze ≥ 0 (33)

Its linear programming dual is given by

Maximize −
∑
e∈E

λe −
∑
i∈V

αi (34)

subject to

λe − λh
e,i − λt

e, j ≤ qe for each e = i j ∈ E , i < j (35)

−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λh
e,i +

∑
e=ki∈E,k<i

λt
e,i − αi ≤ ci for each i ∈ V (36)

λe, λ
h
e,i, λ

t
e,i,αi ≥ 0 (37)

Notice that if c and q are variables, the dual problem is still linear in the dual variables, c and q. Thus, we can guarantee
(in one direction only) that the value of the QUBO is at least g with the set of linear inequalities

−
∑
e∈E

λe −
∑
i∈V

αi ≥ g (38)

(35), (36), (37) (39)

Note that we can always take

(−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λh
e,i +

∑
e=ki∈E,k<i

λt
e,i − ci)

+ = αi .

To make this work for an Ising problem, the c and q have to be written as linear functions of θ , which is straightforward.

4.3. Inequivalent variable placements

Recall that a variable placement is a mapping from the input and ancilla variables x ∪ a onto the vertices V ; the formula
�(θ) in (16)-(21) can be built only after each zi ∈ x ∪ a has been placed. In general there will be many such placements,
but by exploiting symmetry and the automorphism group of G , we can reduce the number of placements that need be
considered.

Let v
def= (v1, ..., vn+h) denote a variable placement, so vi is the vertex of V onto which zi is placed. Two variable

placements v and v′ def= (v ′
1, ..., v

′
n+h) are equivalent if there is a graph isomorphism φ of G that point-wise maps the input

variables (xi) in v to the input variables in v′; that is, vi = φ(v ′
i) for all i ≤ n. If v and v′ are equivalent, then a penalty

function for v can be transformed into a penalty function for v′ by applying φ. Therefore, in order to find a penalty function
of maximal gap among all variable placements, it suffices to consider only inequivalent ones.

Example 12. Suppose we want to encode a penalty function with n + h = 8 variables into an 8-qubit Chimera tile. There are
8! = 40320 candidate variable placements. However, the tile structure is highly symmetric: any permutation of v that either

(i) swaps horizontal qubits with vertical qubits, or
(ii) maps horizontal qubits to horizontal qubits and vertical qubits to vertical qubits

is an automorphism. This fact can be exploited to reduce the number of candidate placements to only
(7

3

)= 35 as follows.
Let 1, ..., 4 and 5, ..., 8 be the indexes of the horizontal and vertical qubits respectively. By (i), we assume w.l.o.g. that
z1 is mapped into an horizontal qubit, and by (ii) we assume w.l.o.g. that v1 = 1. Next, consider some size-3 subset S of
{v2, ..., v8}. By (ii), all placements that map S into the remaining 3 horizontal qubits and map {v2, ..., v8}\S into the vertical
qubits are equivalent. Since there are

(7
3

)= 35 such subsets S , there are at most 35 inequivalent placements to consider.

This notion of equivalence of variable placements can be coarsened slightly by taking advantage of NPN-equivalence. We
define variables x1 and x2 in a Boolean function F to be NPN-symmetric if swapping the variables, and negating some subset
of variables, produces an equivalent formula. For example, consider F (x1, x2, x3)

def= x3 ↔ (x1 ∧ ¬x2). Variables x1 and x2 are
NPN-symmetric because F (x1, x2, x3) ↔ F (¬x2, ¬x1, x3). This symmetry defines an equivalence relation on the variables: for
xi and x j the same equivalence class, there is a permutation and negation of the variables that does not change F but maps
xi to x j while not permuting variables outside the equivalence class.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.19 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 19
We say that two variable placements v and v′ are equivalent up to NPN-symmetry if there is a graph isomorphism φ of G
that maps the input variables in v to the input variables in v′ up to NPN-symmetry classes. That is, for all i ≤ n, there exists
a j ≤ n such that xi and x j are NPN-symmetric and vi = φ(v ′

j). Again, penalty functions for v and can be transformed into
penalty functions for v′ and vice versa.

Example 13. Consider placing the function AND(x1, . . . , x4) = x1 ∧ x2 ∧ x3 ∧ x4 with h = 4 auxiliary variables on the 8-qubit
Chimera tile. From Example 12, it suffices to consider 35 variable placements. However, the variables x1, . . . , x4 in AND are
all NPN-symmetric. Therefore any two variable placements v and v′ that map the same number xi ’s to horizontal qubits are
equivalent, since there is an automorphism that will map the horizontal xi ’s in v to the horizontal xi ’s in v′ . Moreover, a
placement mapping k ≤ 4 of the xi ’s to horizontal qubits is equivalent to one mapping 4 − k of the xi ’s to horizontal qubits,
by swapping horizontal and vertical qubits. As a result, there are only 3 inequivalent variable placements to consider, in
which 0, 1 or 2 of the xi ’s are mapped to horizontal qubits.

One way to check for equivalent variable placements is to use vertex-colored graph isomorphisms. Two vertex-colored
graphs (G, c) and (G ′, c′) are vertex-colored graph-isomorphic if there is a permutation φ mapping V (G) to V (G ′) that pre-
serves edges and maps every vertex of G to a vertex of the same color in G ′ (for all v ∈ V , c′(φ(v)) = c(v)). Using a variable
placement v and NPN-symmetry, define a vertex-coloring c of G as follows:

c(g) =
{

s if vi = g and xi is in the s-th equivalence class of NPN-symmetry,

0 if g is not in {v1, . . . , vn}.

Similarly define a vertex coloring c′ for variable placement v′ . From these definitions, v and v′ are equivalent up to NPN-
symmetry if and only if the vertex colored graphs (G, c) and (G, c′) are vertex-colored graph-isomorphic.

In practice, we can use the graph package Nauty [44] to compute a canonical form for each vertex-colored graph and
check if two are the same. Nauty works with vertex-colored canonical forms natively as part of its graph isomorphism
algorithm, and can compute canonical forms for graphs with thousands of vertices.

4.4. Placing variables & computing penalty functions via SMT/OMT(LRIA∪UF)

As an alternative to identifying equivalent variable placements, for small formulae F (x), we can combine the generation
of the penalty function with an automatic variable placement by means of SMT/OMT(LRIA∪UF), LRIA∪UF being the
combined theories of linear arithmetic over rationals and integers plus uninterpreted function symbols (§2.2). This works as
follows.

Suppose we want to produce the penalty function of some relatively small function (e.g., so n + h ≤ 8, which fits into a
single Chimera tile). We index the n +h vertices in the set V into which we want to place the variables as V

def= {1, ...,n + h},
and we introduce a set of n + h integer variables v

def= {v1, ..., vn+h} such that v j ∈ V is (the index of) the vertex into
which z j is placed. (For example, “v3 = 5” means that variable z3 is placed in vertex #5.) Then we add the standard SMT
constraint Distinct(v1, ..., vn+h) to the formula to guarantee the injectivity of the map. Then, instead of using variables θi

and θi j for biases and couplings, we introduce the uninterpreted function symbols b : V �−→ Q (“bias”) and c : V × V �−→ Q
(“coupling”), so that we can rewrite each bias θ j as b(v j) and each coupling θi j as c(vi, v j) s.t. vi, v j ∈ [1, .., n + h] and
Distinct(v1, ..., vn+h).

This rewrites the SMT(LRA) problem (16)-(19) into the S MT (LRIA ∪ UF) problem (40)-(51) in Fig. 7. Equation (44)
must be used if and only if we need an exact penalty function. (Notice that (47) is necessary because we could have
c(vi, v j) s.t. vi > v j .) By solving 〈�(θ0,b, c,v), gmin〉 we not only find the best values of the biases b and couplings c, but
also the best placement v of the variables into (the indexes of) the qubits.

Example 14. Consider x def= {x1, x2, x3}, a def= {a1} and F (x) def= (x3 ↔ (x1 ∧ x2)), and 4-qubit fraction of a tile with 2 horizontal
and 2 vertical qubits. Let z1, z2, z3 and z4, denote x1, x2, x3 and a1 respectively, so that each v j denotes the vertex into
which z j is placed. We consider the encoding (40)-(51), in particular we have that:

P F (x,a|θ0,b, c,v)
def= θ0 + b(v1)x1 + b(v2)x2 + b(v3)x3 + b(v4)a1 +

c(v1, v2)x1x2 + c(v1, v3)x1x3 + c(v1, v4)x1a1 +
c(v2, v3)x2x3 + c(v2, v4)x2a1 + c(v3, v4)x3a1

Graph()
def= c(1,2) = 0 ∧ c(2,1) = 0 ∧ c(3,4) = 0 ∧ c(4,3) = 0

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.20 (1-34)

20 Z. Bian et al. / Information and Computation ••• (••••) ••••••
�(θ0,b, c,v)
def= Range(θ0,b, c,v) ∧ Distinct(v) ∧ Graph() (40)

∧
∧

{x∈{−1,1}n |F (x)=�}

∧
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) ≥ 0) (41)

∧
∧

{x∈{−1,1}n |F (x)=�}

∨
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) = 0) (42)

∧
∧

{x∈{−1,1}n |F (x)=⊥}

∧
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) ≥ gmin) (43)

∧
∧

{x∈{−1,1}n |F (x)=⊥}

∨
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) = gmin) (44)

where:

Range(θ0,b, c,v)
def=

∧
1≤ j≤n+h

(1 ≤ v j) ∧ (v j ≤ n + h) (45)

∧
∧

1≤ j≤n+h

(−2 ≤ b(j)) ∧ (b(j) ≤ 2) (46)

∧
∧

1≤ j≤n+h

(c(j, j) = 0) ∧
∧

1≤i< j≤n+h

(c(i, j) = c(j, i)) (47)

∧
∧

1≤i< j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (48)

Distinct(v1, ..., vn+h)
def=

∧
1≤i< j≤n+h

¬(vi = v j) (49)

Graph()
def= ∧

∧
1≤i< j≤n+h

〈i, j〉/∈E

(c(i, j) = 0) (50)

P F (x,a|θ0,b, c,v)
def= θ0 +

∑
1≤ j≤n+h

b(v j) · z j +
∑

1≤i< j≤n+h

c(vi , v j) · zi · z j . (51)

Fig. 7. SMT (LRIA∪UF) encoding with automatic placement.

Fig. 8. 3 possible placements of z
def= {x1, x2, x3} ∪ {a1} into a 4-qubit tile fraction with 2 horizontal and 2 vertical qubits. All 4! = 24 combinations are

equivalent to one of them.

One possible solution is given in the following tables:

g v1 v2 v3 v4
2 1 3 2 4

θ0 b(v1) b(v2) b(v3) b(v4)

b(1) b(3) b(2) b(4)

5/2 −1/2 −1/2 1 0

c(v1, v2) c(v1, v3) c(v1, v4) c(v2, v3) c(v2, v4) c(v3, v4)

c(1,3) c(1,2) c(1,4) c(3,2) c(3,4) c(2,4)

1/2 0 −1 −1 0 −1

which corresponds to the placing in Fig. 8 (center).

4.4.1. Exploiting symmetries
When using an SMT/OMT solver to search for penalty functions across all variable placements as in (40)-(51), we may

restrict the search space by considering only one variable placement from each equivalence class under the automorphisms
of G .

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.21 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 21
Fig. 9. Graph of the encoding process.

Example 15. In Example 12, when encoding a penalty function with n + h = 8 variables into a Chimera tile, automorphisms
reduced the number of variable placements under consideration from 8! = 40320 to

(7
3

)= 35. We can force the SMT/OMT
solver to restrict the search to only 35 maps by adding the following constraint to (40)-(51), consisting into the disjunction
of 35 cubes, each representing one placement.

(

F ixed︷ ︸︸ ︷
v1 = 1∧

size-3 subset of {v2,...,v8}
mapped to horizontal qubits︷ ︸︸ ︷

v2 = 2 ∧ v3 = 3 ∧ v4 = 4∧

complement of the previous subset
mapped to vertical qubits︷ ︸︸ ︷

v5 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨
(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v5 = 4 ∧ v4 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨
...

(v1 = 1 ∧ v6 = 2 ∧ v7 = 3 ∧ v8 = 4 ∧ v2 = 5 ∧ v3 = 6 ∧ v4 = 7 ∧ v5 = 8).

If we add this constraint, the first conjunction in (45) can be dropped.

Example 16. In Example 14 we have 4! = 24 possible placements on to a tile of 2 horizontal and 2 vertical qubits. If we
exploit symmetries as above, we have only

(3
1

) = 3 inequivalent placements, which are described in Fig. 8. These can be
obtained by adding the constraint:

(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v4 = 4) ∨
(v1 = 1 ∧ v3 = 2 ∧ v2 = 3 ∧ v4 = 4) ∨
(v1 = 1 ∧ v4 = 2 ∧ v2 = 3 ∧ v3 = 4).

5. Encoding larger Boolean formulas

As pointed out in Section 3.2, encoding large Boolean functions using the SMT formulations of the previous section is
computationally intractable, as the number of constraints in the model increases roughly exponentially with the number of
variables in the Boolean function. In this section, we describe the natural approach of pre-computing a library of encoded
Boolean functions and rewriting a larger Boolean function F (x) as a set of pre-encoded ones

∧K
k=1 Fk(xk). The penalty

functions P Fk (xk, ak|θk) for these pre-encoded functions may then be combined using chains as described in Section 3.4.
This schema is shown in Fig. 9. In terms of QA performance, this method has been shown experimentally to outperform
other encoding methods for certain problem classes [45]. We will describe each of the stages in turn (see also [34,45,46]).

5.1. Pre-encoding

In this stage, we find effective encodings of common small Boolean functions, using the SMT methods in Section 4 or by
other means, and store them in a library for later use. Finding these encodings may be computationally expensive, but this
task may be performed offline ahead of time, as it is independent of the problem input, and it needs only be performed
once for each NPN-inequivalent Boolean function.

Note that there exist many different penalty functions P F (x, a|θ) for any small Boolean function F (x). Penalty functions
with more qubits may have larger gaps, but using those functions may result in longer chains, so it is not always the
case that larger gaps lead to better QA hardware performance. Choosing the most appropriate function may be a nontrivial
problem. A reasonable heuristic is to choose penalty functions with gaps of similar size to the gap associated with a chain,
namely gmin = 2.

5.2. Preprocessing

Preprocessing, or Boolean formula minimization, consists of simplifying the input formula F (x) to reduce its size or
complexity. While not strictly necessary, it not only improves QA performance by reducing the size of P F (x, a|θ) but also

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.22 (1-34)

22 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Fig. 10. Two And-Inverter Graphs representing the function F (x) = x1 ∧ x2 ∧ ¬x3.

reduces the computational expense of the encoding process. Moreover, the graphical representation commonly used in
preprocessing, the AND-Inverter Graph (AIG), is necessary for the subsequent phase of encoding.

An AIG encodes F (x) as a series of 2-input AND gates and negations. More precisely, a directed acyclic graph D on vertex
set z = x ∪ a = (x1, . . . , xn, a1, . . . , am) is an AIG representing F (x) if it has the following properties:

1. Each xi has no incoming arcs and each ak has 2 incoming arcs (the inputs to ak), and there is a unique ao with no
outgoing arcs (the primary output).

2. Each arc z → a is labeled with a sign + or − indicating whether or not z should be negated as an input to a; define a
literal la(z) = z for an arc with sign + and la(z) = ¬z for an arc with sign −.

3. For each node ak with arcs incoming from z1 and z2, there is an AND function Ak(ak, z1, z2) = ak ↔ lak (z1) ∧ lak (z2),
such that

F (x) ↔
m∧

k=1

Ak(z) ∧ (ao = �). (52)

For example, the function F (x) = x1 ∧ x2 ∧ ¬x3 is represented by both of the And-Inverter Graphs in Fig. 10.
There are many And-Inverter Graphs representing a given F (x). Is F (x) is in CNF form, we can construct an AIG by

rewriting each OR clause as an AND function via De Morgan’s Law, and then rewriting each AND function with more than
2 inputs as a sequence of 2-input AND functions.

Preprocessing is a well-studied problem with mature algorithms available [47,48]; here, we use DAG-aware minimization
as implemented by the logic optimizer ABC.14 DAG-aware minimization attempts to find an AIG with a minimal number of
nodes by repeatedly identifying a small subgraph that can be replaced with another, smaller subgraph without changing the
truth assignments of F (x).

More precisely, a cut C of node z in D is a subset of vertices such that every directed path from an input xi to z must
pass through C . The subgraph of D induced by all paths from C to z is a candidate to be replaced by a smaller subgraph,
since the Boolean value of z is determined by C . We call this value of z as a function of C the Boolean function represented
by C . Cut C is k-feasible if |C | ≤ k and non-trivial if C �= {z}. For fixed k, there is an O (n)-time algorithm to identify all
k-feasible cuts in an AIG: traverse the graph from the inputs x to the primary output, identifying the k-feasible cuts of node
ai by combining k-feasible cuts of ai ’s inputs. During traversal, DAG-aware minimization identifies a 4-feasible cut C and
replaces the subgraph induced by C with the smallest subgraph representing the same Boolean function. (There are 222
NPN-inequivalent 4-input Boolean functions, and smallest subgraph representing each one is pre-computed.) See [49] for
more details.

5.3. Standard cell mapping

In the standard cell mapping phase, F (x) is decomposed into component functions
∧K

k=1 Fk(xk) that are available in the
library of penalty functions. For SAT or constraint satisfaction problems, this mapping may be performed naïvely: given a
set of constraints {Fk(xk)}K

k=1 on the variables, each Fk(xk) is found in the library (possibly combining small constraints into
larger ones [34]). However, more advanced techniques have been devised in the digital logic synthesis literature. Technology
mapping is the process of mapping a technology-independent circuit representation to the physical gates used in a digital
circuit [49,50]. Usually technology mapping is used to reduce circuit delay and load, and performs minimization as an
additional step. Delay and load do not play a role in the context of QAs, but minimization is important to simplify the
placement and routing phase that follows.

In order to find an efficient decomposition, a technology mapping algorithm takes as input costs for small Fk(xk) and
attempts to minimize the sum of the costs of the components in

∧K
k=1 Fk(xk). We define the cost of Fk to be the number

of qubits used by the penalty model P Fk , so that the cost of F (x) =∧K
k=1 Fk(xk) is the total number of qubits used to

represent F (x), prior to adding chains.

14 See https://github .com /berkeley-abc /abc and https://people .eecs .berkeley.edu /~alanmi /abc/.

https://github.com/berkeley-abc/abc
https://people.eecs.berkeley.edu/~alanmi/abc/

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.23 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 23
Here, we apply the technology mapping algorithm in [49]: the idea is to decompose the AIG representing F (x) into a
collection of cuts such that each cut represents a small function Fk(zk) that can be found in the penalty library. A mapping
M of an AIG D is a partial function that maps a node ai of D to a non-trivial, k-feasible cut M(ai). We say ai is active when
M(ai) is defined and inactive otherwise. Mapping M is proper if:

1. the primary output ao is active;
2. if ai is active; then every a j ∈ M(ai) is active; and
3. if a j �= ao is active; then a j ∈ M(ai) for some active ai .

For each active node ak in a proper mapping M , there is a Boolean function Fk(zk) represented by the cut M(ak), and
the original Boolean function F (x) decomposes as

F (x) ↔
K∧

k=1

Fk(zk) ∧ (ao = �).

Therefore, choosing k-feasible cuts with small k, proper mappings provide decompositions of F (x) into small Boolean func-
tions that can be found in the penalty library. One example of a proper mapping is the trivial mapping, in which each ai
is mapped to the cut consisting of its two input nodes. Under the trivial mapping, F (x) is decomposed into a collection
2-input AND’s.

The algorithm in [49] iteratively refines mapping M in order to improve the cost of the decomposition, in the following
way. For each node ai , maintain a list L(ai) of k-feasible cuts, ordered by their cost. (The cost of a cut is a function of the
cost of the Boolean function it represents, taking into account the anticipated recursive effects of having a new set of active
nodes: see [49] for details.) Traverse the graph from inputs x to primary output ao . At each ai , first update the costs of the
cuts in L(ai) based on the changes to the costs of earlier nodes in the traversal. Next, if ai is active and the current cut
M(ai) is not the cut in L(ai) of lowest cost, update M(ai). To do this, first inactivate ai (which recursively inactivates nodes
in M(ai) if they are no longer necessary) and then reactivate ai (which reactivates nodes in M(ai), also recursively). This
process of refining the mapping by traversing the graph is repeated several times.

Given the connectivity of the Chimera hardware graph, a natural choice is to decompose into Boolean functions that
can be modeled with a single 8-qubit tile. In particular all 3-input, 1-output Boolean functions (all 3-feasible cuts) can be
modeled in one tile.

Example 17. Consider the XOR function F (x) def= x6 ↔ (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5). This function cannot be encoded into a single
8-qubit Chimera tile. However, F (x) is equivalent to the decomposition F1(z) ∧ F2(z) with

F1(z)
def= a0 ↔ (x1 ⊕ x2 ⊕ x3),

F2(z)
def= x6 ↔ (a0 ⊕ x4 ⊕ x5),

where each of F1 and F2 maps to a unit tile individually.

5.4. Placement and routing

Once F (x) is decomposed into smaller functions
∧K

k=1 Fk(xk) with penalty functions P Fk (xk, ak|θk), it remains to em-
bed the entire formula onto the QA hardware as in equation (11). This process has two parts: placement, in which each
P Fk (xk, ak|θk) is assigned to a disjoint subgraph of the QA hardware graph; and routing, in which chains of qubits are built
to ensure that distinct qubits xi and x′

i representing the same variable take consistent values (using equivalence constraints
with penalty functions of the form 1 − xi x′

i). Both placement and routing are very well-studied in design of digital circuits
[51]. Nevertheless, this stage is a computational bottleneck for encoding large Boolean functions.

5.4.1. Placement
During placement, chain lengths can be minimized by placing penalty functions that share common variables close

together. Current QA processors have a nearly 2-dimensional structure, which lets us measure distance between variables
using planar coordinates. (For example, for the 2048-qubit Chimera graph in Fig. 2, define the planar coordinates of a unit
cell to be its row and column index in the 16 × 16 grid.) One common objective function from digital circuit design is “half-
perimeter wire length” [52]. Define the location of a Boolean function Fk(xk) to be the subgraph of G onto which Fk(xk) is
placed, and define a placement function p : {1, ..., K } →R2 which maps each k to the planar coordinates p(k) = (ak, bk) of
the location of Fk(xk). The half-perimeter wire length (HPWL) of a variable xi is the total length and width of the smallest box
that can be drawn around the locations of functions containing x. That is, for Si = {k : xi ∈ xk},

H P W L(xi)
def= (max ak − min ak) + (max bk − min bk).
k∈Si k∈Si k∈Si k∈Si

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.24 (1-34)

24 Z. Bian et al. / Information and Computation ••• (••••) ••••••
A placement algorithm attempts to find a placement that minimizes
∑n

i=1 H P W L(xi).
Heuristic methods for placement include simulated annealing [53], continuous optimization [54], and recursive min-cut

partitioning [55]. These algorithms can be applied in the present context, but require some modification as current QA
architectures do not distinguish between qubits used for penalty functions and qubits used for chains. For example, in some
algorithms, a placement is optimized on the assumption that the resulting routing problem is feasible (possibly by expanding
the planar area made available for routing). This assumption may not necessarily hold using a fixed QA hardware graph of
limited size and connectivity. If unit cells are packed tightly with Boolean functions, then there will be few remaining qubits
available for routing. On the other hand, reserving too many qubits for routing will have a negative impact on hardware
performance in the form of longer chains.

In the experiments in §7 we made use of mPL,15 a publicly available academic placement tool [54]. mPL is multilevel
method in which the placement problem is repeatedly coarsened (so that several P Fk are clustered and treated as one),
placed, and uncoarsened with local improvements. At the coarsest level, placement is performed using a customized non-
linear programming algorithm which maps penalty functions to real coordinates minimizing a quadratic distance function
between shared variables.

5.4.2. Routing
During routing, literals are chained together using as few qubits possible; this problem may be formalized as follows.

Assume a single variable xi has been assigned to a set of vertices Ti ⊆ V , its terminals, during the placement of small
Boolean functions. To create a valid embedding, the chain of vertices representing xi , call it Ci , must contain Ti and induce
a connected subgraph in G . Finding Ci with a minimum number of vertices is an instance of the Steiner tree problem [56]
and Ci is a Steiner tree. Given variables (x1, . . . , xn) assigned to terminals (T1, . . . , Tn), the routing problem demands a set
of chains (C1, . . . , Cn) such that each Ci contains Ti , every chain is connected, and all chains are pairwise disjoint. Among
routing solutions, we try to minimize the total number of vertices of G used or the size of the largest chain.

Routing to minimize the total number of vertices used is NP-hard, but polynomial-time approximation algorithms exist
[57]. In practice, heuristic routing algorithms scale to problem sizes much larger than current QA architectures [58–62].

Routing in the current context differs from routing used in digital circuit design in the sense that vertices (qubits) are
the sparse resource that variables compete for, rather than edges. As a result, we make use vertex-weighted Steiner tree
algorithms rather than edge-weighted ones. This makes the problem harder, as the edge-weighted Steiner tree problem is
(1.39)-approximable in polynomial time [63], while vertex-weighted Steiner-tree is only (log k)-approximable for k termi-
nals in polynomial time unless P=NP [64]. Nevertheless, in practice, simple 2-approximation algorithms for edge-weighted
Steiner tree such as the MST algorithm [65] or Path Composition [66] also work very well for the vertex-weighted problem.
In this section, we describe a modification of the routing algorithm BonnRoute [66] for vertex-weighted Steiner trees.

We first solve a continuous relaxation of the routing problem called min-max resource allocation. Given a set of vertices
C ⊆ V , the characteristic vector of C is the vector χ(C) ∈ {0, 1}|V | such that χ(C)v = 1 if v ∈ C and 0 otherwise. Let Hi be
the convex hull of all characteristic vectors of Steiner trees of Ti in G . Then the min-max resource allocation problem for
terminals T1, . . . , Tn is to minimize, over all zi ∈ Hi , i ∈ {1, . . . , n},

λ(z1, . . . , zn)
def= max

v∈V

n∑
i=1

(zi)v .

The vertices v are the resources, which are allocated to customers (z1, . . . , zn).16 To recover the routing problem, note that if
each zi is a characteristic vector of a single Steiner tree, then

∑n
i=1(zi)v the number of times vertex v is used in a Steiner

tree. In that case, λ(x) ≤ 1 if and only if the Steiner trees are a solution to the routing problem.
To solve the min-max resource allocation, we iteratively use a weighted-Steiner tree approximation algorithm to generate

a probability distribution over the Steiner trees for each xi . After a Steiner tree is generated, the weights of the vertices in
that Steiner tree are increased to discourage future Steiner trees from reusing them (see Algorithm 1 for details). This
algorithm produces good approximate solutions in reasonable time. More precisely, given an oracle that computes vertex-
weighted Steiner tree approximations within a factor σ of optimal, for any ω > 0 Algorithm 1 computes a σ(1 + ω)-
approximate solution to min-max resource allocation problem using O ((log |V |)(n + |V |)(ω−2 + log log |V |)) calls to the
oracle [67].

Once a solution to the min-max resource allocation has been found, we recover a solution to the original routing problem
by formulating an integer linear program (IP), which may be solved via OMT(LRA).17 For each Steiner tree Si with non-
zero probability in the distribution returned from min-max resource allocation, define a binary variable as follows:

15 Available at http://cadlab .cs .ucla .edu /cpmo/.
16 The original BonnRoute algorithm uses min-max resource allocation with edges rather than vertices as resources.
17 The original BonnRoute algorithm uses randomized rounding to recover a routing solution from min-max resource allocation, but at current QA hard-

ware scales this is not necessary.

http://cadlab.cs.ucla.edu/cpmo/

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.25 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 25
Algorithm 1 BonnRoute Resource Sharing Algorithm [66].
Require: Graph G , Steiner tree terminals {T1, . . . , Tn}, number of iterations t , weight penalty α > 1
Ensure: For each i, a probability distribution pi,Si over all Steiner trees Si for terminals Ti

function BonnRoute(G ,{T1, . . . , Tn})
for each v ∈ V (G) do

w v ← 1
for each Steiner tree Si for terminals Ti , i ∈ [n] do

zi,Si ← 0

for j from 1 to t do
for each i ∈ [n] do

Find a Steiner tree Si for terminals Ti with vertex-weights w v

zi,Si ← zi,Si + 1
w v ← w v ∗ α for all v ∈ Si

Return pi,Si ← zi,Si /t

xi,Si =
{

1, if Si is the selected Steiner tree for variable i;
0, otherwise.

Then minimize the number of qubits selected, subject to selecting one Steiner tree for each i and using each vertex at most
once. That is,

min
∑

i

∑
Si

|Si |xi,Si

s.t.
∑

Si

xi,Si = 1 for all i

xi,Si + x j,S j ≤ 1 for all Si, S j s.t. Si ∩ S j �= ∅.

When applying routing to the Chimera graph, because of the symmetry within each unit tile, it is convenient to work
with a reduced graph in which the horizontal qubits in each unit tile are identified as a single qubit, and similarly for the
vertical qubits. As a result the scale of the routing problem is reduced by a factor of 4. This necessitates the use of vertex
capacities within the routing algorithm (each reduced vertex has a capacity of 4), and variables are assigned to individual
qubits within a tile during a secondary, detailed routing phase.

In the digital circuit literature, the placement and routing stages of embedding are typically performed separately. How-
ever, because of current limited number of qubits and the difficulty in allocating them to either placement or routing, a
combined place-and-route algorithm can be more effective. This approach is discussed in detail in [45].

6. Related work

There have been several previous efforts to map specific small Boolean functions (usually in the guise of constraint
satisfaction problems) to Ising models. Most of those mappings have been ad hoc, but some were more systematic (beyond
[34] and [45] as previously discussed). Lucas [68] and Chancellor et al. [69] developed Ising models for several specific
NP-hard problems, while Su et al. [46] and Pakin [70,71] decomposed Boolean functions into common primitives.

There have also been several attempts to map large Boolean functions or more generally large constrained Boolean
optimization problems to D-Wave hardware. Most of these efforts (e.g. [72–80]) have used global embedding, in which an
entire Ising model is minor-embedded heuristically [42] or a fixed embedding is used [40,41]. However Su et al. [46] used
a general place-and-route approach, while Trummer et al. [81], Chancellor et al. [69], Zaribafiyan et al. [41], and Andriyash
et al. [82] used a placement approach optimized for the specific constraints at hand.

The main new contributions of this paper to the mapping problem, beyond [34] and [45], are:

• a rigorous formalization of the mapping problem in terms of penalty functions and SMT/OMT formulations (§3, §4.1);
• improvements to the efficiency of SMT solutions using variable elimination and symmetries (§4.2, §4.3);
• using SMT/OMT(LRIA∪UF) to combine variable placement and penalty function generation (§4.4);
• the use of AND-Inverter Graph preprocessing and standard cell mapping to decompose large Boolean functions (§5.2,

§5.3).

Looking at SAT instances in particular, there have been at least two previous attempts at benchmarking D-Wave hardware
performance: McGeoch et al. [83] and Santra et al. [84] looked at (weighted) Max2SAT problems, and Douglass et al. [85]
and Pudenz et al. [86] looked at SAT problems with the goal of sampling diverse solutions. Farhi et al. [87] and Hen and
Young [88] studied the performance of quantum annealing on SAT problems more generally. The applicability of QAs for
various SAT formulations has also been discussed in [89,90]. The distinguishing feature of the SAT problems considered in

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.26 (1-34)

26 Z. Bian et al. / Information and Computation ••• (••••) ••••••
this paper is the design of “small but hard” SAT problems, which accommodate the limited connectivity and size of current
QA hardware while still challenging conventional SAT solvers.

7. Preliminary experimental evaluation

We have implemented and made publicly available prototype encoders built on top of the SMT/OMT tool OptiMathSAT

[33]. In particular each SATtoIsing-specific step outlined in Fig. 9 has been implemented as a Python library. For preprocess-
ing we rely on the ABC tool suite [91]. The same software is capable of performing technology mapping, though a Python
version is available in the techmapping library.18 Finally the placeandroute library19 performs the combined placement
and routing step. Regarding the off-line part of the process, the gatecollector library20 extracts the most common gates
in a dataset of functions and generates a function library in the ABC-compatible genlib format. The pfencoding library21 is
then used to call OptiMathSAT to encode them for later use. Currently the most expensive step in the on-the-fly process is
the placement and routing step. In the current setup we use ≈20 minutes on a Intel i7-5600U CPU when we encode the
problems used in the experimental evaluation. The software run-time is heavily tunable in order to trade off efficiency and
effectiveness of the place-and-route process.

We offer preliminary empirical validation of the proposed methods for solving SAT via SATtoIsing encoding by evaluating
the performance of D-Wave’s 2000Q system in solving certain hard SAT problems (§7.1); we perform a similar evaluation
also on MaxSAT problems (§7.2), despite the limitations highlighted in §3.3.

This task is subject to some limitations. First, we require instances that can be entirely encoded in a quantum annealer of
2000 qubits (although algorithms for solving much larger constraint satisfaction problems have been proposed; see [34,45]).
Furthermore, SAT solvers are already quite effective on the average case, so we need concrete worst-case problems. Another
important consideration in solving [Max]SAT instances is that the QA hardware cannot be made aware of the optimality
of solution; for example, the algorithm cannot terminate when all clauses in a SAT problem are satisfied. In this way, QA
hardware behaves more like an SLS solver than a CDCL-based one. To this extent, and in order to evaluate the significance
of the testbed, we solved the same problems with the state-of-the-art UBCSAT SLS SAT solver using the best performing
algorithm, namely SAPS [9]. UBCSAT was run on a computer using a 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

Remark 1. The results reported in this section are not intended as a performance comparison between D-Wave’s 2000Q
system and UBCSAT, or any other classic computing tool. It is difficult to make a reasonable comparison for many reasons,
including issues of specialized vs. off-the-shelf hardware, different timing mechanisms and timing granularities, and parallel
processing. In particular, we do not include the cost of encoding in our D-Wave timings, and this time is often greater
than that required to solve the encoded problem itself (though for some applications such as encoding a Boolean circuit,
encoding may be treated as a one-time preprocessing cost). Instead, we aim to provide an empirical assessment of QA’s
potential for [Max]SAT solving, based on currently available systems.

Reproducibility of results To make the results reproducible to those who have access to a D-Wave system, we have set a
website where experimental data, problem files, translation files, demonstration code and supplementary material can be
accessed.22 Notice that public access to a D-Wave 2000Q machine is possible through D-Wave’s Leap cloud service.23

7.1. SAT

Choosing the benchmark problems In order to provide a significant empirical evaluation, and due to the limitations in size
and connectivity of current QA systems, we require SAT problems which have a low number of variables but are nevertheless
hard for standard SAT solvers.

To this end we chose and modified the tool sgen [92], which has been used to generate the smallest unsolvable problems
in recent SAT competitions. The problems share a structure that is suited for the problem embedding, as it contains multiple
clones of slightly complex constraints, and even problems with few hundreds variables are considerably hard. The sgen

family of random generators received many improvements over the years, but the method to generate satisfiable instances
has remained the same [93,94]. sgen works by setting cardinality constraints over different partitions of the variable set.
The generator operates as follows:

1. The user decides the number of Boolean variables in the problem.
2. The tool partitions the variable set into sets of 5 elements.

18 Available at https://bitbucket .org /StefanoVt /tech _mapping.
19 Available at https://bitbucket .org /StefanoVt /placeandroute.
20 Available at https://bitbucket .org /StefanoVt /gatecollector.
21 Available at https://bitbucket .org /StefanoVt /pfencoding.
22 https://bitbucket .org /aqcsat /aqcsat.
23 https://cloud .dwavesys .com /leap/.

https://bitbucket.org/StefanoVt/tech_mapping
https://bitbucket.org/StefanoVt/placeandroute
https://bitbucket.org/StefanoVt/gatecollector
https://bitbucket.org/StefanoVt/pfencoding
https://bitbucket.org/aqcsat/aqcsat
https://cloud.dwavesys.com/leap/

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.27 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 27
Fig. 11. Median times for the best-performing SLS algorithm on two different variants of the sgen problem on UBCSAT (SAPS). Timeout is marked with a
gray line. The figure report times on a computer with a 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

Table 1
(a) Number of SATtoIsing problem instances (out of 100) solved by the QA hardware using 5 samples [resp. 10 and 20]
and average fraction of samples from the QA hardware that are optimal solutions. Annealing was executed at a rate of
10 μs per sample, for a total of 50 μs, [resp. 100 μs and 200 μs] of anneal time per instance respectively. Total time used
by the D-Wave processor includes programming and readout; this amounts to about 150 μs per sample, plus a constant
10 ms of overhead. (b) Run-times in ms for SAT instances solved by UBCSAT using SAPS, averaged over 100 instances of
each problem size. Computations were performed using an 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

D-Wave 2000Q

Problem size # solved
5 samples

solved
10 samples

solved
20 samples

% optimal
samples

32 vars 100 100 100 97.4
36 vars 100 100 100 96.4
40 vars 100 100 100 94.8
44 vars 100 100 100 93.8
48 vars 100 100 100 91.4
52 vars 100 100 100 93.4
56 vars 100 100 100 91.4
60 vars 100 100 100 88.2
64 vars 100 100 100 84.6
68 vars 100 100 100 84.4
72 vars 98 100 100 84.6
76 vars 99 99 100 86.6
80 vars 100 100 100 86.0

UBCSAT (SAPS)
Problem size Avg time (ms)
32 vars 0.1502
36 vars 0.2157
40 vars 0.3555
44 vars 0.5399
48 vars 0.8183
52 vars 1.1916
56 vars 1.4788
60 vars 2.2542
64 vars 3.1066
68 vars 4.8058
72 vars 6.2484
76 vars 8.2986
80 vars 12.4141

(a) (b)

3. For satisfiable problem instances, the desired solution contains exactly one true variable for each subset. For each subset
we guarantee that at most one variable is true (10 2-CNF clauses).

4. The partition is shuffled. The tool ensures that each new subset contain exactly one true variable, and minimizes the
similarity with the previous partition.

5. For each new subset we ensure that at least one variable is true (a single CNF clause).
6. The previous two steps are repeated one more time, further restricting the solution space.

In Fig. 11 (red plot) we can see how UBCSAT SAPS performs on these random sgen problems. Notice that with >

300 variables the solver reaches the timeout of 1000 s. In our experiments, we modify the tool by using exactly-2-in-4
constraints on partitions with sets of size 4 with exactly two true variables per subset. This kind of constraint has a more
efficient embedding and the modified problems are harder (see Fig. 11, blue plot, where UBCSAT reaches the timeout with
> 270 variables).

Experiments and results To solve these SAT instances, we encode and embed them as in §4-§5 and then draw a fixed
number of samples/instance (5, 10, 20) at an annealing rate of 10 μs per sample. Table 1(a) shows the results from the
D-Wave 2000Q QA hardware.

The QA hardware solves almost all problems with 5 samples (i.e. within 50 μs of total anneal time), and all of them with
20 samples (i.e. within 200 μs of total anneal time), and the rates of sampling optimal solutions remain relatively stable at
this scale of problem.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.28 (1-34)

28 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Table 2
(a) Number of MaxSATtoIsing problem instances (out of 100) solved by the QA hardware using 100 samples, and
average fraction of samples from the QA hardware that are optimal solutions. Annealing was executed at a rate
of 10 μs per sample, for a total of 1 ms of anneal time per instance. (b) Time in ms taken to find an optimal
solution by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT instances of each problem size.
Classical computations were performed on an Intel i7 2.90 GHz × 4 processor. The solvers gw2sat [95], rots [96],
and novelty [97] are as implemented in UBCSAT [9]. All classical algorithms are performed with the optimal target
weight specified; in the absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved % optimal
samples

32 vars 100 78.7
36 vars 100 69.0
40 vars 100 60.2
44 vars 100 49.9
48 vars 100 40.4
52 vars 100 35.2
56 vars 100 24.3
60 vars 100 22.3
64 vars 99 17.6
68 vars 99 13.0
72 vars 98 9.6
76 vars 94 6.6
80 vars 93 4.3

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.020 0.018 0.034 0.039
36 vars 0.025 0.022 0.043 0.060
40 vars 0.039 0.029 0.056 0.119
44 vars 0.049 0.043 0.070 0.187
48 vars 0.069 0.054 0.093 0.311
52 vars 0.122 0.075 0.115 0.687
56 vars 0.181 0.112 0.156 1.319
60 vars 0.261 0.130 0.167 1.884
64 vars 0.527 0.159 0.207 4.272
68 vars 0.652 0.210 0.270 8.739
72 vars 0.838 0.287 0.312 14.118
76 vars 1.223 0.382 0.396 18.916
80 vars 1.426 0.485 0.430 95.057

(a) (b)

In order to evaluate the significance of the testbed, we also report the results of solving the same problems with the
UBCSAT SLS SAT solver using SAPS [9]. Remark 1 applies here. Table 1(b) shows that the problems are nontrivial despite the
small number of variables, and the run-times increase significantly with the size of the problem. (See also Fig. 11.)

7.2. Weighted MaxSAT solving and sampling

Choosing the benchmarks To demonstrate the performance of the QA hardware in this regime, we generated MaxSAT in-
stances that have many distinct optimal solutions. These problems were generated from the 2-in-4-SAT instances described
above by removing a fraction of the constraints and then adding constraints on single variables with smaller weight. More
precisely:

1. Beginning with the 2-in-4-SAT instances of the previous section, we remove one of the partitions of the variable set,
and change one 2-in-4 constraint to 1-in-4. (This makes the SAT problem unsatisfiable: for an n variable problem, the
first partition demands exactly n/2 true variables, while the second demands exactly n/2 − 1.)

2. We change the SAT problem into a weighted MaxSAT problem by assigning existing constraints a soft weight of 3 and
randomly assigning each variable or its negation a soft constraint of weight 1.

3. We repeatedly generate MaxSAT instances of this form, until we find an instance in which the optimal solution has
exactly one violated clause of weight 3 and at least n/3 violated clauses of weight 1, and at least 200 distinct optimal
solutions exist.

As discussed in §3.3, determining an appropriate gap for chains in MaxSAT problems is more complicated than for SAT
problems, and finding the smallest viable chain gap may be difficult analytically. However, a gap may be found experimen-
tally by sweeping over a range of values and choosing one that results in optimal performance. Chain gaps that are too small
result in a large number of broken chains, while chain gaps that are too large result in gaps for problem constraints that
are smaller than the noise levels of the hardware, yielding solutions that are far from optimal. For the MaxSAT experiments
in this section, the chosen chain gap was always in the range gchain ∈ [2, 6] (relative to penalty functions P F (x, a|θ) with
θi ∈ [−2, 2], θi j ∈ [−1, 1]).

Experiments and results Table 2 summarizes the performance of the D-Wave processor in generating a single optimal
MaxSAT solution, as well as the run-times for various high-performing SLS MaxSAT solvers. The QA hardware solves al-
most all problems with 100 samples/instance (i.e. within 1 ms of anneal time). Remark 1 also applies here. One of the
strengths of D-Wave’s processor is its ability to rapidly sample the near-optimal solutions: current systems typically anneal
at a rate of 10 μs or 20 μs per sample and are designed to take thousands of samples during each programming cycle. As
a result, the first practical benefits of QAs will likely come from applications which require many solutions rather than a
single optimum.

To this extent, Table 3 considers generating distinct optimal solutions. For each solver and problem size, the table in-
dicates the number of distinct solutions found in 1 second, averaged across 100 problem instances of that size. For the
smallest problems, 1 second is sufficient for all solvers to generate all solutions, while the diversity of solutions found varies

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.29 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 29
Table 3
Number of distinct optimal solutions found in 1 second by various MaxSAT solvers, averaged across 100 in-
stances of each problem size. (a) “Anneal only” accounts for only the 10 μs per sample anneal time used by
the D-Wave processor. “wall-clock” accounts for all time used by the D-Wave processor, including program-
ming and readout. (b) Classical computations were performed as in Table 2(b).

D-Wave 2000Q
Size anneal only wall-clock
32 vars 448.5 443.9
36 vars 607.0 579.9
40 vars 1007.9 922.0
44 vars 1322.6 1066.6
48 vars 1555.4 1111.8
52 vars 3229.0 1512.5
56 vars 2418.9 1147.4
60 vars 4015.3 1359.3
64 vars 6692.6 1339.1
68 vars 6504.2 1097.1
72 vars 3707.6 731.7
76 vars 2490.3 474.2
80 vars 1439.4 332.7

MaxSAT solvers
Size g2wsat rots maxwalksat novelty
32 vars 448.5 448.5 448.5 448.5
36 vars 607.0 606.9 606.9 606.8
40 vars 1007.7 1006.3 1005.3 1005.0
44 vars 1313.8 1307.1 1311.7 1255.5
48 vars 1515.4 1510.7 1504.9 1320.5
52 vars 2707.5 2813.0 2854.6 1616.2
56 vars 2021.9 2106.2 2186.6 969.8
60 vars 2845.6 3061.7 3289.0 904.4
64 vars 3100.0 4171.0 4770.0 570.6
68 vars 2742.2 3823.3 4592.4 354.8
72 vars 1841.1 2400.2 2943.4 212.6
76 vars 1262.5 1716.0 2059.2 116.4
80 vars 772.2 1111.1 1363.9 66.7

(a) (b)

widely as problem size increases. Although the D-Wave processor returns a smaller fraction of optimal solutions for MaxSAT
instances than for the SAT instances, it is still effective in enumerating distinct optimal solutions because its rapid sampling
rate.

Alternative penalty functions Different penalty functions can result in different QA performance, even when those penalty
functions have the same gap between ground and excited states. As an example of this, we describe another set of MaxSAT
instances which result in better performance on the D-Wave 2000Q processor relative to classical solvers, even though the
penalty functions they use are less theoretically justified.

We call these instances “unbiased” to distinguish them from the MaxSAT instances of the previous section. They are
generated as follows. Beginning with the sgen 2-in-4-SAT instances, we first change one 2-in-4 constraint to 1-in-4, making
the SAT problem unsatisfiable. We then remove 5 constraints from one partition of the variable set. This increases the total
number of optimal solutions. Finally, we treat the resulting constraints as a MaxSAT problem in which each 1-in-4 or 2-in-4
constraint has the same weight. Despite having many solutions, these problems become difficult for MaxSAT solvers with a
relatively small number of variables.

When solving these instances, we represent each 2-in-4-MaxSAT constraint by the following penalty function:
P F (x, a|θ) = 4 + x1x2 + x1x4 + x2x3 + x3x4 − x1a1 − x2a2 + x3a1 + x4a2. This model satisfies:

min
a

P F (x,a|θ) =

⎧⎪⎨
⎪⎩

0,
∑

i xi = 0;
2, |∑i xi| = 1;
8, |∑i xi| = 2.

Because the unsatisfiable states | ∑i xi | = 1 and | ∑i xi | = 2 have different minimal energy configurations, this is not an
exact penalty function as required for MaxSAT as in (21). Nevertheless, this model performs well in practice, because for the
unbiased MaxSAT instances only configurations with | ∑i xi | ≤ 1 are of interest.

Table 4 summarizes the performance of the D-Wave hardware and classical solvers in finding an optimal solution for
the unbiased MaxSAT instances. It is instructive to compare these results to the “biased” MaxSAT instances in Table 2.
The unbiased instances require more time for the best classical solvers to solve, yet result in better D-Wave hardware
performance, despite the fact that the penalty function used is not exact.

8. Ongoing and future work

Future QA architectures will be larger and more connected, enabling more efficient encodings of larger and more difficult
SAT problems. Faster and more scalable SMT-based encoding methods for small Boolean functions are currently an important
direction of research. The ability to increase the number of ancillary variables can lead to larger gaps, which in turn can
make quantum annealing more reliable. Among the encoding challenges presented in this paper, a few are of particular
interest and relevance to SMT research:

• Variable placement. Methods for simultaneously placing variables and computing penalty functions are currently less
scalable, and have been less studied, than those for fixed variable placements.

• Augmenting penalty functions. For large Boolean functions, generating penalty functions directly from SMT becomes dif-
ficult because the number of constraints grows much more quickly than the number of available parameters. Function

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.30 (1-34)

30 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Table 4
(a) Number of MaxSATtoIsing problem instances (out of 100) solved by the QA hardware using 100 samples, and
average fraction of samples from the QA hardware that are optimal solutions, for the “unbiased” MaxSAT instances.
Annealing was executed at a rate of 10 μs per sample, for a total of 1 ms of anneal time per instance. (b) Time
in ms taken to find an optimal solution by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT
instances of each problem size. Classical computations were performed on an Intel i7 2.90 GHz × 4 processor.
gw2sat [95], rots [96], and novelty [97] are as implemented in UBCSAT [9]. All classical algorithms are performed
with the optimal target weight specified; in the absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved % optimal
samples

32 vars 100 97.5
36 vars 100 95.7
40 vars 100 92.9
44 vars 100 91.1
48 vars 100 88
52 vars 100 86.1
56 vars 100 83.5
60 vars 100 83.1
64 vars 100 80.8
68 vars 100 81
72 vars 100 79.5
76 vars 100 79
80 vars 100 75.1

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.018 0.013 0.025 0.012
36 vars 0.024 0.019 0.036 0.018
40 vars 0.037 0.030 0.052 0.024
44 vars 0.049 0.041 0.076 0.038
48 vars 0.070 0.064 0.115 0.056
52 vars 0.102 0.099 0.176 0.080
56 vars 0.153 0.161 0.262 0.117
60 vars 0.217 0.252 0.403 0.171
64 vars 0.303 0.383 0.598 0.241
68 vars 0.434 0.604 0.938 0.362
72 vars 0.620 0.964 1.448 0.551
76 vars 0.914 1.536 2.262 0.829
80 vars 1.364 2.567 3.618 1.312

(a) (b)

Fig. 12. “Pegasus”, the hardware graph of an experimental QA system under development at D-Wave (720-qubit version). Qubits have maximum degree 15
rather than 6, and qubits do not fall into well-defined unit tiles as in Chimera.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.31 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 31
decomposition and chains provide one way around this, but chains limit the resulting gaps. There may be other meth-
ods of recombining a decomposed function that are not so restrictive. Alternatively, it may be possible to augment
an existing penalty function with additional qubits for the purposes of increasing its gap. SMT formulations of these
problems have not yet been explored.

• Solving (15) directly. In the field of automated theorem proving and SMT, novel techniques for solving quantified SMT
formulas are emerging. It is thus possible to investigate these techniques for solving directly the quantified formulas
(15), avoiding thus the expensive Shannon expansion of (16)-(19).

• Better function decompositions. While Boolean function decomposition and minimization are mature classical subjects,
those algorithms can probably be improved by taking into consideration the specifics of the embedding (placement and
routing onto a QA hardware graph) that follow them.

• More connected topologies. Future QA hardware graphs will be larger, have higher per-qubit connectivity, and have less
separation between clusters (tiles) of qubits. An example of a next-generation hardware graph under development at D-
Wave is shown in Fig. 12. While these changes will result in the ability to solve larger and more difficult Ising problems,
they will also require new encoding strategies. In particular, new methods for problem decomposition, placing small
Boolean functions, and penalty modeling that take advantage of additional connectivity will significantly improve the
encoding process.

Furthermore, we believe the problems presented here are not only practical, but also complex enough to be used to chal-
lenge new SMT solvers. To encourage the use of these problems as SMT benchmarks, we have provided example.smt files
on the website of supplementary material.24

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

We wish to thank Patrick Trentin for assistance with OptiMathSAT. Roberto Sebastiani is sponsored by D-Wave Systems
Inc. via project QuASi (Quantum Annealing for SAT Solving).

Appendix. Summary of notation

Table 5
Summary of main symbols used in this paper. (Symbols may occur with superscripts
and subscripts.) Left: symbol syntax and range. Center: symbol meaning. Right: place
where the symbol appeared first.

Symbol Meaning Appear

G
def= 〈V , E〉 HW Graph §1, (2)

{−1,1}, {⊥,�}, {false,true} Boolean values §1

z
def= {z1, ..., z|V |} ∈ {−1,1}|V | generic Boolean variables/qubits §1, (2)

H(z) Ising Hamiltonian §1, (2)
θi ∈ [−2,2] s.t. 1 ≤ i ≤ |V | bias of the i-th qubit §1, (2)
θi j ∈ [−1,1] s.t. 1 ≤ i < j ≤ |V | coupling of the (i, j)-th qubits §1, (2)

x
def= {x1, ..., xn} ∈ {−1,1}n input Boolean variables/qubits §2.2

y
def= {y1, ..., ym} ∈ {−1,1}m auxiliary Boolean variables §2.2, (4)

{¬,∧,∨,→,↔,⊕} Boolean connectives §2.2
F (x) Boolean Function/Formula §2.2
{〈Fk, ck〉}k , ck ∈Q+ Weighted MaxSAT problem §2.2

a
def= {a1, ...,ah} ∈ {−1,1}h ancillary Boolean variables/qubits §3

P F (x,a|θ), P F (x|θ) Penalty Function s.t. z
def= x ∪ a §3.1, (5)

θ0 ∈ (−∞,+∞) offset §3.1, (5)
gmin ∈ (0,+∞) gap §3.1, (6)
wk ∈ (0,+∞) weights §3.2, (8)

β(x) ∈ {−1,1}h binary witness variables §4.2
g(aVh

): {±1}|Vi | →R factor §4.2 (23)
f (aVh

,ah): {±1}|Vi |+1 →R factor §4.2 (23)
(continued on next page)

24 See Footnote 22.

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.32 (1-34)

32 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Table 5 (continued)

Symbol Meaning Appear

Fi bucket (set of factors) §4.2
Vi ancillary variables of Fi §4.2
mi(aVi

|x) ∈R message variable §4.2

v
def= (v1, ..., vn+h), v ∈ [1,n+h] vi : the vertex where zi is placed §4.3

b: [1,n+h] �−→ [−2,2] b(i): bias of the i-th qubit vertex §4.4
c: [1,n+h]2 �−→ [−1,1] c(i, j): coupling of the i, j-th edge §4.4
P F (x,a|θ0,b, c,v) Variable-placing Penalty Function §4.4

D
def= 〈V D , AD 〉 directed acyclic graph §5.2

M: V D → 2V D mapping of k-feasible cuts §5.3
χ(C) characteristic vector of C §5.4
Ti ⊆ V Steiner tree terminal §5.4
Ci , Si ⊆ V Steiner tree of Ti §5.4
xi,Si ∈ {0,1} selection variable for Si §5.4

References

[1] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5) (1997)
1484–1509, https://doi .org /10 .1137 /S0097539795293172.

[2] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, ACM, New York, NY, USA, 1996, pp. 212–219.

[3] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, J. Doll, Quantum annealing: a new method for minimizing multidimensional functions, Chem. Phys. Lett.
219 (5) (1994) 343–348, https://doi .org /10 .1016 /0009 -2614(94)00117 -0.

[4] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model, Phys. Rev. E 58 (1998) 5355–5363, https://doi .org /10 .1103 /PhysRevE .58 .
5355.

[5] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, arXiv preprint, arXiv:quant -ph /0001106.
[6] P.I. Bunyk, E.M. Hoskinson, M.W. Johnson, E. Tolkacheva, F. Altomare, A.J. Berkley, R. Harris, J.P. Hilton, T. Lanting, A.J. Przybysz, J. Whittaker, Architectural

considerations in the design of a superconducting quantum annealing processor, IEEE Trans. Appl. Supercond. 24 (4) (2014) 1–10, https://doi .org /10 .
1109 /TASC .2014 .2318294.

[7] B. Selman, H. Kautz, B. Cohen, Local search strategies for satisfiability testing, in: Cliques, Coloring, and Satisfiability, in: DIMACS, vol. 26, 1996,
pp. 521–532.

[8] W.M. Spears, Simulated annealing for hard satisfiability problems, in: Cliques, Coloring, and Satisfiability, in: DIMACS, vol. 26, American Mathematical
Society, 1996, pp. 533–558.

[9] D.A.D. Tompkins, H.H. Hoos, UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT, in: H. Hoos, D.
Mitchell (Eds.), Revised Selected Papers from the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), in:
Lecture Notes in Computer Science, vol. 3542, Springer, Berlin, Heidelberg, 2005, pp. 306–320.

[10] V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven, What is the computational value of finite-range tunneling?,
Phys. Rev. X 6 (2016) 031015, https://doi .org /10 .1103 /PhysRevX .6 .031015.

[11] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A.D. King, M.M. Nevisi, J.P. Hilton, C.C. McGeoch, Quantum annealing amid local ruggedness and global
frustration, arXiv preprint, arXiv:1701.04579.

[12] A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.
[13] C.M. Li, F. Manyà, MaxSAT, hard and soft constraints, Ch. 19, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS

Press, 2009, pp. 613–631.
[14] F. Massacci, L. Marraro, Logical cryptanalysis as a sat problem, J. Autom. Reason. 24 (1) (2000) 165–203, https://doi .org /10 .1023 /A :1006326723002.
[15] I. Mironov, L. Zhang, Applications of SAT solvers to cryptanalysis of hash functions, in: A. Biere, C.P. Gomes (Eds.), Theory and Applications of Satisfia-

bility Testing - SAT 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 102–115.
[16] F. Lafitte, J.N. Jr., D.V. Heule, Applications of SAT solvers in cryptanalysis: finding weak keys and preimages, J. Satisf. Boolean Model. Comput. - JSAT

9 (1) (2013) 1–25, https://doi .org /10 .3233 /SAT190099.
[17] A. Fréchette, N. Newman, K. Leyton-Brown, Solving the station repacking problem, in: Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, AAAI’16, AAAI Press, 2016, pp. 702–709, http://dl .acm .org /citation .cfm ?id =3015812 .3015917.
[18] C.W. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli, Satisfiability modulo theories, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of

Satisfiability, IOS Press, 2009, p. 980.
[19] R. Sebastiani, S. Tomasi, Optimization modulo theories with linear rational costs, ACM Trans. Comput. Log. 16 (2) (2015) 12:1–12:43, https://doi .org /

10 .1145 /2699915.
[20] R. Sebastiani, P. Trentin, OptiMathSAT: a tool for optimization modulo theories, J. Autom. Reason. 64 (2020) 423–460, https://doi .org /10 .1007 /s10817 -

018 -09508 -6.
[21] Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, S. Varotti, Solving SAT and MaxSAT with a quantum annealer: foundations and a preliminary

report, in: C. Dixon, M. Finger (Eds.), Frontiers of Combining Systems, Springer International Publishing, Cham, 2017, pp. 153–171.
[22] R. Harris, J. Johansson, A.J. Berkley, M.W. Johnson, T. Lanting, S. Han, P. Bunyk, E. Ladizinsky, T. Oh, I. Perminov, et al., Experimental demonstration of a

robust and scalable flux qubit, Phys. Rev. B 81 (13) (2010), https://doi .org /10 .1103 /physrevb .81.134510.
[23] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P.

Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G.
Rose, Quantum annealing with manufactured spins, Nature 473 (7346) (2011) 194–198, https://doi .org /10 .1038 /nature10012.

[24] T. Lanting, R. Harris, J. Johansson, M.H.S. Amin, A.J. Berkley, S. Gildert, M.W. Johnson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, I.
Perminov, E.M. Chapple, C. Enderud, C. Rich, B. Wilson, M.C. Thom, S. Uchaikin, G. Rose, Cotunneling in pairs of coupled flux qubits, Phys. Rev. B 82 (6)
(2010) 060512.

[25] M.H. Amin, Searching for quantum speedup in quasistatic quantum annealers, Phys. Rev. A 92 (5) (2015) 052323, https://doi .org /10 .1103 /PhysRevA.92 .
052323, arXiv:1503 .04216.

[26] M.H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, R. Melko, Quantum Boltzmann machine, Phys. Rev. X 8 (2018) 021050, https://doi .org /10 .1103 /
PhysRevX .8 .021050.

https://doi.org/10.1137/S0097539795293172
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2300970DFBE2D22F05B69D612577D357s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2300970DFBE2D22F05B69D612577D357s1
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2FAB72366A59E5C0CEF2547D473C1EB8s1
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibCE305B172FCBC88B1D74E9E8C74E6650s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibCE305B172FCBC88B1D74E9E8C74E6650s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib210E86AAB70A3195AE82C55D82236957s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib210E86AAB70A3195AE82C55D82236957s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
https://doi.org/10.1103/PhysRevX.6.031015
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib7CA2C4F387A795CCF3B9C2086203AC33s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib7CA2C4F387A795CCF3B9C2086203AC33s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFEF3AF503969D29247B62F36720453C6s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFB49B858A737E219E9914B9F5C520D7Ds1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFB49B858A737E219E9914B9F5C520D7Ds1
https://doi.org/10.1023/A:1006326723002
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib28CCA7F92F26BF981F8E1C23CD8E0ECCs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib28CCA7F92F26BF981F8E1C23CD8E0ECCs1
https://doi.org/10.3233/SAT190099
http://dl.acm.org/citation.cfm?id=3015812.3015917
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1CF18F37C8284E5084E6EE8876FB80A3s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1CF18F37C8284E5084E6EE8876FB80A3s1
https://doi.org/10.1145/2699915
https://doi.org/10.1145/2699915
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib40E5A62E8B5B2746307669F3A72EB651s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib40E5A62E8B5B2746307669F3A72EB651s1
https://doi.org/10.1103/physrevb.81.134510
https://doi.org/10.1038/nature10012
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevX.8.021050
https://doi.org/10.1103/PhysRevX.8.021050

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.33 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 33
[27] J. Raymond, S. Yarkoni, E. Andriyash, Global warming: temperature estimation in annealers, Front. ICT 3 (2016) 23, https://doi .org /10 .3389 /fict .2016 .
00023.

[28] J.P. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, Ch. 4, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.),
Handbook of Satisfiability, IOS Press, 2009, pp. 131–153.

[29] G.S. Tseitin, On the Complexity of Derivation in Propositional Calculus, Springer Berlin Heidelberg, Berlin, Heidelberg, 1983, pp. 466–483.
[30] S.A. Cook, The complexity of theorem proving procedures, in: 3rd Annual ACM Symposium on the Theory of Computation, 1971, pp. 151–158.
[31] S.M. Majercik, Stochastic Boolean satisfiability, Ch. 27, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press,

2009, pp. 887–925.
[32] A. Cimatti, A. Griggio, B.J. Schaafsma, R. Sebastiani, The MathSAT 5 SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’13, in: LNCS, vol. 7795, Springer, 2013, pp. 95–109.
[33] R. Sebastiani, P. Trentin, Optimathsat: a tool for optimization modulo theories, in: D. Kroening, C.S. Păsăreanu (Eds.), Computer Aided Verification,

Springer International Publishing, Cham, 2015, pp. 447–454.
[34] Z. Bian, F. Chudak, R. Israel, B. Lackey, W.G. Macready, A. Roy, Discrete optimization using quantum annealing on sparse Ising models, Front. Phys. 2

(2014) 56, https://doi .org /10 .3389 /fphy.2014 .00056.
[35] V.P. Correia, A.I. Reis, C. Porto, A.R. Brasil, Classifying n-input Boolean functions, in: Proc. IWS, Citeseer, 2001.
[36] Z. Huang, L. Wang, Y. Nasikovskiy, A. Mishchenko, Fast Boolean matching based on NPN classification, in: 2013 International Conference on Field-

Programmable Technology (FPT), 2013, pp. 310–313.
[37] V. Choi, Minor-embedding in adiabatic quantum computation: I. The parameter setting problem, Quantum Inf. Process. 7 (5) (2008) 193–209, https://

doi .org /10 .1007 /s11128 -008 -0082 -9.
[38] V. Choi, Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design, Quantum Inf. Process. 10 (3) (2011) 343–353, https://

doi .org /10 .1007 /s11128 -010 -0200 -3.
[39] I. Adler, F. Dorn, F.V. Fomin, I. Sau, D.M. Thilikos, Faster parameterized algorithms for minor containment, in: Proceedings of the 12th Scandinavian

Conference on Algorithm Theory, SWAT’10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 322–333.
[40] T. Boothby, A.D. King, A. Roy, Fast clique minor generation in Chimera qubit connectivity graphs, Quantum Inf. Process. 15 (1) (2016) 495–508, https://

doi .org /10 .1007 /s11128 -015 -1150 -6.
[41] A. Zaribafiyan, D.J.J. Marchand, S.S. Changiz Rezaei, Systematic and deterministic graph minor embedding for Cartesian products of graphs, Quantum

Inf. Process. 16 (5) (2017) 136, https://doi .org /10 .1007 /s11128 -017 -1569 -z.
[42] J. Cai, W.G. Macready, A. Roy, A practical heuristic for finding graph minors, arXiv preprint, arXiv:1406 .2741.
[43] R. Dechter, Bucket Elimination: A Unifying Framework for Probabilistic Inference, Springer Netherlands, Dordrecht, 1998, pp. 75–104.
[44] B.D. McKay, A. Piperno, Practical graph isomorphism, II, J. Symb. Comput. 60 (2014) 94–112, https://doi .org /10 .1016 /j .jsc .2013 .09 .003.
[45] Z. Bian, F. Chudak, R.B. Israel, B. Lackey, W.G. Macready, A. Roy, Mapping constrained optimization problems to quantum annealing with application to

fault diagnosis, Front. ICT 2016, https://doi .org /10 .3389 /fict .2016 .00014.
[46] J. Su, T. Tu, L. He, A quantum annealing approach for Boolean satisfiability problem, in: 2016 53rd ACM/EDAC/IEEE Design Automation Conference

(DAC), 2016, pp. 1–6.
[47] A. Mishchenko, S. Chatterjee, R. Brayton, Dag-aware AIG rewriting a fresh look at combinational logic synthesis, in: Proceedings of the 43rd Annual

Design Automation Conference, DAC ’06, ACM, New York, NY, USA, 2006, pp. 532–535.
[48] A. Mishchenko, S. Chatterjee, R. Jiang, R.K. Brayton, FRAIGs: a unifying representation for logic synthesis and verification, Tech. rep., ERL Technical

Report, 2005.
[49] N. Een, A. Mishchenko, N. Sörensson, Applying logic synthesis for speeding up sat, in: J. Marques-Silva, K.A. Sakallah (Eds.), Theory and Applications of

Satisfiability Testing – SAT 2007, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 272–286.
[50] A. Mishchenko, S. Chatterjee, R. Brayton, X. Wang, T. Kam, Technology mapping with Boolean matching, supergates and choices, https://people .eecs .

berkeley.edu /~alanmi /publications /2005 /tech05 _map .pdf, 2005.
[51] V. Betz, J. Rose, VPR: a new packing, placement and routing tool for FPGA research, in: International Workshop on Field Programmable Logic and

Applications, Springer, 1997, pp. 213–222.
[52] A.B. Kahng, J. Lienig, I.L. Markov, J. Hu, VLSI Physical Design: From Graph Partitioning to Timing Closure, Springer Netherlands, Dordrecht, 2011.
[53] W.-J. Sun, C. Sechen, Efficient and effective placement for very large circuits, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 14 (3) (1995) 349–359,

https://doi .org /10 .1109 /43 .365125.
[54] T.F. Chan, J. Cong, T. Kong, J.R. Shinnerl, Multilevel optimization for large-scale circuit placement, in: IEEE/ACM International Conference on Computer

Aided Design, ICCAD - 2000, 2000, pp. 171–176, IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140).
[55] J.A. Roy, D.A. Papa, S.N. Adya, H.H. Chan, A.N. Ng, J.F. Lu, I.L. Markov, Capo: robust and scalable open-source min-cut floorplacer, in: Proceedings of the

2005 International Symposium on Physical Design, ISPD ’05, ACM, New York, NY, USA, 2005, pp. 224–226.
[56] J. Byrka, F. Grandoni, T. Rothvoss, L. Sanità, Steiner tree approximation via iterative randomized rounding, J. ACM 60 (1) (2013) 6:1–6:33, https://

doi .org /10 .1145 /2432622 .2432628.
[57] M. Gester, D. Müller, T. Nieberg, C. Panten, C. Schulte, J. Vygen, BonnRoute: algorithms and data structures for fast and good VLSI routing, ACM Trans.

Des. Autom. Electron. Syst. 18 (2) (2013) 32:1–32:24, https://doi .org /10 .1145 /2442087.2442103.
[58] Y. Xu, Y. Zhang, C. Chu, Fastroute 4.0: global router with efficient via minimization, in: Proceedings of the 2009 Asia and South Pacific Design Automa-

tion Conference, ASP-DAC ’09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 576–581, http://dl .acm .org /citation .cfm ?id =1509633 .1509768.
[59] J.A. Roy, I.L. Markov, High-performance routing at the nanometer scale, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27 (6) (2008) 1066–1077,

https://doi .org /10 .1109 /TCAD .2008 .923255.
[60] H. Chen, C. Hsu, Y. Chang, High-performance global routing with fast overflow reduction, in: 2009 Asia and South Pacific Design Automation Conference,

2009, pp. 582–587.
[61] M. Cho, K. Lu, K. Yuan, D.Z. Pan, Boxrouter 2.0: architecture and implementation of a hybrid and robust global router, in: 2007 IEEE/ACM International

Conference on Computer-Aided Design, 2007, pp. 503–508.
[62] Y.J. Chang, Y.T. Lee, T.C. Wang, NTHU-route 2.0: a fast and stable global router, in: 2008 IEEE/ACM International Conference on Computer-Aided Design,

2008, pp. 338–343.
[63] J. Byrka, F. Grandoni, T. Rothvoß, L. Sanità, An improved LP-based approximation for Steiner tree, in: Proceedings of the 42nd ACM Symposium on

Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 583–592.
[64] P. Klein, R. Ravi, A nearly best-possible approximation algorithm for node-weighted Steiner trees, J. Algorithms 19 (1) (1995) 104–115, https://doi .org /

10 .1006 /jagm .1995 .1029.
[65] V.V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, Germany, 2001.
[66] M. Gester, D. Müller, T. Nieberg, C. Panten, C. Schulte, J. Vygen, BonnRoute: algorithms and data structures for fast and good VLSI routing, ACM Trans.

Des. Autom. Electron. Syst. 18 (2) (2013) 32, https://doi .org /10 .1145 /2442087.2442103.
[67] D. Müller, K. Radke, J. Vygen, Faster min–max resource sharing in theory and practice, Math. Program. Comput. 3 (1) (2011) 1–35, https://doi .org /10 .

1007 /s12532 -011 -0023 -y.

https://doi.org/10.3389/fict.2016.00023
https://doi.org/10.3389/fict.2016.00023
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibA69D8C9B3707B3E5654A8A8CCE910946s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibA69D8C9B3707B3E5654A8A8CCE910946s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib02A8E7B7110CFDB29B33ACEA0419798Es1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib21C4FFC0CB0F29298351F18B3E468C6As1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF66B16647421A6FEC32D7ED839B0D618s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF66B16647421A6FEC32D7ED839B0D618s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibD97941405E51C0AA4FB9AA0C8B0B00A5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibD97941405E51C0AA4FB9AA0C8B0B00A5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2588FB0F3A5A7DD36F6CFCBF2A8FF1D4s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2588FB0F3A5A7DD36F6CFCBF2A8FF1D4s1
https://doi.org/10.3389/fphy.2014.00056
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF40DA9435C21417A4F668598EE0EE1C6s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibB95CA366330F79048FE2E66AE00280F5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibB95CA366330F79048FE2E66AE00280F5s1
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-010-0200-3
https://doi.org/10.1007/s11128-010-0200-3
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib62893627267D31A645C38E4D54DF9066s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib62893627267D31A645C38E4D54DF9066s1
https://doi.org/10.1007/s11128-015-1150-6
https://doi.org/10.1007/s11128-015-1150-6
https://doi.org/10.1007/s11128-017-1569-z
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib581330231C7D6324BE2D2D767ABA7056s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibD03E652ACDEAB5CCAE5F72DB3575B814s1
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.3389/fict.2016.00014
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib5C2CD5CA44F111F2084996E640BC9C08s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib5C2CD5CA44F111F2084996E640BC9C08s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib303BBE0B2EC4B44C3713F4E48E765B6Es1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib303BBE0B2EC4B44C3713F4E48E765B6Es1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibAE26455893E59A415BD02C1796EC94F0s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibAE26455893E59A415BD02C1796EC94F0s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib01A7020E44A38F8A0C4AC57F8548E904s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib01A7020E44A38F8A0C4AC57F8548E904s1
https://people.eecs.berkeley.edu/~alanmi/publications/2005/tech05_map.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2005/tech05_map.pdf
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibDCBE8ACA81EF257EB187D82E545B5EB5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibDCBE8ACA81EF257EB187D82E545B5EB5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib502F2D9FF568793BC8600221826C50E1s1
https://doi.org/10.1109/43.365125
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1B93C6CE5E00BBB9DF35AECC71295943s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1B93C6CE5E00BBB9DF35AECC71295943s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF85E0BADAFBE7330F193D259413385F4s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF85E0BADAFBE7330F193D259413385F4s1
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1145/2442087.2442103
http://dl.acm.org/citation.cfm?id=1509633.1509768
https://doi.org/10.1109/TCAD.2008.923255
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib107F2AA8D3B12A90C0224897A436798As1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib107F2AA8D3B12A90C0224897A436798As1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib0ADD1D578C1711B136325F16F10718DBs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib0ADD1D578C1711B136325F16F10718DBs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib5B3F6B18A004A2AA3646B1D0318F6939s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib5B3F6B18A004A2AA3646B1D0318F6939s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibB86793CE78A4EF1BF8365BAE06381230s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibB86793CE78A4EF1BF8365BAE06381230s1
https://doi.org/10.1006/jagm.1995.1029
https://doi.org/10.1006/jagm.1995.1029
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib0E8A7D823F28246979FDA39F0F71DDBCs1
https://doi.org/10.1145/2442087.2442103
https://doi.org/10.1007/s12532-011-0023-y
https://doi.org/10.1007/s12532-011-0023-y

JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.34 (1-34)

34 Z. Bian et al. / Information and Computation ••• (••••) ••••••
[68] A. Lucas, Ising formulations of many NP problems, Front. Phys. 2 (2014) 5, https://doi .org /10 .3389 /fphy.2014 .00005.
[69] N. Chancellor, S. Zohren, P.A. Warburton, S.C. Benjamin, S. Roberts, A direct mapping of max k-sat and high order parity checks to a Chimera graph,

Sci. Rep. 6 (2016) 37107, http://dro .dur.ac .uk /20497/.
[70] S. Pakin, A quantum macro assembler, in: 2016 IEEE High Performance Extreme Computing Conference, HPEC 2016, Waltham, MA, USA, September

13–15, 2016, 2016, pp. 1–8.
[71] S. Pakin, Performing fully parallel constraint logic programming on a quantum annealer, Theory Pract. Log. Program. 18 (5–6) (2018) 928–949, https://

doi .org /10 .1017 /S1471068418000066.
[72] D. Venturelli, D.J.J. Marchand, G. Rojo, Quantum annealing implementation of job-shop scheduling, arXiv:1506 .08479.
[73] G. Rosenberg, P. Haghnegahdar, P. Goddard, P. Carr, K. Wu, M.L. de Prado, Solving the optimal trading trajectory problem using a quantum annealer, in:

Proceedings of the 8th Workshop on High Performance Computational Finance, WHPCF ’15, ACM, New York, NY, USA, 2015, pp. 7:1–7:7.
[74] R. Dridi, H. Alghassi, Prime factorization using quantum annealing and computational algebraic geometry, Sci. Rep. 7 (1) (2017), https://doi .org /10 .

1038 /srep43048.
[75] A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, V. Smelyanskiy, A quantum annealing approach for fault detection and diagnosis of graph-

based systems, Eur. Phys. J. Spec. Top. 224 (1) (2015) 131–148, https://doi .org /10 .1140 /epjst /e2015 -02347 -y.
[76] E.G. Rieffel, D. Venturelli, B. O’Gorman, M.B. Do, E.M. Prystay, V.N. Smelyanskiy, A case study in programming a quantum annealer for hard operational

planning problems, Quantum Inf. Process. 14 (1) (2015) 1–36, https://doi .org /10 .1007 /s11128 -014 -0892 -x.
[77] B. O’Gorman, E.G. Rieffel, M. Do, D. Venturelli, J. Frank, Comparing planning problem compilation approaches for quantum annealing, Knowl. Eng. Rev.

31 (5) (2016) 465–474, https://doi .org /10 .1017 /S0269888916000278.
[78] K.M. Zick, O. Shehab, M. French, Experimental quantum annealing: case study involving the graph isomorphism problem, Sci. Rep. 5 (2015) 11168,

http://www.nature .com /srep /2015 /150608 /srep11168 /full /srep11168 .html.
[79] Z. Bian, F. Chudak, W.G. Macready, L. Clark, F. Gaitan, Experimental determination of Ramsey numbers, Phys. Rev. Lett. 111 (2013) 130505, https://

doi .org /10 .1103 /PhysRevLett .111.130505.
[80] S. Jiang, K.A. Britt, A.J. McCaskey, T.S. Humble, S. Kais, Quantum annealing for prime factorization, arXiv:1804 .02733.
[81] I. Trummer, C. Koch, Multiple query optimization on the d-wave 2x adiabatic quantum computer, Proc. VLDB Endow. 9 (9) (2016) 648–659, https://

doi .org /10 .14778 /2947618 .2947621.
[82] E. Andriyash, Z. Bian, F. Chudak, M. Drew-Brook, A.D. King, W.G. Macready, A. Roy, Boosting integer factoring performance via quantum annealing

offsets, https://www.dwavesys .com /sites /default /files /14 -1002A _B _tr _Boosting _integer _factorization _via _quantum _annealing _offsets .pdf.
[83] C.C. McGeoch, C. Wang, Experimental evaluation of an adiabatic quantum system for combinatorial optimization, in: Proceedings of the ACM Interna-

tional Conference on Computing Frontiers, CF ’13, ACM, New York, NY, USA, 2013, pp. 23:1–23:11.
[84] S. Santra, G. Quiroz, G.V. Steeg, D.A. Lidar, Max 2-sat with up to 108 qubits, New J. Phys. 16 (4) (2014) 045006, http://stacks .iop .org /1367 -2630 /16 /i =4 /

a =045006.
[85] A. Douglass, A.D. King, J. Raymond, Constructing SAT Filters with a Quantum Annealer, Springer International Publishing, Cham, 2015, pp. 104–120.
[86] K.L. Pudenz, G.S. Tallant, T.R. Belote, S.H. Adachi, Quantum annealing and the satisfiability problem, arXiv:1612 .07258.
[87] E. Farhi, D. Gosset, I. Hen, A.W. Sandvik, P. Shor, A.P. Young, F. Zamponi, Performance of the quantum adiabatic algorithm on random instances of two

optimization problems on regular hypergraphs, Phys. Rev. A 86 (2012) 052334, https://doi .org /10 .1103 /PhysRevA.86 .052334.
[88] I. Hen, A.P. Young, Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems, Phys. Rev. E 84 (2011) 061152, https://

doi .org /10 .1103 /PhysRevE .84 .061152.
[89] V. Choi, Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems, Quantum Inf. Comput. 11 (7–8)

(2011) 638–648, http://dl .acm .org /citation .cfm ?id =2230916 .2230923.
[90] A.D. King, T. Lanting, R. Harris, Performance of a quantum annealer on range-limited constraint satisfaction problems, arXiv:1502 .02098.
[91] R. Brayton, A. Mishchenko, ABC: an academic industrial-strength verification tool, in: International Conference on Computer Aided Verification, Springer,

2010, pp. 24–40.
[92] I. Spence, Sgen1: a generator of small but difficult satisfiability benchmarks, ACM J. Exp. Algorithmics 15 (2010) 1.2, https://doi .org /10 .1145 /1671970 .

1671972.
[93] A.V. Gelder, I. Spence, Zero-one designs produce small hard SAT instances, in: O. Strichman, S. Szeider (Eds.), Theory and Applications of Satisfiability

Testing – SAT 2010, in: Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010, pp. 388–397, https://doi .org /10 .1007 /978 -3 -642 -14186 -
7 _37.

[94] I. Spence, Weakening cardinality constraints creates harder satisfiability benchmarks, ACM J. Exp. Algorithmics 20 (2015) 1.4, https://doi .org /10 .1145 /
2746239.

[95] C.M. Li, W.Q. Huang, Diversification and determinism in local search for satisfiability, in: F. Bacchus, T. Walsh (Eds.), Theory and Applications of Satisfi-
ability Testing: 8th International Conference, SAT 2005, St Andrews, UK, June 19-23, 2005, Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005, pp. 158–172.

[96] K. Smyth, H.H. Hoos, T. Stützle, Iterated robust tabu search for max-sat, in: Proceedings of the 16th Canadian Society for Computational Studies of
Intelligence Conference on Advances in Artificial Intelligence, AI’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 129–144, http://dl .acm .org /citation .
cfm ?id =1760335 .1760351.

[97] D. McAllester, B. Selman, H. Kautz, Evidence for invariants in local search, in: Proceedings of the Fourteenth National Conference on Artifi-
cial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, AAAI’97/IAAI’97, AAAI Press, 1997, pp. 321–326, http://
dl .acm .org /citation .cfm ?id =1867406 .1867456.

https://doi.org/10.3389/fphy.2014.00005
http://dro.dur.ac.uk/20497/
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib58BD53406B7D98CD4064D3E529AC4596s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib58BD53406B7D98CD4064D3E529AC4596s1
https://doi.org/10.1017/S1471068418000066
https://doi.org/10.1017/S1471068418000066
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibE29F8BC6C6F72D2C0A88827C70DDA8CEs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibC5AA326A8BFA425ABACFC8CF90720C09s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibC5AA326A8BFA425ABACFC8CF90720C09s1
https://doi.org/10.1038/srep43048
https://doi.org/10.1038/srep43048
https://doi.org/10.1140/epjst/e2015-02347-y
https://doi.org/10.1007/s11128-014-0892-x
https://doi.org/10.1017/S0269888916000278
http://www.nature.com/srep/2015/150608/srep11168/full/srep11168.html
https://doi.org/10.1103/PhysRevLett.111.130505
https://doi.org/10.1103/PhysRevLett.111.130505
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib769B5BB67B4E4375FB2D44A05EC8A345s1
https://doi.org/10.14778/2947618.2947621
https://doi.org/10.14778/2947618.2947621
https://www.dwavesys.com/sites/default/files/14-1002A_B_tr_Boosting_integer_factorization_via_quantum_annealing_offsets.pdf
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF098FD17D9B3A6AD4DDB22D779B87BC5s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibF098FD17D9B3A6AD4DDB22D779B87BC5s1
http://stacks.iop.org/1367-2630/16/i=4/a=045006
http://stacks.iop.org/1367-2630/16/i=4/a=045006
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib718E526C07C0DF64527EC1BF290622BDs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib08E35227D16AEF0343767A21323BBF99s1
https://doi.org/10.1103/PhysRevA.86.052334
https://doi.org/10.1103/PhysRevE.84.061152
https://doi.org/10.1103/PhysRevE.84.061152
http://dl.acm.org/citation.cfm?id=2230916.2230923
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib078329ACCCF5A4EB9A2A4BAA8A099101s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib6F030DA0F859D498436B87D2EE1B9AFFs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib6F030DA0F859D498436B87D2EE1B9AFFs1
https://doi.org/10.1145/1671970.1671972
https://doi.org/10.1145/1671970.1671972
https://doi.org/10.1007/978-3-642-14186-7_37
https://doi.org/10.1007/978-3-642-14186-7_37
https://doi.org/10.1145/2746239
https://doi.org/10.1145/2746239
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib80BC02FC5E6788DBF3016D6C3A18DC9Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib80BC02FC5E6788DBF3016D6C3A18DC9Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib80BC02FC5E6788DBF3016D6C3A18DC9Cs1
http://dl.acm.org/citation.cfm?id=1760335.1760351
http://dl.acm.org/citation.cfm?id=1760335.1760351
http://dl.acm.org/citation.cfm?id=1867406.1867456
http://dl.acm.org/citation.cfm?id=1867406.1867456

	Solving SAT (and MaxSAT) with a quantum annealer: Foundations, encodings, and preliminary results
	1 Motivations and goals
	2 Background
	2.1 Quantum annealing
	2.2 SAT, MaxSAT, SMT and OMT

	3 Theoretical foundations
	3.1 Penalty functions
	3.2 Properties of penalty functions and problem decomposition
	3.3 Exact penalty functions and MaxSAT
	3.4 Embedding into Chimera architecture

	4 Encoding small Boolean sub-formulas
	4.1 Computing penalty functions via SMT/OMT(LRA)
	4.2 Improving efficiency and scalability using variable elimination
	4.3 Inequivalent variable placements
	4.4 Placing variables & computing penalty functions via SMT/OMT(LRIA∪UF)
	4.4.1 Exploiting symmetries

	5 Encoding larger Boolean formulas
	5.1 Pre-encoding
	5.2 Preprocessing
	5.3 Standard cell mapping
	5.4 Placement and routing
	5.4.1 Placement
	5.4.2 Routing

	6 Related work
	7 Preliminary experimental evaluation
	7.1 SAT
	7.2 Weighted MaxSAT solving and sampling

	8 Ongoing and future work
	Declaration of competing interest
	Acknowledgments
	Appendix Summary of notation
	References

