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Quantum annealers (QAs) are specialized quantum computers that minimize objective 
functions over discrete variables by physically exploiting quantum effects. Current QA 
platforms allow for the optimization of quadratic objectives defined over binary variables 
(qubits), also known as Ising problems. In the last decade, QA systems as implemented by 
D-Wave have scaled with Moore-like growth. Current architectures provide 2048 sparsely-
connected qubits, and continued exponential growth is anticipated, together with increased 
connectivity.
We explore the feasibility of such architectures for solving SAT and MaxSAT problems as 
QA systems scale. We develop techniques for effectively encoding SAT –and, with some 
limitations, MaxSAT– into Ising problems compatible with sparse QA architectures. We 
provide the theoretical foundations for this mapping, and present encoding techniques that 
combine offline Satisfiability and Optimization Modulo Theories with on-the-fly placement 
and routing. Preliminary empirical tests on a current generation 2048-qubit D-Wave system 
support the feasibility of the approach for certain SAT and MaxSAT problems.

© 2020 Elsevier Inc. All rights reserved.

1. Motivations and goals

Quantum Computing (QC) promises significant computational speedups by exploiting the quantum-mechanical phenomena 
of superposition, entanglement and tunneling. QC relies on quantum bits (qubits). As opposed to bits, qubits can be in a 
superposition state of 0 and 1.2 Theoretically, quantum algorithms can outperform their classical counterparts. Examples 
of this are Shor’s algorithm [1] for prime-number factoring and Grover’s algorithm [2] for unstructured search. Once the 
technology is fully developed, it is expected that quantum computing will replace classical computing for some complex 
computational tasks.

However, despite large investment, the development of practical gate-model quantum computers is still in its infancy 
and current prototypes are limited to less than 20 qubits. An alternative approach to standard gate-model QC is Quantum 
Annealing, a form of computation that efficiently samples the low-energy configurations of a quantum system [3–5]. In 
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Fig. 1. Top: Moore-like progress diagram of the development of D-Wave’s quantum annealers. X axis: year of release. Y axis: # of qubits. Notice the 
logarithmic scale of the Y axis. Bottom: The state-of-the-art D-Wave 2000Q quantum annealer. (Courtesy D-Wave Systems Inc.)

particular, D-Wave Systems Inc.3 has developed special-purpose Quantum Annealers (QAs) which draw optima or near-
optima from certain quadratic cost functions on binary variables. Since 2007, this approach has allowed D-Wave to improve 
QAs at a Moore-like rate, doubling the number of qubits roughly every 1.2 years, and reaching 2048 qubits in the state-of-
the-art D-Wave 2000Q annealer in January 2017 (Fig. 1). These sophisticated devices are nearly-completely shielded from 
magnetic fields (≤ 10−9 T) and are cooled to cryogenic temperatures (≤ 20 mK).

D-Wave’s QAs can be used as specialized hardware for solving the Ising problem:

argmin
z∈{−1,1}|V |

H(z), (1)

H(z)
def=
∑
i∈V

θi zi +
∑

(i, j)∈E

θi j zi z j, (2)

where each variable zi ∈ {−1,1} is associated with a qubit; G = 〈V , E〉 is an undirected graph, the hardware graph, whose 
edges correspond to the physically allowed qubit interactions; and θi , θi j are programmable real-valued parameters. H(z) is 
known as the Ising Hamiltonian or Ising model. Ising problems are equivalent to Quadratic Unconstrained Binary Optimization
(QUBO) problems, which use {0, 1}-valued variables rather than {−1, 1}-valued ones.4 In current 2000Q systems, θi and θi j
must be within the ranges [−2, 2] and [−1, 1] respectively, and G is a lattice of 16 × 16 8-qubit bipartite modules (tiles) 
known as the Chimera topology, shown in Figs. 2 and 3. The quadratic term in (2) is restricted to the edges of G , which is 
very sparse (vertices have degree at most 6). Despite this restriction, the Chimera Ising problem (1) is NP-hard [6].

Theory suggests that quantum annealing may solve certain optimization problems faster than state-of-the-art algorithms 
on classical computers [5]. Quantum effects such as tunneling and superposition provide QAs with novel mechanisms for 
escaping local minima, thereby potentially avoiding sub-optimal solutions commonly found by classical algorithms based on 

3 http://www.dwavesys .com.
4 Ising variables zi are related to QUBO variables xi through zi = 2xi − 1.

http://www.dwavesys.com
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Fig. 2. The 2048-qubit connection graph of the D-Wave 2000Q quantum annealer architecture.

Fig. 3. Example of the Chimera topology: the hardware graph for system of 72 qubits in a 3-by-3 grid of 8-qubit tiles. (D-Wave 2000Q systems have 2048 
qubits in a 16-by-16 grid.)

bit-flip operations (including WalkSAT, simulated annealing and others [7–9]). Although practical QA systems do not return 
optimal solutions with probability 1, the D-Wave processor has been shown to outperform a range of classical algorithms 
on certain problems designed to match its hardware structure [10,11]. This suggests the possible use of QAs to address hard 
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combinatorial decision/optimization problems, in particular NP-hard problems like SAT and MaxSAT [12,13], by encoding 
them into the Ising problem (1).

Our goal is to exploit quantum annealing as an engine for solving SAT, MaxSAT, and other NP-hard problems. Since 
current QAs have a limited number of qubits and connections, we target problem instances which are relatively small but 
computationally hard enough to be out of the reach of state-of-the-art classical solvers. Since QAs are not guaranteed to 
find an optimum and hence cannot certify the unsatisfiability of an encoded formula (§2.1), we target SAT problems such 
as cryptanalysis [14–16] or radio bandwidth repacking [17] which are surely or most-likely satisfiable, but whose solution 
is hard to find.

In this paper, we investigate the problem of encoding the satisfiability of an input Boolean formula F (x) into an Ising 
problem (1) from both theoretical and practical perspectives. In principle, converting SAT to Ising with an unbounded num-
ber of fully-connected qubits is straightforward. In practice, these encodings must be done both effectively (i.e., in a way that 
uses only the limited number of qubits and connections available within the QA architecture, while optimizing performance 
of the QA algorithm), and efficiently (i.e., using a limited computational budget for computing the encoding). We provide 
the necessary theoretical foundations, in which we analyze and formalize the problem and its properties. Based on this 
analysis, we then provide and implement practical encoding procedures. Finally, we empirically evaluate the effectiveness of 
these encodings on a D-Wave 2000Q quantum annealer.

We start from the observation that SATtoIsing can be formulated as a problem in Satisfiability or Optimization Modulo 
Theories (SMT/OMT) [18,19] on the theory of linear rational arithmetic, possibly enriched with uninterpreted function sym-
bols. SATtoIsing is an intrinsically over-constrained problem, so a direct “monolithic” solution, encoding the whole input 
Boolean formula F (x) in one step, would typically require the introduction of many additional ancillary Boolean variables. 
These extra variables, in addition to wasting many qubits, would result in very large SMT/OMT formulas: solving the SAT-
toIsing via SMT would become computationally very hard, possibly even harder than the original SAT problem.

To cope with these issues, we adopt a scalable “divide-and-conquer” approach to SATtoIsing. First, we decompose the 
input Boolean formula into a conjunction of smaller subformulas. Then, we encode each subformula into an Ising model and 
place each subformula model into a disjoint subgraph of the hardware graph. Finally, we connect the qubits representing 
common variables from different subformulas using chains of qubits that are constrained to be logically identical.

To exploit the intrinsic modularity of the architecture graph (Figs. 2, and 3), we partition the input formula F (x) into 
subformulas which can be naturally encoded and placed into one or two adjacent 8-qubit tiles of the architecture, so 
that the encoding of each subformula is small enough to be handled efficiently by an SMT/OMT solver, and the encoded 
(sub)problems can be placed and interconnected within the modular structure of the graph. More concretely, we generate 
a library of encodings of commonly-used and relatively-small Boolean subfunctions. This library is only built once and 
consequently can use a large amount of computational resources. When presented with a SAT formula F (x), we decompose 
it, use the library to obtain encoded (sub)functions and use place-and-routing techniques to place and connect the encoded 
(sub)functions within the QA hardware graph.

We have implemented and made publicly available prototype encoders built on top of the SMT/OMT tool OptiMathSAT

[20]. We present an empirical evaluation, in which we have run SATtoIsing-encoded problems and MaxSATtoIsing-encoded 
problems on a D-Wave 2000Q system. We have chosen input problems that are small enough to fit into the current ar-
chitecture but are very hard with respect to their limited size, requiring some computational effort using a state-of-the-art 
solver.

We stress the fact that this evaluation is not meant to present a comparison with state-of-the-art of classic comput-
ing; rather, it is intended as a preliminary assessment of the challenges and potential of QAs to impact SAT and MaxSAT 
solving. This assessment is “preliminary” due to the limitations in number of qubits and qubit-connections of current QAs; 
however novel QAs currently under development at D-Wave have a more interconnected tile structure and higher per-qubit 
connectivity (degree 15 instead of 6, see also §8).5

Empirical evaluation shows that most encoded SAT problems are solved by the quantum annealer within negligible an-
nealing time (≈ 10 μs). Although preliminary, the results confirm the feasibility of the approach. They also suggest that 
quantum annealers run on SATtoIsing-encoded problems (and to a lower extent, MaxSATtoIsing-encoded ones) might out-
perform standard algorithms on classical computers for certain difficult classes of relevant problems as soon as QA systems 
contain enough qubits and connections.

Content of the paper The rest of the paper is organized as follows: §2 presents necessary background on quantum annealing, 
SAT, MaxSAT, SMT and OMT; §3 presents the theoretical foundations of this work; §4 describes SMT/OMT-based encoding 
techniques for small Boolean formulas; §5 describes the process of encoding larger Boolean formulas by formula decompo-
sition, encoding, placement and routing; §6 summarizes the related work; §7 presents preliminary empirical evaluation; §8
suggests future developments.

Disclaimer A preliminary and much shorter version of this paper was presented at the 11th International Symposium on 
Frontiers of Combining Systems, FroCoS’17 [21].

5 See https://www.dwavesys .com /sites /default /files /mwj _dwave _qubits2018 .pdf.

https://www.dwavesys.com/sites/default/files/mwj_dwave_qubits2018.pdf
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Fig. 4. Top: implementation of two coupled qubits. (Courtesy of D-Wave Systems Inc.) Bottom: graphical representation of the tunneling effect within an 
energy landscape.

2. Background

We provide the necessary background on quantum annealing (§2.1) SAT, MaxSAT, SMT and OMT (§2.2). For the readers’ 
convenience, the list of the symbols we have used throughout the paper is summarized in Table 5 in the Appendix, with 
references to where each symbol is introduced.

2.1. Quantum annealing

As mentioned in §1, quantum annealers as currently implemented by D-Wave Systems are specialized chips that use 
quantum effects to sample or minimize energy configurations over binary variables (qubits) in the form of an Ising model 
(1) [6,22,23]. The qubits are interconnected in a grid of tightly connected groups of 8 qubits, called tiles, as displayed in 
Figs. 2 and 3. Each tile consists of a complete bipartite graph between two sets of four qubits: the “vertical” set, which is 
connected to the tiles above and below, and the “horizontal” set, which is connected to the tiles to the left and to the right. 
Each qubit is connected to at most six other qubits, so that each variable zi occurs in at most 6 non-zero quadratic terms 
θi j zi z j (or θ ji z j zi ). The graphs in Figs. 2 and 3 are known as Chimera graphs.

Single qubits zi are implemented as inter-connected superconducting rings (Fig. 4, top), and a qubit’s ±1-value represents 
the direction of current in its ring. The user-programmable values θi ∈ [−2, 2] (biases) and θi j ∈ [−1, 1] (couplings) in (1) are 
real values within the specified interval, and are set by applying magnetic flux to the rings.6 Overall, H(z) in (2) defines the 
energy landscape for a system of qubits whose global minima correspond to the solutions of problem (1).

During quantum annealing, the state of a qubit will be in a superposition of +1 and −1 simultaneously. The system of 
|V | qubits is evolved from an initial Hamiltonian, whose lowest energy state is an equal superposition of all 2|V | classical 
states, to a final, user-defined Hamiltonian as in (2). At the end of the annealing, the system is measured, and a single, clas-
sical state z ∈ {−1,1}|V | is observed. In theory, if the evolution is sufficiently slow,7 then the lowest energy state (the ground 
state) is maintained throughout. As a result, the final state z is a solution to the Ising problem (1) (with some probability, 
see below). Unlike classical minimization techniques such as simulated annealing [8], the QA energy-minimization process 
can use quantum tunneling [24] to pass through tall, thin energy barriers, thereby avoiding trapping in certain classical local 
minima (Fig. 4, bottom).

QA theory shows that in the limit of arbitrarily low temperature, arbitrarily small noise, and arbitrarily slow annealing, 
the probability of obtaining a minimum energy solution converges to 1. In practice, these conditions cannot be achieved, 

6 We consider normalized bounds without units of measure and scale because the only relevant information for us is that both ranges are symmetric 
wrt. zero and that the bounds for the θi s are twice as big as these for the θi j s in (2).

7 Notice that here and elsewhere “slow” is intended in a quantum-physics sense, which is definitely not “slow” from a computer-science perspective: 
e.g., a complete annealing process on a D-Wave 2000Q annealer may typically take ≈ 10 μs.
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and minimum energy solutions are not guaranteed. Indeed, practical QA systems are physical, analog devices, subject to 
engineering limitations, and the optimal annealing rate is often determined empirically. Moreover, hardware performance is 
dramatically affected by the choice of Ising model. Among the most relevant factors are:

Thermal and electromagnetic noise. Despite cooling and shielding, thermal and electromagnetic noise still have noticeable ef-
fects. One (approximate) model of these effects is based on Boltzmann sampling, in which the probability of seeing a 
state z with energy H(z) in (2) is proportional to e−βH(z) , with β ∈ [3, 5] being observed for certain problem classes 
[25–27].

Intrinsic parameter errors. Due to engineering limitations and sources of environmental noise, the Ising model realized in QA 
hardware is not exactly the one programmed by the user. A simplified model of error is that each specified θi ∈ [−2, 2]
and θi j ∈ [−1, 1] value is subject to additive Gaussian noise with standard deviation 0.03 and 0.02 respectively.

Freeze-out. Because of the limited connectivity, we often use chains of several interconnected qubits to represent a single 
Boolean variable (§3.4). However, the quantum tunneling effect on which quantum annealing is based is diminished for 
chains [24], thereby reducing the hardware’s ability to find global minima. This effect can be mitigated by constructing 
Ising models with chains that are as small as possible.

Energy gaps. From the Boltzmann model, we see that a larger energy gap gmin between ground and excited states leads to 
a higher probability of an optimal solution, as a ground state is eβgmin times more likely than a first excited state. This 
suggests producing Ising models with large gmin in order to maximize the probability of obtaining an optimal solution.

The fact that QAs are not guaranteed to return a minimum-energy solution is partially addressed by taking a sequence 
of N samples from the same Ising model and selecting the result with smallest energy. Distinct samples are statistically 
independent, so the probability Pmin[N] of obtaining at least one minimum solution over N samples converges exponentially 
to 1 with N:

Pmin[N] = 1 − (1 − Pmin[1])N . (3)

Typical annealing times and readout times are very short (≈ 10 μs and ≈ 120 μs respectively), and many samples can be 
drawn from the same Ising model within a single programming cycle, so is possible to obtain a large number of samples in 
reasonable time.

2.2. SAT, MaxSAT, SMT and OMT

We assume the reader is familiar with the basic syntax, semantics and properties of Boolean and first-order logic and 
theories. In the following we recall the main concepts of interest for our purposes, referring the reader to [12,28,13,18,19]
for more details.

SAT & MaxSAT Given some finite set of Boolean variables x (aka Boolean atoms) the language of Boolean logic (B) is the 
set of formulas containing the atoms in x and closed under the standard propositional connectives {¬,∧,∨,→,↔,⊕} (not, 
and, or, imply, iff, xor) with their usual meaning. A literal is an atom (positive literal) or its negation (negative literal). We 
implicitly remove double negations: e.g., if l is the negative literal ¬xi , then by ¬l we mean xi rather than ¬¬xi . A clause is 
a disjunction of literals. A formula is in conjunctive normal form (CNF) iff it is written as a conjunction of clauses.

A truth value assignment x satisfies F (x) iff it makes it evaluate to true. If so, x is called a model for F (x). A formula 
F (x) is satisfiable iff at least one truth assignment satisfies it, unsatisfiable otherwise. F (x) is valid iff all truth assignments 
satisfy it. F1(x), F2(x) are equivalent iff they are satisfied by exactly the same truth assignments.

A formula F (x) which is not a conjunction can always be decomposed into a conjunction of smaller formulas F ∗(x, y)

by means of Tseitin’s transformation [29]:

F ∗(x,y)
def=

m−1∧
i=1

(yi ↔ Fi(xi,yi)) ∧ Fm(xm,ym), (4)

where the Fi s are formulas which decompose the original formula F (x), and the yi s are fresh Boolean variables each label-
ing the corresponding Fi . (If the input formula is itself a conjunction, then Tseitin’s transformation can be applied recursively 
to each conjunct.) Tseitin’s transformation (4) guarantees that F (x) is satisfiable if and only if F ∗(x, y) is satisfiable, and that 
if x, y is a model for F ∗(x, y), then x is a model for F (x). To this extent, it is pervasively used also as a main recursive step 
for efficient CNF conversion of formulas [29].

A quantified Boolean formula (QBF) is defined inductively as follows: a Boolean formula is a QBF; if F (x) is a QBF, then 
∀xi F (x) and ∃xi F (x) are QBFs. ∀xi F (x) is equivalent to (F (x)xi=� ∧ F (x)xi=⊥) and ∃xi F (x) is equivalent to (F (x)xi=� ∨
F (x)xi=⊥) (aka Shannon’s expansion).

Propositional Satisfiability (SAT) is the problem of establishing whether an input Boolean formula is satisfiable or not. SAT 
is NP-complete [30]. Efficient SAT solvers are publicly available, most notably those based on Conflict-driven clause-learning 



JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.7 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 7
(CDCL) [28] and on stochastic local search [31]. Most solvers require the input formula to be in CNF, implementing a CNF pre-
conversion based on Tseitin’s transformation (4) when this is not the case. See [12] for a survey of SAT-related problems 
and techniques.

Weighted MaxSAT {〈Fk, ck〉}k is an optimization extension of SAT, in which the input formula is a (typically unsatisfiable) 
conjunction of subformulas F

def= ∧
k Fk such that each conjunct Fk is given a positive penalty ck if Fk is not satisfied, and an 

assignment minimizing the sum of the penalties is sought. (Often F is in CNF and the Fks are single clauses or conjunctions 
of clauses.) Partial Weighted MaxSAT is an extension of Weighted MaxSAT in which some conjuncts, called hard constraints, 
have penalty +∞. Efficient MaxSAT tools are publicly available (see, e.g., [13,9]).

SMT and OMT Satisfiability Modulo Theories (SMT) is the problem of checking the satisfiability of first order formulas 
in a background theory T (or combinations of theories thereof). We focus on the theories of interest for our purposes. 
Given x as above and some finite set of rational-valued variables v, the language of the theory of Linear Rational Arithmetic
(LRA) extends that of Boolean logics with LRA-atoms in the form (

∑
i ci vi �� c), ci being rational values, vi ∈ v and 

�� ∈ {=, �=,<,>,≤,≥}, with their usual meaning. In the theory of linear rational-integer arithmetic with uninterpreted functions 
symbols (LRIA∪UF ) the LRA language is extended by adding integer-valued variables to v (LRIA) and uninterpreted 
function symbols.8 (E.g., (xi → (3v1 + f (2v2) ≤ f (v3))) is a LRIA ∪ UF formula.) Notice that B is a sub-theory of LRA
and LRA is a sub-theory of LRIA∪UF . The notions of literal, assignment, clause and CNF, satisfiability, equivalence and 
validity, Tseitin’s transformation and quantified formulas extend straightforwardly to LRA and LRIA∪UF .

Satisfiability Modulo LRIA ∪ UF (SMT(LRIA ∪ UF )) [18] is the problem of deciding the satisfiability of arbitrary 
formulas on LRIA∪UF and its sub-theories. Efficient SMT(LRIA∪UF ) solvers are available, including MathSAT5 [32].

Optimization Modulo LRIA ∪ UF (OMT (LRIA ∪ UF )) [19] extends SMT(LRIA ∪ UF ) searching solutions which 
optimize some LRIA objective(s). Efficient OMT(LRA) solvers like OptiMathSAT [33] are available.

3. Theoretical foundations

Let F (x) be a Boolean function on a set of n Boolean variables x
def= {x1, ..., xn}. We represent Boolean value ⊥ with −1

and � with +1, so that we can assume that each xi ∈ {−1,1}. Suppose first that we have a QA system with n qubits defined 
on a hardware graph G = (V , E), for instance, any n-vertex subgraph of the Chimera graph of Figs. 2 and 3. Furthermore, 
we assume that the state of each qubit zi corresponds to the value of variable xi , i = 1, . . . , n = |V |. One way to determine 
whether F (x) is satisfiable using the QA system is to find an energy function as in (2) whose ground states z correspond to 
the satisfying assignments x of F (x).

Example 1. Suppose F (x) def= x1 ⊕ x2. Since F (x) = � if and only if x1 + x2 = 0, the Ising model H(z1, z2) = z1 · z2 in a 
graph containing 2 qubits z1, z2 joined by an edge (1, 2) ∈ E s.t. θ12 = 1 has two ground states (+1, −1) and (−1, +1), 
which correspond to the satisfying assignments of F , and two excited states (+1, +1) and (−1, −1), corresponding to the 
non-satisfying ones.

Because the energy H(z) in (2) is restricted to quadratic terms and graph G is typically sparse, the number of functions 
F (x) that can be solved with this approach is very limited. To deal in part with this difficulty, we can use a larger QA system 
with a number of additional qubits, say h, representing ancillary Boolean variables (or ancillas for short) a

def= {a1, ...,ah}, 
so that |V | = n + h. A variable placement is a mapping of the n + h input and ancillary variables into the qubits of V . 
Since G is not a complete graph, different variable placements will produce energy functions with different properties. 
We use Ising encoding to refer to the θi and θi j parameters in (2) that are provided to the QA hardware together with a 
variable placement. The gap of an Ising encoding is the minimum energy difference between ground states (i.e., satisfying 
assignments) and the other states (i.e., non-satisfying assignments). In general, larger gaps lead to higher success rates in the 
QA process [34]. Thus, we define the encoding problem for F (x) as the problem of finding an Ising encoding with maximum 
gap.

Note that the encoding problem is typically over-constrained. The Ising model (2) has to discriminate between m satis-
fying assignments and k non-satisfying assignments, with m + k = 2n , whereas the number of degrees of freedom is given 
by the number of the θi and θi j parameters, which grows as O (n + h) in the Chimera architecture. Thus, in order to have a 
solution, the number of ancilla variables needed (h) may grow exponentially with the number of x variables (n).

In the rest of this section, we assume that a Boolean function F (x) is given and that h qubits are used for ancillary 
variables a.

8 An n-ary function symbol f () is said to be uninterpreted if its interpretations have no constraint, except that of being a function (congruence): if 
t1 = s1,..., tn = sn then f (t1, ..., tn) = f (s1, ..., sn).
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Fig. 5. Mappings within the Chimera graph, penalty functions use only colored edges. 5(c) combines 5(a) and 5(b) using chained proxy variables y, y′. The 
resulting penalty function is obtained by rewriting x4 ↔ (x3 ∧ (x1 ⊕ x2)) into its equi-satisfiable formula (x4 ↔ (x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.1. Penalty functions

Here we assume that a variable placement is given, placing x∪a into the subgraph G . Thus, we can identify each variable 
z j representing the binary value of the qubit associated with the jth vertex in V with either an original variable xk ∈ x or 
as an ancilla variable a� ∈ a, writing z = x ∪ a.

Definition 1. A penalty function P F (x, a|θ) is an Ising model

P F (x,a|θ)
def= θ0 +

∑
i∈V

θi zi +
∑

(i, j)∈E

θi j zi z j (5)

with the property that for some gmin > 0,

∀x min{a} P F (x,a|θ)

{
= 0 if F (x) = �
≥ gmin if F (x) = ⊥ (6)

where θ0 ∈ (−∞, +∞) (“offset”), θi ∈ [−2, 2] (“biases”) and θi j ∈ [−1, 1] (“couplers”) such that zi, z j ∈ z, and gmin are rational-
valued parameters. The largest gmin such that P F (x, a|θ) satisfies (6) is called the gap of P F (x, a|θ).

Notice that a penalty function separates satisfying assignments from non-satisfying ones by a gap of at least gmin . The offset 
value θ0 is added to set the value of P F (x, a|θ) to zero when F (x) = �, so that −θ0 corresponds to the energy of the ground 
states of (2).

To simplify the notation we assume that θi j = 0 when (i, j) /∈ E , and use P F (x|θ) when a = ∅.

Example 2. The equivalence between two variables, F (x) def= (x1 ↔ x2), can be encoded without ancillas by means of a single 
coupling between two connected vertices, with zero biases: P F (x|θ) def= 1 − x1x2, so that gmin = 2. In fact, P F (x|θ) = 0 if 
x1, x2 have the same value; P F (x|θ) = 2 otherwise.

Penalty P F (x|θ) in Example 2 is also called a (equivalence) chain connecting x1, x2, because it forces x1, x2 to have the same 
value.

The following examples show that ancillary variables are needed, even for small Boolean functions F (x) and even when 
G is a complete graph.

Example 3. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2). If x1, x2, x3 could be all connected in a 3-clique, then F (x)

could be encoded without ancillas by setting P F (x|θ) = 3
2 − 1

2 x1 − 1
2 x2 + x3 + 1

2 x1x2 − x1x3 − x2x3, so that gmin = 2. In fact, 
P F (x|θ) = 0 if x1, x2, x3 verify F (x), P F (x|θ) = 6 if x1 = x2 = −1 and x3 = 1, P F (x|θ) = 2 otherwise. Since the Chimera graph 
has no cliques, the above AND function needs (at least) one ancilla a to be encoded as: P F (x, a|θ) = 5

2 − 1
2 x1 − 1

2 x2 + x3 +
1
2 x1x2 − x1x3 − x2a − x3a, which still has gap gmin = 2 and can be embedded, e.g., as in Fig. 5(a).

Example 4. Consider the XOR function F (x) def= x3 ↔ (x1 ⊕ x2). Even within a 3-clique, F (x) has no ancilla-free encoding. 
Within the Chimera graph, F (x) can be encoded with three ancillas a1, a2, a3 as: P F (x, a|θ) = 5 + x3 + a2 − a3 + x1a1 −
x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + x3a2 − x3a3, which has gap gmin = 2 and is embedded, e.g., as in Fig. 5(b).

The following fact is a straightforward consequence of Definition 1.
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Proposition 1. Let P F (x, a|θ) be a penalty function of F (x) as in Definition 1. Then:

• If x,a is such that P F (x, a|θ) = 0, then F (x) is satisfiable and x satisfies it.
• If x,a minimizes P F (x, a|θ) and P F (x, a|θ) ≥ gmin, then F (x) is unsatisfiable.

Proposition 1 shows that the QA hardware can be used as a satisfiability checker for F (x) by minimizing the Ising model 
defined by penalty function P F (x, a|θ). A returned value of P F (x, a|θ) = 0 implies that F (x) is satisfiable. If the QA hardware 
guaranteed minimality, then a returned value of P F (x, a|θ) ≥ gmin would imply that F (x) is unsatisfiable. However, since 
QAs do not guarantee minimality (§2.1), if P F (x, a|θ) ≥ gmin then there is still a chance that F (x) is satisfiable. Nevertheless, 
the larger gmin is, the less likely this false negative case occurs [34].

A penalty function P F (x, a|θ) is normal if |θi | = 2 for at least one θi or |θi j| = 1 for at least one θi j . In order to maximize 
gmin , it is important to use normal penalty functions to exploit the full range of the θ parameters. Any penalty function 
P F (x, a|θ) can be normalized by multiplying all its coefficients by a normalization factor:

c
def= min

{
min

i

(
2

|θi|
)

,min
〈i j〉

(
1

|θi j|
)}

. (7)

Note that if P F (x, a|θ) is non-normal, then c > 1, so that the resulting gap c · gmin > gmin . Normalization also works in the 
opposite direction to scale down some P F (x, a|θ) whose θ ’s do not fit into the allowable ranges (in which case c < 1).

Hereafter we assume w.l.o.g. that all penalty functions are normal.

3.2. Properties of penalty functions and problem decomposition

As it will be made clear in §4.1, after a variable placement is set, finding the values for the θ ’s implicitly requires 
solving a set of equations whose size grows with the number of models of F (x) plus a number of inequalities whose size 
grows with the number of counter-models of F (x). Thus, the θ ’s must satisfy a number of linear constraints that grows 
exponentially in n. Since the θ ’s grow approximately as 4(n + h), the number of ancillary variables needed to satisfy (6) can 
also grow very rapidly. This seriously limits the scalability of a solution method based on (5)-(6). We address this issue by 
showing how to construct penalty functions by combining smaller penalty functions, albeit at the expense of introducing 
extra variables.

The following properties are straightforward consequences of Definition 1.

Property 1. Let P F (x, a|θ) be a penalty function for F (x) and let F ∗(x) be logically equivalent to F (x). Then P F (x, a|θ) is a penalty 
function also for F ∗(x) with the same gap gmin.

Property 1 states that a penalty function P F (x, a|θ) does not depend on the syntactic structure of F (x) but only on its 
semantics.

Property 2. Let F ∗(x) def= F (x1, ..., xr−1, ¬xr, xr+1, ..., xn) for some index r. Assume a variable placement of x into V s.t. P F (x, a|θ) is 
a penalty function for F (x) of gap gmin. Then P F ∗(x, a|θ) = P F (x, a|θ∗), where θ∗ is defined as follows for every zi, z j ∈ x, a:

θ∗
i =

{−θi if zi = xr

θi otherwise;
θ∗

i j =
{−θi j if zi = xr or z j = xr

θi j otherwise.

Notice that since the previously defined bounds over θ (namely θi ∈ [−2, 2] and θi j ∈ [−1, 1]) are symmetric, if θ is in range then θ∗
is as well.

Two Boolean functions that become equivalent by permuting or negating some of their variables are called NPN-
equivalent [35]. Thus, given the penalty function for a Boolean formula, any other NPN equivalent formula can be encoded 
trivially by repeatedly applying Property 2. Notice that checking NPN equivalence is a hard problem in theory, but it is fast 
in practice for small n (i.e., n ≤ 16) [36]. The process of negating a single variable in an Ising model as in Property 2 is 
known as a spin-reversal transform.

Example 5. Consider the OR function F (x) def= x3 ↔ (x1 ∨ x2). We notice that this can be rewritten as F (x) = ¬x3 ↔ (¬x1 ∧
¬x2), that is, it is NPN-equivalent to that of Example 3. Thus, by Property 2 a penalty function for F (x) can be placed 
as in Fig. 5(a) and defined by taking that in Example 3 and toggling the signs of the coefficients of the xi ’s: P F (x, a|θ) =
5
2 + 1

2 x1 + 1
2 x2 − x3 + 1

2 x1x2 − x1x3 + x2a + x3a, which still has gap gmin = 2.

Property 3. Let F (x) =∧K
k=1 Fk(xk) be a Boolean formula such that x = ∪kxk, the xks may be non-disjoint, and each sub-formula Fk

has a penalty function P Fk (xk, ak|θk) with minimum gap gk
min where the aks are all disjoint. Given a list wk of positive rational values 

such that, for every zi, z j ∈ x ∪⋃K
k=1 ak:



JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.10 (1-34)

10 Z. Bian et al. / Information and Computation ••• (••••) ••••••
θi
def=

K∑
k=1

wkθ
k
i ∈ [−2,2], θi j

def=
K∑

k=1

wkθ
k
i j ∈ [−1,1], (8)

then a penalty function for F (x) is:

P F (x,a1...aK |θ) =
K∑

k=1

wk P Fk (xk,ak|θk). (9)

The gap for P F is gmin ≥ minK
k=1 wk gk

min.

The choice of the set of weights wk in Property 3 is not unique in general. Also note that gmin may be greater than 
minK

k=1 wk gk
min , because, for example, it might be the case that gmin = wk gk

min for some unique k and no truth assignment 
violating Fk with cost wk gk

min satisfies all other Fi ’s.
Property 3 states that a penalty function for the conjunction of sub-formulas can be obtained as a (weighted) sum of 

the penalty functions of the sub-formulas. The weights wk are needed because penalty functions of formulas that share 
variables sum up biases or couplings, possibly resulting into out-of-range values (8). If the wk ’s are smaller than 1, then the 
gap gmin of the final penalty function may become smaller. Also, Property 3 requires placing variables into qubits that are 
shared among conjunct subformulas. This may restrict the chances of finding suitable placements for the variables in the 
graph.

An alternative way of coping with this problem is to map shared variables into distinct qubits which are connected by 
chains of equivalences. Consider F (x) =∧K

k=1 Fk(xk) as in Property 3. For every variable xi and for every Fk where xi occurs, 
we can replace the occurrences of xi in Fk with a fresh variable xi

k∗
, obtaining a formula 

∧K
k=1 Fk(xk∗

) such that the sets 
xk∗

are all disjoint. Let

F ∗(x∗) def=
K∧

k=1

Fk(xk∗
) ∧

∧
〈xi

k∗
,xi

k′ ∗〉∈Eq(xi)

(xi
k∗ ↔ xi

k′ ∗
) (10)

where x∗ = ∪kxk∗
, and Eq(xi) is any set of pairs 〈xi

k∗
, xi

k′ ∗〉 of the variables replacing xi such that the conjunction of 
equivalences in (10) states that of all of them are equivalent. By construction, F (x) is satisfiable if and only if F ∗(x∗) is 
satisfiable, and from every model x∗ for F ∗(x∗) we have a model x for F (x) by simply assigning to each xi the value of the 
corresponding xi

k∗
s.

Now assume we have a penalty function P Fk (xk∗
, ak|θk) for each k with disjoint ak . We recall from Example 2 that 

(1 − xi
k∗

xi
k′ ∗

) are penalty functions of gap 2 for the (xi
k∗ ↔ xi

k′ ∗
) subformulas in (10). Thus we can apply Property 3 with 

all weights wk = 1 and write a penalty function for F ∗(x∗) in the following way:

P F ∗(x∗,a|θ) =
K∑

k=1

P Fk (xk∗
,ak|θk) +

∑
〈xi

k∗
,xi

k′ ∗〉∈Eq(xi)

(1 − xi
k∗

xi
k′ ∗

). (11)

Note that the θ ’s stay within valid range because the xk∗
s and aks are all disjoint and the biases of the (1 − xi

k∗
xi

k′ ∗
)

terms are zero, so distinct sub-penalty functions in (11) involve disjoint groups of biases and couplings. Thus we have the 
following.

Property 4. P F ∗(x∗, a|θ) in (11) is a penalty function for F ∗(x∗) in (10). The gap of P F ∗(x∗, a|θ) is gmin ≥ min(minK
k=1 gk

min, 2).

Thus, we can represent a single variable xi with a series of qubits connected by strong couplings (1 − xi x′
i). (For xi ↔ ¬x′

i , 
we use (1 + xi x′

i).) Notice that it is not necessary that every copy of variable xi be connected to every other one; rather, to 
enforce the condition that all copies of xi are logically equivalent, it suffices that the copies of xi induce a connected graph. 
Moreover, additional copies of xi may be introduced on unused vertices of the hardware graph G to facilitate connectedness. 
A set of qubits all representing the same variable in this way is called a chain and is the subject of §3.4. Thus, it is possible 
to implement P F ∗(x∗, a|θ) in (11) by placing the distinct penalty functions P Fk (xk∗

, ak|θk) into sub-graphs and connect 
them with chains.

Recall from §2.2 that a formula F (x) which is not a conjunction can always be decomposed into a conjunction of smaller 
formulas F ∗(x, y) by means of Tseitin’s transformation (4). By Properties 3 and 4, this allows us to AND-decompose F (x)

into multiple and smaller conjuncts that can be encoded separately and recombined. The problem thus reduces to choosing 
Boolean functions (yi ↔ Fi(xi, yi)) and Fm(xm, ym) whose penalty functions are easy to compute, have large gap, and whose 
combination keeps the gap of the penalty function for the original function as large as possible.
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Example 6. Let F (x) def= x4 ↔ (x3 ∧ (x1 ⊕ x2)). Applying (4) and (10) this can be rewritten as F∗(x, y, y′) = (x4 ↔
(x3 ∧ y′)) ∧ (y ↔ (x1 ⊕ x2)) ∧ (y′ ↔ y). The penalty functions of the three conjuncts can be produced as in Examples 3, 
4 and 2 respectively, and summed as in Property 4:

P F ∗(x, y, y′,a|θ)

= 5

2
− 1

2
x3 − 1

2
y′ + x4 + 1

2
x3 y′ − x3x4 − y′a4 − x4a4

+ 5 + y + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2 − x2a3 + ya2 − ya3

+ 1 − yy′

= 17

2
− 1

2
x3 + x4 + y − 1

2
y′ + a2 − a3 + x1a1 − x1a2 − x1a3 − x2a1 − x2a2

−x2a3 − x3x4 + 1

2
x3 y′ − x4a4 + ya2 − ya3 − yy′ − y′a4

Notice that there is no interaction between the biases and couplings of the three components, only the offsets are summed 
up. The resulting gap is min{2,2,2} = 2. Then they can be placed, e.g., as in Fig. 5(c).

Overall, these facts suggest a “divide-and-conquer” approach for addressing the SATtoIsing problem:

(i) AND-decompose the input formula, by rewriting every conjunct F (x) which is not small enough into an equivalently-
satisfiable one F ∗(x, y) as in (4) such that penalty functions for all its conjuncts can be easily computed;

(ii) rename shared variables and compute the global penalty functions as in Property 4;
(iii) place the sub-penalty functions into subgraphs and connect by chains equivalent qubits representing shared variables.

3.3. Exact penalty functions and MaxSAT

In order to encode MaxSAT, we require a stronger version of the penalty function in Definition 1.

Definition 2. A penalty function P F (x, a|θ) is exact if for all x such that F (x) = ⊥,

min{a} P F (x,a|θ) = gmin.

That is, an exact penalty function separates satisfying assignments from all non-satisfying ones by exactly the same gap 
gmin .

Example 7. The penalty function of F (x) def= (x1 ↔ x2) in Example 2 is exact, whereas those of F (x) def= x3 ↔ (x1 ∧ x2) and 
F (x) def= x3 ↔ (x1 ⊕ x2) in Examples 3 and 4 are not exact.

Exact penalty functions allow for the encoding of weighted MaxSAT problems, with some restrictions. The following fact 
is a straightforward consequence of Property 3 and Definition 2.

Proposition 2. Let F (x) =∧K
k=1 Fk(xk) be a Boolean formula s.t. x = ∪kxk, and P F (x, a|θ) def=∑K

k=1 P Fk (xk, ak|θk), where a def= ∪kak

s.t. the ak are all disjoint, each P Fk (xk, ak|θk) is an exact penalty function for Fk of gap gk. Let x,a be a truth assignment which 
minimizes P F (x, a|θ). Then x is a solution for the weighted MaxSAT problem {〈Fk, gk〉}k.

Proposition 2 allows for encoding a generic weighted MaxSAT problem {〈Fk, ck〉}k by setting P F (x, a|θ) def=∑K
k=1 wk P Fk (xk, ak|θk) where wk

def= ck
gk

· c and c is a normalization factor (7). Notice that in Proposition 2 the penalty 
functions P Fk (xk, ak|θk) must be exact; otherwise, a solution x,a that is optimal for MaxSAT but violates some Fk might not 
minimize P F (x, a|θ) if P Fk (xk, ak|θk) > gk .

In §3.2 we outlined a “divide-and-conquer” approach for SATtoIsing based on the idea of mapping shared variables 
into distinct qubits which are then connected by chains of equivalences. Applying the same approach to MaxSAT is not as 
straightforward, because Property 4 cannot always be combined with Proposition 2 in a useful way. Consider the scenario 
in Property 4, and suppose we want to use (11) to solve the MaxSAT problem {〈Fk, gk〉}k as with Proposition 2. As the 
following example shows, there may be minimum-energy solutions of (11) which violate some equivalence (xi

k∗ ↔ xi
k′ ∗

) in 
(10) if this avoids violating one or more of the Fk ’s whose sum of gaps is greater than 2. Such a solution is not a solution 
of the MaxSAT problem, because it corresponds to assigning different truth values to distinct instances of the same variable 
in the original problem.
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Example 8. Consider the trivial MaxSAT problem {〈Fi(x), c〉}4
i=1 for some penalty value c > 0 where F1(x) = F2(x) def= x, and 

F3(x) = F4(x) def= ¬x. The two possible solutions x = � and x = ⊥ are both optimum with penalty 2c and falsify F3, F4

and F1, F2 respectively. We have the following normal and exact penalty functions: P F1 (x) = P F2 (x) = 2 − 2x and P F3 (x) =
P F4(x) = 2 + 2x, each of gap gi = 4. Suppose we want to encode the problem in such a way to fit into a linear chain of 4 
qubits adopting the encoding in Property 4. We introduce four copies of x, namely x1, x2, x3, x4, and obtain:

F ∗(x1, x2, x3, x4) = x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ (x1 ↔ x2) ∧ (x2 ↔ x3) ∧ (x3 ↔ x4)

P F ∗(x1, x2, x3, x4) = (2 − 2x1) + (2 − 2x2) + (2 + 2x3) + (2 + 2x4) +
(1 − x1x2) + (1 − x2x3) + (1 − x3x4)

= 11 − 2x1 − 2x2 + 2x3 + 2x4 − x1x2 − x2x3 − x3x4.

The minimum-energy solution to P F ∗ is x1 = x2 = 1 and x3 = x4 = −1 with P F ∗(...) = 2, which violates the equivalence 
(x2 ↔ x3). The correct MaxSAT solutions x1 = x2 = x3 = x4 = 1 and x1 = x2 = x3 = x4 = −1 both have P F ∗ (...) = 8.

In general, the problem arises when it is energetically cheaper to violate some equivalence (xk
i
∗ ↔ xk′

i
∗
) in a chain in 

(10) than to violate all the penalty functions {Fk(xk) : xi ∈ xk} on one side of the equivalence. One solution to this problem 
is to multiply the P Fk ’s by sufficiently small weights wk < 1, at the cost reducing their gaps gk . In the following we discuss 
the bounds that can be placed on wk .

Let I denote the indices of the functions Fk(xk) that use the variable xi ; that is, I = {k : xi ∈ xk}. An equivalence (xk
i
∗ ↔

xk′
i

∗
) in the chain of xi splits the chain into two subchains, and splits I into two subsets Ik and Ik′ such that (xk

i
∗ ↔ xk′

i
∗
)

connects the functions of Ik to the functions of Ik′ . Assume we have a desired gap gdesired > 0 separating solutions with 
broken chains from true solutions. Then a sufficiently large gap for the equivalence (xk

i
∗ ↔ xk′

i
∗
) is

g(k,k′) = min

⎛
⎝∑

j∈Ik

g j,
∑
j∈Ik′

g j

⎞
⎠+ gdesired,

as this gap ensures that it is gdesired cheaper to violate all the constraints in Ik or Ik′ then to violate (xk
i
∗ ↔ xk′

i
∗
). Recall 

from (10) that Eq(xi) is the set of variable pairs (xk
i
∗
, xk′

i
∗
) that form equivalences (xk

i
∗ ↔ xk′

i
∗
) in the chain of xi . To ensure 

that all equivalence constraints are not violated, a sufficient gap for the entire chain is

gchain = max
(xk

i
∗
,xk′

i

∗
)∈Eq(xi)

g(k,k′). (12)

Finally, recalling that each equivalence has gap 2, we update the weight definition in Proposition 2 for each k ∈ I9:

wk = 2 · ck

gk · gchain
(13)

An alternative bound on gchain is given in [37]. In the paper, the author bounds the chain strength required to ensure 
that all minima of an embedded QUBO problem can be mapped to a minimum of the original QUBO problem (see §3.4
below). Let θ∗

i =∑k wkθi be the bias value obtained by sharing the xi variable as in Property 3.10 If xi is substituted by a 
chain with li endpoints, QUBO minima are preserved if the chain gap is the following:

gchain = 2
li − 1

li

⎛
⎝ ∑

(i, j)∈E

|θ∗
i j| − |θ∗

i |
⎞
⎠+ gdesired (14)

This alternative bound is sometimes lower than (12), especially when |θ∗
i | is high. Note that, as the original paper 

explains, if the bound value is negative then P F ∗ is monotonic on xi . If that is the case, then xi = −sgn(θ∗
i ) always minimizes 

P F ∗ , so we can fix the value of xi and there is no need for a chain.
In general, neither (12) nor (14) are typically very tight bounds on required chain gap, and finding the smallest viable 

chain gap analytically appears to be a difficult problem. In practice gchain is often determined empirically; this is discussed 
further in §7.

Overall, the MaxSATtoIsing problem is subject to some intrinsic limitations. Firstly, it requires the usage of exact penalty 
functions for its sub-formulas, which are more difficult to obtain. Secondly, the need to re-weight penalty functions to 

9 Note that the normalization factor c here is 1 as chains are normal.
10 For simplicity, we assume to share a single xi , so each θ∗

i j = wkθ
k
i j for some unique k.
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ensure chain equivalences are not violated typically results in smaller gaps. Thirdly, it is difficult to directly encode hard 
constraints in a MaxSAT problem; this again requires re-weighting soft constraints by very small factors, reducing their gaps 
accordingly.

3.4. Embedding into Chimera architecture

The process of representing a single variable xi by a collection of qubits connected in chains of strong couplings is 
known as embedding, in reference to the minor embedding problem of graph theory [37,38]. More precisely, let P F (x|θ) be 
a penalty function whose interactions define a graph G F (so xi and x j are adjacent iff θi j �= 0) and let G H be a QA hardware 
graph. A minor embedding of G F in G H is a function � : V G F → 2V G H such that:

• for each G F -vertex xi , the subgraph induced by �(xi) is connected;
• for all distinct G F -vertices xi and x j , �(xi) and �(x j) are disjoint;
• for each edge (xi, x j) in G F , there is at least one edge between �(xi) and �(x j).

The image �(xi) of a G F -vertex is a chain, and the set of qubits in a chain are constrained to be equivalent using (1 −
xi

k∗
xi

k′ ∗
) couplings as in Equation (11).

Embedding generic graphs is a computationally difficult problem [39], although certain structured problem graphs may 
be easily embedded in the Chimera graph [40,41] and heuristic algorithms may also be used [42]. A reasonable goal in 
embedding is to minimize the sizes of the chains, as quantum annealing becomes less effective as more qubits are included 
in chains [24].

A different approach to finding models for F (x), global embedding, is based on first finding a penalty function on a 
complete graph G F on n + h variables, and secondly, embedding G F into a hardware graph G H using chains (e.g., using 
[40]). Following [34], global embeddings usually need fewer qubits than the methods presented in this paper; however, the 
final gap of the penalty function obtained in this way is generally smaller and difficult to compute exactly.

4. Encoding small Boolean sub-formulas

In this section we present general SMT/OMT-based techniques to address the encoding problem for small Boolean for-
mulas F (x).

4.1. Computing penalty functions via SMT/OMT(LRA)

Given x
def= {x1, ..., xn}, a

def= {a1, ...,ah}, F (x) as in Section 3, a variable placement in a Chimera subgraph s.t. z = x ∪ a, 
and some gap gmin > 0, the problem of finding a penalty function P F (x, a|θ) as in (5) corresponds to solving the following 
problem11:

For every i j, find θi ∈ [−2,2], θi j ∈ [−1,1] such that

∀x.

⎡
⎣ ( F (x) → ∃a.(P F (x,a|θ) = 0)) ∧

( F (x) → ∀a.(P F (x,a|θ) ≥ 0)) ∧
(¬F (x) → ∀a.(P F (x,a|θ) ≥ gmin))

⎤
⎦ . (15)

By applying Shannon’s expansion (§2.2) to the quantifiers in (15), the problem reduces straightforwardly to solving the 
following SMT(LRA) problem:

�(θ)
def=
∧

zi∈x,a

(−2 ≤ θi) ∧ (θi ≤ 2) ∧
∧

zi ,z j∈x,a
i< j

(−1 ≤ θi j) ∧ (θi j ≤ 1) (16)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨
a∈{−1,1}h

(P F (x,a|θ) = 0) (17)

∧
∧

{x∈{−1,1}n|F (x)=�}

∧
a∈{−1,1}h

(P F (x,a|θ) ≥ 0) (18)

∧
∧

{x∈{−1,1}n|F (x)=⊥}

∧
a∈{−1,1}h

(P F (x,a|θ) ≥ gmin). (19)

11 As in (5), we implicitly assume θi j = 0 when (i, j) /∈ E .
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Consequently, the problem of finding the penalty function P F (x, a|θ) that maximizes the gap gmin reduces to solving the 
OMT(LRA) maximization problem 〈�(θ), gmin〉. Notice that, since gmin is maximum, P F (x, a|θ) is also normal.

Intuitively, (16) states the ranges of the θ ; (17) and (18) state that, for every x satisfying F (x), P F (x, a|θ) must be zero 
for at least one “minimum” a and nonnegative for all the others; (19) states that for every x not satisfying F (x), P F (x, a|θ)

must be greater than or equal to the gap. Consequently, if the values of the θ in P F (x, a|θ) satisfy �(θ), then P F (x, a|θ)

complies with (6); if �(θ) is unsatisfiable, then there is no P F (x, a|θ) complying with (6) for the given placement.
Note that, if a = ∅, then the OMT(LRA) maximization problem 〈�(θ), gmin〉 reduces to a linear program because the 

disjunctions in (17) disappear.

Example 9. Consider the AND function F (x) def= x3 ↔ (x1 ∧ x2) of Example 3 and its placement in Fig. 5(a), involving one 
ancilla a. Then (15) is:∧3

i=1((−2 ≤ θxi ) ∧ (θxi ≤ 2)) ∧ (−2 ≤ θa) ∧ (θa ≤ 2) ∧∧3
i=2(−1 ≤ θx1xi ) ∧ (θx1xi ≤ 1) ∧∧3

i=2(−1 ≤ θxia) ∧ (θxia ≤ 1) ∧

∀x1
∀x2 .

∀x3

⎡
⎢⎢⎢⎢⎢⎢⎣

( (x3 ↔ (x1 ∧ x2)) →
∃a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xixi +∑3

i=2 +θxiaxia = 0)) ∧
( (x3 ↔ (x1 ∧ x2)) →
∀a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xi xi +∑3

i=2 +θxiaxia ≥ 0)) ∧
(¬(x3 ↔ (x1 ∧ x2)) →
∀a.(θ0+∑3

i=1 θxi xi +θaaxi +∑3
i=2 θx1xi x1xi xi +∑3

i=2 +θxiaxia ≥ gmin))

⎤
⎥⎥⎥⎥⎥⎥⎦

Example 10. Consider again the AND function F (x) def= x3 ↔ (x1 ∧ x2) of Example 3 and its placement in Fig. 5(a), involving 
one ancilla a. Then �(θ) of (16)-(19) is:∧3

i=1((−2 ≤ θxi ) ∧ (θxi ≤ 2)) ∧ (−2 ≤ θa) ∧ (θa ≤ 2) ∧ (16)∧3
i=2(−1 ≤ θx1xi ) ∧ (θx1xi ≤ 1) ∧∧3

i=2(−1 ≤ θxia) ∧ (θxia ≤ 1) ∧(
(θ0 + θx1 + θx2 + θx3 + θa + θx1x2 + θx1x3 + θx2a + θx3a = 0) ∨
(θ0 + θx1 + θx2 + θx3 − θa + θx1x2 + θx1x3 − θx2a − θx3a = 0)

)
∧ (17)

...(
(θ0 − θx1 − θx2 − θx3 + θa + θx1x2 + θx1x3 − θx2a − θx3a = 0) ∨
(θ0 − θx1 − θx2 − θx3 − θa + θx1x2 + θx1x3 + θx2a + θx3a = 0)

)
∧(

(θ0 + θx1 + θx2 + θx3 + θa + θx1x2 + θx1x3 + θx2a + θx3a ≥ 0) ∧
(θ0 + θx1 + θx2 + θx3 − θa + θx1x2 + θx1x3 − θx2a − θx3a ≥ 0)

)
∧ (18)

...(
(θ0 − θx1 − θx2 − θx3 + θa + θx1x2 + θx1x3 − θx2a − θx3a ≥ 0) ∧
(θ0 − θx1 − θx2 − θx3 − θa + θx1x2 + θx1x3 + θx2a + θx3a ≥ 0)

)
∧(

(θ0 + θx1 + θx2 − θx3 + θa + θx1x2 − θx1x3 + θx2a − θx3a ≥ gmin) ∧
(θ0 + θx1 + θx2 − θx3 − θa + θx1x2 − θx1x3 − θx2a + θx3a ≥ gmin)

)
∧ (19)

...(
(θ0 − θx1 − θx2 + θx3 + θa + θx1x2 − θx1x3 − θx2a + θx3a ≥ gmin) ∧
(θ0 − θx1 − θx2 + θx3 − θa + θx1x2 − θx1x3 + θx2a − θx3a ≥ gmin)

)
.

To force P F (x, a|θ) to be an exact penalty function, we add the following conjunct inside the square brackets of (15):

(¬F (x) → ∃a.(P F (x,a|θ) = gmin)), (20)

which forces P F (x, a|θ) to be exactly equal to the gap for at least one a. Thus we conjoin the Shannon’s expansion of (20)
to �(θ) in (16)-(19):

... ∧
∧

{x∈{−1,1}n|F (x)=⊥}

∨
a∈{−1,1}h

(P F (x,a|θ) = gmin). (21)

4.2. Improving efficiency and scalability using variable elimination

In the SMT/OMT(LRA) formulation (16)-(19), �(θ) grows exponentially with the number of hidden variables h. For 
practical purposes, this typically implies a limit on h of about 10. Here, we describe an alternative formulation whose size 
dependence on h is O (h2tw), where tw is the treewidth of the subgraph of G spanned by the qubits corresponding to the 
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ancillary variables, Ga . For the Chimera graph, even when h is as large as 32, tw is at most 8 and therefore still of tractable 
size.

The crux of the reformulation is based on the use of the variable elimination technique [43] to solve an Ising problem 
on Ga . This method is a form of dynamic programming, storing tables in memory describing all possible outcomes to the 
problem. When the treewidth is tw, there is a variable elimination order guaranteeing that each table contains at most 
O (2tw) entries. Rather than using numerical tables, our formulation replaces each of its entries with a continuous variable 
constrained by linear inequalities. In principle, we need to parametrically solve an Ising problem for each x ∈ {−1, 1}n , 
generating O (2nh2tw) continuous variables. However, by the local nature of the variable elimination process, many of these 
continuous variables are equal, leading to a reduced (as much as an order of magnitude smaller) and strengthened SMT 
formulation.

To describe the method, we first reformulate equations (18)-(19) by introducing witness binary variables β(x) ∈ {−1,1}h

to enforce the equality constraints (17), that is, P F (x, β(x)|θ) = 0. Thus, we can rewrite �(θ) as the SMT problem �(θ , β)

defined by12

�(θ ,β)
def= (16) ∧ (18) ∧ (19)

∧
∧

{x∈{−1,1}n|F (x)=�}

∨
a∈{−1,1}h

(
(β(x) ≡ a) ∧ (P F (x,a|θ) = 0)

)
.

Consider first the case when the graph Ga has no edges. If, for i = 1, . . . , h, we define

f i(ai |x) = θiai + ai

∑
j:i j∈E

θi j x j,

then we can write

P F (x,a|θ) = c(x) +
h∑

i=1

f i(ai |x),

where c(x) does not depend on the ancillary variables. Thus,

min
a

P F (x,a|θ) = c(x) +
h∑

i=1

min
ai∈{−1,1} f i(ai|x). (22)

If θ is fixed, solving (22) is straightforward. However, since θ is a variable, the contribution minai∈{−1,1} f i(ai |x) is a function 
of θ , for each i = 1, . . . , h. Each of these minimums will be associated with a continuous variable, denoted by mi(∅|x), and 
referred to as a message variable (the naming will be clearer in the general case). To relate mi(∅|x) with minai∈{−1,1} f i(ai |x), 
we impose the constraints

mi(∅|x) ≤ f i(−1|x) and mi(∅|x) ≤ f i(1|x).

Thus, if F (x) = ⊥, since the message variables are lower bounds on the true minimums of (22), to enforce (19) we need 
simply add the constraints

c(x) +
h∑

i=1

mi(∅|x) ≥ gmin.

When F (x) = �, we need to ensure that the message variables take the minimums of (22). Note that variable βi(x) identifies 
the value of the ancillary variable i that achieves the minimum in (22). To relate the values of β(x) and the message 
variables m(∅|x) we add the SMT constraints

βi(x) ⇒ (
mi(∅|x) = f i(1|x)

)
,

¬βi(x) ⇒ (
mi(∅|x) = f i(−1|x)

)
.

Finally, to impose (17) and (18), we need that

c(x) +
h∑

i=1

mi(∅|x) = 0.

12 For vectors a, b, we use a ≡ b as a shorthand for (a1 = b1) ∧ (a2 = b2) ∧ (a3 = b3) ∧ . . ..
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Since G is usually sparse, it is likely that two binary states x and x′ agree on the bits adjacent to a fixed ancillary variable i. 
In this case, it is clear that mi(∅|x) = mi(∅|x′), and we can use a single message variable for both states. This observation 
can be extended to the general case and will be valuable to reduce the size and strengthen the SMT problem formulation.

Next consider the general case when |E(Ga)| > 0. In what follows, c(x) and f i(ai |x) are defined as above. Assume first 
θ is fixed. Given x, we want to solve the Ising model mina P F (x, a|θ). Variable elimination proceeds in order, eliminating 
one ancillary variable at a time. Suppose that ancillary variables are eliminated in the order h, h − 1, . . . , 1. Each ancillary 
variable i is associated with a set Fi of factors, which are functions that depend on ancillary variable i and none or more 
ancillary variables with index less than i. The sets Fi are called buckets, and are updated throughout the computation. 
Initially, each Fi consists of ancilla-ancilla edges13 f i,k(ai, ak) = θik aiak for ik ∈ E(Ga), k < i. Let Vi denote the set of 
ancillary variables involved in the factors of bucket Fi other than variable i itself (thus, all variable indices in Vi are less 
than i, or Vi = ∅). For a fixed a and a subset of ancillary variables U , we use aU to denote {ai : i ∈ U}. Variable h is 
eliminated first. Note that once variables in Vh are instantiated to aVh

, the optimal setting of variable h is readily available 
by solving

gh(aVh
) = min

ah
fh(ah|x) +

∑
f ∈Fh

f (aVh
,ah). (23)

Here f = f i,h ∈ Fh represents an edge ih between ancillary variables i and h, i < h (abusing notation we write f (ai, ah) as 
f (aVh

, ah)), and Fh contains all edges adjacent to h. The 2|Vh | possible settings of aVh
define 2|Vh | values (23). These values 

define new factor gh , a function of variables aVh
, that is added to the bucket Fi of variable i with largest index in Vh . For 

each instantiation of aVh
we define the message mh(aVh

|x) as gh(aVh
). Iteratively, eliminating variable i is accomplished by 

solving, for each setting of aVi
,

gi(aVi
) = min

ai
f i(ai|x) +

∑
f ∈Fi

f (aVi
,ai) (24)

generating a new factor gi , a function of aVi
. For each one of the 2|Vi | possible values of gi we define message mi(aVi

|x) to 
be gi(aVi

). Factor gi is then added to bucket Fk where k is the largest index in Vi . When V i = ∅, (24) takes the form

min
ai

f i(ai|x) +
∑
f ∈Fi

f (ai) (25)

that determines the optimal value of ai ; the message corresponding to the value of this minimum is mi(∅|x). All variables 
with V i = ∅ can be eliminated at the same time, so that, at termination, the value of the Ising problem mina P F (x, a|θ) is 
equal to

c(x) +
∑

i:Vi=∅
mi(∅|x)

which will be equal to mina P F (x, a|θ). Notice that the number of additional messages is O (
∑

i 2|Vi |), where each Vi corre-
sponds to the time when variable i is eliminated. When Ga has treewidth t , there is an elimination order for which each 
|Vi| ≤ t , which typically, by our low treewidth assumption, will be much smaller than 2h .

When θ is not fixed, as in the case when there were no edges, the messages are variables. Since these message variables 
represent minimums, we upper bound the message variables adding the constraints

mi(aVi
|x) ≤ f i(−1|x) +

∑
f ∈Fi

f (aVi
,−1)

mi(aVi
|x) ≤ f i(1|x) +

∑
f ∈Fi

f (aVi
,1).

As before, if F (x) = ⊥, the constraint (19) can be replaced with

c(x) +
∑

i:Vi=∅
mi(∅|x) ≥ gmin, (26)

since the message variables provide a lower bound on (24). When F (x) = �, we must ensure that all the message variables 
are tight. For a subset of ancillary variables U , let βU (x) = {βi(x) : i ∈ U}. Thus, we must have that for all aVi

13 Ga is an undirected graph. An edge is defined by a pair of vertices, say i and k; for convenience, in this section we associate this edge with the ordered 
pair ik with k < i.
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Fig. 6. Unit cell with 5 ancillas. The subgraph, Ga , induced by the ancilla nodes is highlighted in bold. Pairwise factors f i, j(ai , a j) are associated with each 
edge of Ga and unary factors f i(ai |x) with each node of Ga .[

βVi
(x) ≡ aVi

∧ βi(x)
]⇒ [

mi(aVi
|x) = f i(1|x) +

∑
f ∈Fi

f (aVi
,1)
]

[
βVi

(x) ≡ aVi
∧ ¬βi(x)

]⇒ [
mi(aVi

|x) = f i(−1|x) +
∑
f ∈Fi

f (aVi
− 1)

]
.

In this way, we can enforce that mina P F (x, a|θ) = 0 (that is, constraints (17) and (18)), with the constraint

c(x) +
∑

i:Vi=∅
mi(∅|x) = 0. (27)

Example 11. Consider a penalty over 3 variables with 5 ancillas embedded in a unit cell (see Fig. 6). For each x, ancilla vari-
ables are eliminated in the order a5, a4, · · · , a1. The buckets are F5 = { f1,5}, F4 = { f1,4}, F3 = { f1,3}, F2 = { f1,2}, and F1 =
{}. The dependent variable sets of each bucket are V5 = {a1}, V4 = {a1}, V3 = {a1}, V2 = {a1}, and V1 = {}. Elimination of a5
is accomplished by posting the message constraints m5(a1|x) ≤ f5(1|x) + f1,5(a1, 1) and m5(a1|x) ≤ f5(−1|x) + f1,5(a1, −1). 
This elimination (for each choice of aV5 = a1) generates a new factor g5(a1) which is added to bucket F1. Next, we pro-
ceed to a4. In this example, no new factors have been added to bucket F4 and elimination proceeds as above where factor 
g4(a1) is added to F1 and message constraints m4(a1|x) ≤ f4(1|x) + f1,4(a1, 1) and m4(a1|x) ≤ f4(−1|x) + f1,4(a1, −1) are 
posted. This process repeats to the final ancilla a1 whose bucket now includes F1 = {g2, g3, g4, g5}. Elimination of a1 is 
accomplished by adding the message constraints m1(∅|x) ≤ f1(1|x) +∑5

i=2 gi(1) and m1(∅|x) ≤ f1(−1|x) +∑5
i=2 gi(−1). 

The minimal penalty value at the given x is then lower bounded by c(x) + m1(∅|x). This bound is made tight for infeasible 
x by requiring c(x) + m1(∅|x) ≥ gmin and made tight for feasible x by imposing the constraints associated with the β(x)

variables.

As noted in the case when Ga has no edges, some message variables will always have the same values. In fact, significant 
additional model reduction can be accomplished by identifying message variables that have to be the same across many 
states x. For instance, mi(aVi

|x) = mi(aVi
|x′) if their corresponding upper bounds are the same (propagating from h down 

to i). Because G is sparse, the number of message variables can typically be reduced by an order of magnitude or more in 
this way.

In many cases, for counter-models x, F (x) = ⊥, some constraints (19) may be dropped or relaxed without altering the 
optimal solution of the original SMT problem. For instance, we could include only constraints (19) for counter-models x
that are within Hamming distance at most d from all models of F . In our experiments, using d ≤ 3 sufficed in most cases.

Alternatively, also for counter-models, the variable elimination lower bounds (26) can be relaxed by weaker lower bounds 
such as a linear programming relaxation of the corresponding Ising problem, that requires O (|V | +|E|) continuous variables 
and inequalities per x, F (x) = ⊥. For instance, a linear programming lower bound on the QUBO formulation

min
yi∈{0,1}

∑
i∈V

ci yi +
∑

e={i, j}∈E

qe yi y j ,

is the following:

Minimize
∑
i∈V

ci xi +
∑
e∈E

qe ze (28)

subject to

ze − yi − y j ≥ −1 for each e = i j ∈ E , i < j (λe) (29)

−ze + yi ≥ 0 for each e = i j ∈ E , i < j (λh ) (30)
e,i
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−ze + y j ≥ 0 for each e = i j ∈ E , i < j (λt
e, j) (31)

−yi ≥ −1 for each i ∈ V (αi) (32)

yi, ze ≥ 0 (33)

Its linear programming dual is given by

Maximize −
∑
e∈E

λe −
∑
i∈V

αi (34)

subject to

λe − λh
e,i − λt

e, j ≤ qe for each e = i j ∈ E , i < j (35)

−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λh
e,i +

∑
e=ki∈E,k<i

λt
e,i − αi ≤ ci for each i ∈ V (36)

λe, λ
h
e,i, λ

t
e,i,αi ≥ 0 (37)

Notice that if c and q are variables, the dual problem is still linear in the dual variables, c and q. Thus, we can guarantee 
(in one direction only) that the value of the QUBO is at least g with the set of linear inequalities

−
∑
e∈E

λe −
∑
i∈V

αi ≥ g (38)

(35), (36), (37) (39)

Note that we can always take

(−
∑
e:i∈e

λe +
∑

e=ik∈E,i<k

λh
e,i +

∑
e=ki∈E,k<i

λt
e,i − ci)

+ = αi .

To make this work for an Ising problem, the c and q have to be written as linear functions of θ , which is straightforward.

4.3. Inequivalent variable placements

Recall that a variable placement is a mapping from the input and ancilla variables x ∪ a onto the vertices V ; the formula 
�(θ) in (16)-(21) can be built only after each zi ∈ x ∪ a has been placed. In general there will be many such placements, 
but by exploiting symmetry and the automorphism group of G , we can reduce the number of placements that need be 
considered.

Let v
def= (v1, ..., vn+h) denote a variable placement, so vi is the vertex of V onto which zi is placed. Two variable 

placements v and v′ def= (v ′
1, ..., v

′
n+h) are equivalent if there is a graph isomorphism φ of G that point-wise maps the input 

variables (xi ) in v to the input variables in v′; that is, vi = φ(v ′
i) for all i ≤ n. If v and v′ are equivalent, then a penalty 

function for v can be transformed into a penalty function for v′ by applying φ. Therefore, in order to find a penalty function 
of maximal gap among all variable placements, it suffices to consider only inequivalent ones.

Example 12. Suppose we want to encode a penalty function with n + h = 8 variables into an 8-qubit Chimera tile. There are 
8! = 40320 candidate variable placements. However, the tile structure is highly symmetric: any permutation of v that either

(i) swaps horizontal qubits with vertical qubits, or
(ii) maps horizontal qubits to horizontal qubits and vertical qubits to vertical qubits

is an automorphism. This fact can be exploited to reduce the number of candidate placements to only 
(7

3

)= 35 as follows. 
Let 1, ..., 4 and 5, ..., 8 be the indexes of the horizontal and vertical qubits respectively. By (i), we assume w.l.o.g. that 
z1 is mapped into an horizontal qubit, and by (ii) we assume w.l.o.g. that v1 = 1. Next, consider some size-3 subset S of 
{v2, ..., v8}. By (ii), all placements that map S into the remaining 3 horizontal qubits and map {v2, ..., v8}\S into the vertical 
qubits are equivalent. Since there are 

(7
3

)= 35 such subsets S , there are at most 35 inequivalent placements to consider.

This notion of equivalence of variable placements can be coarsened slightly by taking advantage of NPN-equivalence. We 
define variables x1 and x2 in a Boolean function F to be NPN-symmetric if swapping the variables, and negating some subset 
of variables, produces an equivalent formula. For example, consider F (x1, x2, x3) 

def= x3 ↔ (x1 ∧ ¬x2). Variables x1 and x2 are 
NPN-symmetric because F (x1, x2, x3) ↔ F (¬x2, ¬x1, x3). This symmetry defines an equivalence relation on the variables: for 
xi and x j the same equivalence class, there is a permutation and negation of the variables that does not change F but maps 
xi to x j while not permuting variables outside the equivalence class.
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We say that two variable placements v and v′ are equivalent up to NPN-symmetry if there is a graph isomorphism φ of G
that maps the input variables in v to the input variables in v′ up to NPN-symmetry classes. That is, for all i ≤ n, there exists 
a j ≤ n such that xi and x j are NPN-symmetric and vi = φ(v ′

j). Again, penalty functions for v and can be transformed into 
penalty functions for v′ and vice versa.

Example 13. Consider placing the function AND(x1, . . . , x4) = x1 ∧ x2 ∧ x3 ∧ x4 with h = 4 auxiliary variables on the 8-qubit 
Chimera tile. From Example 12, it suffices to consider 35 variable placements. However, the variables x1, . . . , x4 in AND are 
all NPN-symmetric. Therefore any two variable placements v and v′ that map the same number xi ’s to horizontal qubits are 
equivalent, since there is an automorphism that will map the horizontal xi ’s in v to the horizontal xi ’s in v′ . Moreover, a 
placement mapping k ≤ 4 of the xi ’s to horizontal qubits is equivalent to one mapping 4 − k of the xi ’s to horizontal qubits, 
by swapping horizontal and vertical qubits. As a result, there are only 3 inequivalent variable placements to consider, in 
which 0, 1 or 2 of the xi ’s are mapped to horizontal qubits.

One way to check for equivalent variable placements is to use vertex-colored graph isomorphisms. Two vertex-colored
graphs (G, c) and (G ′, c′) are vertex-colored graph-isomorphic if there is a permutation φ mapping V (G) to V (G ′) that pre-
serves edges and maps every vertex of G to a vertex of the same color in G ′ (for all v ∈ V , c′(φ(v)) = c(v)). Using a variable 
placement v and NPN-symmetry, define a vertex-coloring c of G as follows:

c(g) =
{

s if vi = g and xi is in the s-th equivalence class of NPN-symmetry,

0 if g is not in {v1, . . . , vn}.

Similarly define a vertex coloring c′ for variable placement v′ . From these definitions, v and v′ are equivalent up to NPN-
symmetry if and only if the vertex colored graphs (G, c) and (G, c′) are vertex-colored graph-isomorphic.

In practice, we can use the graph package Nauty [44] to compute a canonical form for each vertex-colored graph and 
check if two are the same. Nauty works with vertex-colored canonical forms natively as part of its graph isomorphism 
algorithm, and can compute canonical forms for graphs with thousands of vertices.

4.4. Placing variables & computing penalty functions via SMT/OMT(LRIA∪UF )

As an alternative to identifying equivalent variable placements, for small formulae F (x), we can combine the generation 
of the penalty function with an automatic variable placement by means of SMT/OMT(LRIA∪UF ), LRIA∪UF being the 
combined theories of linear arithmetic over rationals and integers plus uninterpreted function symbols (§2.2). This works as 
follows.

Suppose we want to produce the penalty function of some relatively small function (e.g., so n + h ≤ 8, which fits into a 
single Chimera tile). We index the n +h vertices in the set V into which we want to place the variables as V

def= {1, ...,n + h}, 
and we introduce a set of n + h integer variables v

def= {v1, ..., vn+h} such that v j ∈ V is (the index of) the vertex into 
which z j is placed. (For example, “v3 = 5” means that variable z3 is placed in vertex #5.) Then we add the standard SMT 
constraint Distinct(v1, ..., vn+h) to the formula to guarantee the injectivity of the map. Then, instead of using variables θi

and θi j for biases and couplings, we introduce the uninterpreted function symbols b : V �−→ Q (“bias”) and c : V × V �−→ Q
(“coupling”), so that we can rewrite each bias θ j as b(v j) and each coupling θi j as c(vi, v j) s.t. vi, v j ∈ [1, .., n + h] and 
Distinct(v1, ..., vn+h).

This rewrites the SMT(LRA) problem (16)-(19) into the S MT (LRIA ∪ UF) problem (40)-(51) in Fig. 7. Equation (44)
must be used if and only if we need an exact penalty function. (Notice that (47) is necessary because we could have 
c(vi, v j) s.t. vi > v j .) By solving 〈�(θ0,b, c,v), gmin〉 we not only find the best values of the biases b and couplings c, but 
also the best placement v of the variables into (the indexes of) the qubits.

Example 14. Consider x def= {x1, x2, x3}, a def= {a1} and F (x) def= (x3 ↔ (x1 ∧ x2)), and 4-qubit fraction of a tile with 2 horizontal 
and 2 vertical qubits. Let z1, z2, z3 and z4, denote x1, x2, x3 and a1 respectively, so that each v j denotes the vertex into 
which z j is placed. We consider the encoding (40)-(51), in particular we have that:

P F (x,a|θ0,b, c,v)
def= θ0 + b(v1)x1 + b(v2)x2 + b(v3)x3 + b(v4)a1 +

c(v1, v2)x1x2 + c(v1, v3)x1x3 + c(v1, v4)x1a1 +
c(v2, v3)x2x3 + c(v2, v4)x2a1 + c(v3, v4)x3a1

Graph()
def= c(1,2) = 0 ∧ c(2,1) = 0 ∧ c(3,4) = 0 ∧ c(4,3) = 0
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�(θ0,b, c,v)
def= Range(θ0,b, c,v) ∧ Distinct(v) ∧ Graph() (40)

∧
∧

{x∈{−1,1}n |F (x)=�}

∧
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) ≥ 0) (41)

∧
∧

{x∈{−1,1}n |F (x)=�}

∨
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) = 0) (42)

∧
∧

{x∈{−1,1}n |F (x)=⊥}

∧
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) ≥ gmin) (43)

∧
∧

{x∈{−1,1}n |F (x)=⊥}

∨
a∈{−1,1}h

(P F (x,a|θ0,b, c,v) = gmin) (44)

where:

Range(θ0,b, c,v)
def=

∧
1≤ j≤n+h

(1 ≤ v j) ∧ (v j ≤ n + h) (45)

∧
∧

1≤ j≤n+h

(−2 ≤ b( j)) ∧ (b( j) ≤ 2) (46)

∧
∧

1≤ j≤n+h

(c( j, j) = 0) ∧
∧

1≤i< j≤n+h

(c(i, j) = c( j, i)) (47)

∧
∧

1≤i< j≤n+h

(−1 ≤ c(i, j)) ∧ (c(i, j) ≤ 1) (48)

Distinct(v1, ..., vn+h)
def=

∧
1≤i< j≤n+h

¬(vi = v j) (49)

Graph()
def= ∧

∧
1≤i< j≤n+h

〈i, j〉/∈E

(c(i, j) = 0) (50)

P F (x,a|θ0,b, c,v)
def= θ0 +

∑
1≤ j≤n+h

b(v j) · z j +
∑

1≤i< j≤n+h

c(vi , v j) · zi · z j . (51)

Fig. 7. SMT (LRIA∪UF ) encoding with automatic placement.

Fig. 8. 3 possible placements of z
def= {x1, x2, x3} ∪ {a1} into a 4-qubit tile fraction with 2 horizontal and 2 vertical qubits. All 4! = 24 combinations are 

equivalent to one of them.

One possible solution is given in the following tables:

g v1 v2 v3 v4
2 1 3 2 4

θ0 b(v1) b(v2) b(v3) b(v4)

b(1) b(3) b(2) b(4)

5/2 −1/2 −1/2 1 0

c(v1, v2) c(v1, v3) c(v1, v4) c(v2, v3) c(v2, v4) c(v3, v4)

c(1,3) c(1,2) c(1,4) c(3,2) c(3,4) c(2,4)

1/2 0 −1 −1 0 −1

which corresponds to the placing in Fig. 8 (center).

4.4.1. Exploiting symmetries
When using an SMT/OMT solver to search for penalty functions across all variable placements as in (40)-(51), we may 

restrict the search space by considering only one variable placement from each equivalence class under the automorphisms 
of G .
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Fig. 9. Graph of the encoding process.

Example 15. In Example 12, when encoding a penalty function with n + h = 8 variables into a Chimera tile, automorphisms 
reduced the number of variable placements under consideration from 8! = 40320 to 

(7
3

)= 35. We can force the SMT/OMT 
solver to restrict the search to only 35 maps by adding the following constraint to (40)-(51), consisting into the disjunction 
of 35 cubes, each representing one placement.

(

F ixed︷ ︸︸ ︷
v1 = 1∧

size-3 subset of {v2,...,v8}
mapped to horizontal qubits︷ ︸︸ ︷

v2 = 2 ∧ v3 = 3 ∧ v4 = 4∧

complement of the previous subset
mapped to vertical qubits︷ ︸︸ ︷

v5 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨
(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v5 = 4 ∧ v4 = 5 ∧ v6 = 6 ∧ v7 = 7 ∧ v8 = 8) ∨
...

(v1 = 1 ∧ v6 = 2 ∧ v7 = 3 ∧ v8 = 4 ∧ v2 = 5 ∧ v3 = 6 ∧ v4 = 7 ∧ v5 = 8).

If we add this constraint, the first conjunction in (45) can be dropped.

Example 16. In Example 14 we have 4! = 24 possible placements on to a tile of 2 horizontal and 2 vertical qubits. If we 
exploit symmetries as above, we have only 

(3
1

) = 3 inequivalent placements, which are described in Fig. 8. These can be 
obtained by adding the constraint:

(v1 = 1 ∧ v2 = 2 ∧ v3 = 3 ∧ v4 = 4) ∨
(v1 = 1 ∧ v3 = 2 ∧ v2 = 3 ∧ v4 = 4) ∨
(v1 = 1 ∧ v4 = 2 ∧ v2 = 3 ∧ v3 = 4).

5. Encoding larger Boolean formulas

As pointed out in Section 3.2, encoding large Boolean functions using the SMT formulations of the previous section is 
computationally intractable, as the number of constraints in the model increases roughly exponentially with the number of 
variables in the Boolean function. In this section, we describe the natural approach of pre-computing a library of encoded 
Boolean functions and rewriting a larger Boolean function F (x) as a set of pre-encoded ones 

∧K
k=1 Fk(xk). The penalty 

functions P Fk (xk, ak|θk) for these pre-encoded functions may then be combined using chains as described in Section 3.4. 
This schema is shown in Fig. 9. In terms of QA performance, this method has been shown experimentally to outperform 
other encoding methods for certain problem classes [45]. We will describe each of the stages in turn (see also [34,45,46]).

5.1. Pre-encoding

In this stage, we find effective encodings of common small Boolean functions, using the SMT methods in Section 4 or by 
other means, and store them in a library for later use. Finding these encodings may be computationally expensive, but this 
task may be performed offline ahead of time, as it is independent of the problem input, and it needs only be performed 
once for each NPN-inequivalent Boolean function.

Note that there exist many different penalty functions P F (x, a|θ) for any small Boolean function F (x). Penalty functions 
with more qubits may have larger gaps, but using those functions may result in longer chains, so it is not always the 
case that larger gaps lead to better QA hardware performance. Choosing the most appropriate function may be a nontrivial 
problem. A reasonable heuristic is to choose penalty functions with gaps of similar size to the gap associated with a chain, 
namely gmin = 2.

5.2. Preprocessing

Preprocessing, or Boolean formula minimization, consists of simplifying the input formula F (x) to reduce its size or 
complexity. While not strictly necessary, it not only improves QA performance by reducing the size of P F (x, a|θ) but also 



JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.22 (1-34)

22 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Fig. 10. Two And-Inverter Graphs representing the function F (x) = x1 ∧ x2 ∧ ¬x3.

reduces the computational expense of the encoding process. Moreover, the graphical representation commonly used in 
preprocessing, the AND-Inverter Graph (AIG), is necessary for the subsequent phase of encoding.

An AIG encodes F (x) as a series of 2-input AND gates and negations. More precisely, a directed acyclic graph D on vertex 
set z = x ∪ a = (x1, . . . , xn, a1, . . . , am) is an AIG representing F (x) if it has the following properties:

1. Each xi has no incoming arcs and each ak has 2 incoming arcs (the inputs to ak), and there is a unique ao with no 
outgoing arcs (the primary output).

2. Each arc z → a is labeled with a sign + or − indicating whether or not z should be negated as an input to a; define a 
literal la(z) = z for an arc with sign + and la(z) = ¬z for an arc with sign −.

3. For each node ak with arcs incoming from z1 and z2, there is an AND function Ak(ak, z1, z2) = ak ↔ lak (z1) ∧ lak (z2), 
such that

F (x) ↔
m∧

k=1

Ak(z) ∧ (ao = �). (52)

For example, the function F (x) = x1 ∧ x2 ∧ ¬x3 is represented by both of the And-Inverter Graphs in Fig. 10.
There are many And-Inverter Graphs representing a given F (x). Is F (x) is in CNF form, we can construct an AIG by 

rewriting each OR clause as an AND function via De Morgan’s Law, and then rewriting each AND function with more than 
2 inputs as a sequence of 2-input AND functions.

Preprocessing is a well-studied problem with mature algorithms available [47,48]; here, we use DAG-aware minimization
as implemented by the logic optimizer ABC.14 DAG-aware minimization attempts to find an AIG with a minimal number of 
nodes by repeatedly identifying a small subgraph that can be replaced with another, smaller subgraph without changing the 
truth assignments of F (x).

More precisely, a cut C of node z in D is a subset of vertices such that every directed path from an input xi to z must 
pass through C . The subgraph of D induced by all paths from C to z is a candidate to be replaced by a smaller subgraph, 
since the Boolean value of z is determined by C . We call this value of z as a function of C the Boolean function represented 
by C . Cut C is k-feasible if |C | ≤ k and non-trivial if C �= {z}. For fixed k, there is an O (n)-time algorithm to identify all 
k-feasible cuts in an AIG: traverse the graph from the inputs x to the primary output, identifying the k-feasible cuts of node 
ai by combining k-feasible cuts of ai ’s inputs. During traversal, DAG-aware minimization identifies a 4-feasible cut C and 
replaces the subgraph induced by C with the smallest subgraph representing the same Boolean function. (There are 222
NPN-inequivalent 4-input Boolean functions, and smallest subgraph representing each one is pre-computed.) See [49] for 
more details.

5.3. Standard cell mapping

In the standard cell mapping phase, F (x) is decomposed into component functions 
∧K

k=1 Fk(xk) that are available in the 
library of penalty functions. For SAT or constraint satisfaction problems, this mapping may be performed naïvely: given a 
set of constraints {Fk(xk)}K

k=1 on the variables, each Fk(xk) is found in the library (possibly combining small constraints into 
larger ones [34]). However, more advanced techniques have been devised in the digital logic synthesis literature. Technology 
mapping is the process of mapping a technology-independent circuit representation to the physical gates used in a digital 
circuit [49,50]. Usually technology mapping is used to reduce circuit delay and load, and performs minimization as an 
additional step. Delay and load do not play a role in the context of QAs, but minimization is important to simplify the 
placement and routing phase that follows.

In order to find an efficient decomposition, a technology mapping algorithm takes as input costs for small Fk(xk) and 
attempts to minimize the sum of the costs of the components in 

∧K
k=1 Fk(xk). We define the cost of Fk to be the number 

of qubits used by the penalty model P Fk , so that the cost of F (x) =∧K
k=1 Fk(xk) is the total number of qubits used to 

represent F (x), prior to adding chains.

14 See https://github .com /berkeley-abc /abc and https://people .eecs .berkeley.edu /~alanmi /abc/.

https://github.com/berkeley-abc/abc
https://people.eecs.berkeley.edu/~alanmi/abc/
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Here, we apply the technology mapping algorithm in [49]: the idea is to decompose the AIG representing F (x) into a 
collection of cuts such that each cut represents a small function Fk(zk) that can be found in the penalty library. A mapping
M of an AIG D is a partial function that maps a node ai of D to a non-trivial, k-feasible cut M(ai). We say ai is active when 
M(ai) is defined and inactive otherwise. Mapping M is proper if:

1. the primary output ao is active;
2. if ai is active; then every a j ∈ M(ai) is active; and
3. if a j �= ao is active; then a j ∈ M(ai) for some active ai .

For each active node ak in a proper mapping M , there is a Boolean function Fk(zk) represented by the cut M(ak), and 
the original Boolean function F (x) decomposes as

F (x) ↔
K∧

k=1

Fk(zk) ∧ (ao = �).

Therefore, choosing k-feasible cuts with small k, proper mappings provide decompositions of F (x) into small Boolean func-
tions that can be found in the penalty library. One example of a proper mapping is the trivial mapping, in which each ai
is mapped to the cut consisting of its two input nodes. Under the trivial mapping, F (x) is decomposed into a collection 
2-input AND’s.

The algorithm in [49] iteratively refines mapping M in order to improve the cost of the decomposition, in the following 
way. For each node ai , maintain a list L(ai) of k-feasible cuts, ordered by their cost. (The cost of a cut is a function of the 
cost of the Boolean function it represents, taking into account the anticipated recursive effects of having a new set of active 
nodes: see [49] for details.) Traverse the graph from inputs x to primary output ao . At each ai , first update the costs of the 
cuts in L(ai) based on the changes to the costs of earlier nodes in the traversal. Next, if ai is active and the current cut 
M(ai) is not the cut in L(ai) of lowest cost, update M(ai). To do this, first inactivate ai (which recursively inactivates nodes 
in M(ai) if they are no longer necessary) and then reactivate ai (which reactivates nodes in M(ai), also recursively). This 
process of refining the mapping by traversing the graph is repeated several times.

Given the connectivity of the Chimera hardware graph, a natural choice is to decompose into Boolean functions that 
can be modeled with a single 8-qubit tile. In particular all 3-input, 1-output Boolean functions (all 3-feasible cuts) can be 
modeled in one tile.

Example 17. Consider the XOR function F (x) def= x6 ↔ (x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5). This function cannot be encoded into a single 
8-qubit Chimera tile. However, F (x) is equivalent to the decomposition F1(z) ∧ F2(z) with

F1(z)
def= a0 ↔ (x1 ⊕ x2 ⊕ x3),

F2(z)
def= x6 ↔ (a0 ⊕ x4 ⊕ x5),

where each of F1 and F2 maps to a unit tile individually.

5.4. Placement and routing

Once F (x) is decomposed into smaller functions 
∧K

k=1 Fk(xk) with penalty functions P Fk (xk, ak|θk), it remains to em-
bed the entire formula onto the QA hardware as in equation (11). This process has two parts: placement, in which each 
P Fk (xk, ak|θk) is assigned to a disjoint subgraph of the QA hardware graph; and routing, in which chains of qubits are built 
to ensure that distinct qubits xi and x′

i representing the same variable take consistent values (using equivalence constraints 
with penalty functions of the form 1 − xi x′

i ). Both placement and routing are very well-studied in design of digital circuits 
[51]. Nevertheless, this stage is a computational bottleneck for encoding large Boolean functions.

5.4.1. Placement
During placement, chain lengths can be minimized by placing penalty functions that share common variables close 

together. Current QA processors have a nearly 2-dimensional structure, which lets us measure distance between variables 
using planar coordinates. (For example, for the 2048-qubit Chimera graph in Fig. 2, define the planar coordinates of a unit 
cell to be its row and column index in the 16 × 16 grid.) One common objective function from digital circuit design is “half-
perimeter wire length” [52]. Define the location of a Boolean function Fk(xk) to be the subgraph of G onto which Fk(xk) is 
placed, and define a placement function p : {1, ..., K } →R2 which maps each k to the planar coordinates p(k) = (ak, bk) of 
the location of Fk(xk). The half-perimeter wire length (HPWL) of a variable xi is the total length and width of the smallest box 
that can be drawn around the locations of functions containing x. That is, for Si = {k : xi ∈ xk},

H P W L(xi)
def= (max ak − min ak) + (max bk − min bk).
k∈Si k∈Si k∈Si k∈Si
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A placement algorithm attempts to find a placement that minimizes 
∑n

i=1 H P W L(xi).
Heuristic methods for placement include simulated annealing [53], continuous optimization [54], and recursive min-cut 

partitioning [55]. These algorithms can be applied in the present context, but require some modification as current QA 
architectures do not distinguish between qubits used for penalty functions and qubits used for chains. For example, in some 
algorithms, a placement is optimized on the assumption that the resulting routing problem is feasible (possibly by expanding 
the planar area made available for routing). This assumption may not necessarily hold using a fixed QA hardware graph of 
limited size and connectivity. If unit cells are packed tightly with Boolean functions, then there will be few remaining qubits 
available for routing. On the other hand, reserving too many qubits for routing will have a negative impact on hardware 
performance in the form of longer chains.

In the experiments in §7 we made use of mPL,15 a publicly available academic placement tool [54]. mPL is multilevel 
method in which the placement problem is repeatedly coarsened (so that several P Fk are clustered and treated as one), 
placed, and uncoarsened with local improvements. At the coarsest level, placement is performed using a customized non-
linear programming algorithm which maps penalty functions to real coordinates minimizing a quadratic distance function 
between shared variables.

5.4.2. Routing
During routing, literals are chained together using as few qubits possible; this problem may be formalized as follows. 

Assume a single variable xi has been assigned to a set of vertices Ti ⊆ V , its terminals, during the placement of small 
Boolean functions. To create a valid embedding, the chain of vertices representing xi , call it Ci , must contain Ti and induce 
a connected subgraph in G . Finding Ci with a minimum number of vertices is an instance of the Steiner tree problem [56]
and Ci is a Steiner tree. Given variables (x1, . . . , xn) assigned to terminals (T1, . . . , Tn), the routing problem demands a set 
of chains (C1, . . . , Cn) such that each Ci contains Ti , every chain is connected, and all chains are pairwise disjoint. Among 
routing solutions, we try to minimize the total number of vertices of G used or the size of the largest chain.

Routing to minimize the total number of vertices used is NP-hard, but polynomial-time approximation algorithms exist 
[57]. In practice, heuristic routing algorithms scale to problem sizes much larger than current QA architectures [58–62].

Routing in the current context differs from routing used in digital circuit design in the sense that vertices (qubits) are 
the sparse resource that variables compete for, rather than edges. As a result, we make use vertex-weighted Steiner tree 
algorithms rather than edge-weighted ones. This makes the problem harder, as the edge-weighted Steiner tree problem is 
(1.39)-approximable in polynomial time [63], while vertex-weighted Steiner-tree is only (log k)-approximable for k termi-
nals in polynomial time unless P=NP [64]. Nevertheless, in practice, simple 2-approximation algorithms for edge-weighted 
Steiner tree such as the MST algorithm [65] or Path Composition [66] also work very well for the vertex-weighted problem. 
In this section, we describe a modification of the routing algorithm BonnRoute [66] for vertex-weighted Steiner trees.

We first solve a continuous relaxation of the routing problem called min-max resource allocation. Given a set of vertices 
C ⊆ V , the characteristic vector of C is the vector χ(C) ∈ {0, 1}|V | such that χ(C)v = 1 if v ∈ C and 0 otherwise. Let Hi be 
the convex hull of all characteristic vectors of Steiner trees of Ti in G . Then the min-max resource allocation problem for 
terminals T1, . . . , Tn is to minimize, over all zi ∈ Hi , i ∈ {1, . . . , n},

λ(z1, . . . , zn)
def= max

v∈V

n∑
i=1

(zi)v .

The vertices v are the resources, which are allocated to customers (z1, . . . , zn).16 To recover the routing problem, note that if 
each zi is a characteristic vector of a single Steiner tree, then 

∑n
i=1(zi)v the number of times vertex v is used in a Steiner 

tree. In that case, λ(x) ≤ 1 if and only if the Steiner trees are a solution to the routing problem.
To solve the min-max resource allocation, we iteratively use a weighted-Steiner tree approximation algorithm to generate 

a probability distribution over the Steiner trees for each xi . After a Steiner tree is generated, the weights of the vertices in 
that Steiner tree are increased to discourage future Steiner trees from reusing them (see Algorithm 1 for details). This 
algorithm produces good approximate solutions in reasonable time. More precisely, given an oracle that computes vertex-
weighted Steiner tree approximations within a factor σ of optimal, for any ω > 0 Algorithm 1 computes a σ(1 + ω)-
approximate solution to min-max resource allocation problem using O ((log |V |)(n + |V |)(ω−2 + log log |V |)) calls to the 
oracle [67].

Once a solution to the min-max resource allocation has been found, we recover a solution to the original routing problem 
by formulating an integer linear program (IP), which may be solved via OMT(LRA).17 For each Steiner tree Si with non-
zero probability in the distribution returned from min-max resource allocation, define a binary variable as follows:

15 Available at http://cadlab .cs .ucla .edu /cpmo/.
16 The original BonnRoute algorithm uses min-max resource allocation with edges rather than vertices as resources.
17 The original BonnRoute algorithm uses randomized rounding to recover a routing solution from min-max resource allocation, but at current QA hard-

ware scales this is not necessary.

http://cadlab.cs.ucla.edu/cpmo/
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Algorithm 1 BonnRoute Resource Sharing Algorithm [66].
Require: Graph G , Steiner tree terminals {T1, . . . , Tn}, number of iterations t , weight penalty α > 1
Ensure: For each i, a probability distribution pi,Si over all Steiner trees Si for terminals Ti

function BonnRoute(G ,{T1, . . . , Tn})
for each v ∈ V (G) do

w v ← 1
for each Steiner tree Si for terminals Ti , i ∈ [n] do

zi,Si ← 0

for j from 1 to t do
for each i ∈ [n] do

Find a Steiner tree Si for terminals Ti with vertex-weights w v

zi,Si ← zi,Si + 1
w v ← w v ∗ α for all v ∈ Si

Return pi,Si ← zi,Si /t

xi,Si =
{

1, if Si is the selected Steiner tree for variable i;
0, otherwise.

Then minimize the number of qubits selected, subject to selecting one Steiner tree for each i and using each vertex at most 
once. That is,

min
∑

i

∑
Si

|Si |xi,Si

s.t.
∑

Si

xi,Si = 1 for all i

xi,Si + x j,S j ≤ 1 for all Si, S j s.t. Si ∩ S j �= ∅.

When applying routing to the Chimera graph, because of the symmetry within each unit tile, it is convenient to work 
with a reduced graph in which the horizontal qubits in each unit tile are identified as a single qubit, and similarly for the 
vertical qubits. As a result the scale of the routing problem is reduced by a factor of 4. This necessitates the use of vertex 
capacities within the routing algorithm (each reduced vertex has a capacity of 4), and variables are assigned to individual 
qubits within a tile during a secondary, detailed routing phase.

In the digital circuit literature, the placement and routing stages of embedding are typically performed separately. How-
ever, because of current limited number of qubits and the difficulty in allocating them to either placement or routing, a 
combined place-and-route algorithm can be more effective. This approach is discussed in detail in [45].

6. Related work

There have been several previous efforts to map specific small Boolean functions (usually in the guise of constraint 
satisfaction problems) to Ising models. Most of those mappings have been ad hoc, but some were more systematic (beyond 
[34] and [45] as previously discussed). Lucas [68] and Chancellor et al. [69] developed Ising models for several specific 
NP-hard problems, while Su et al. [46] and Pakin [70,71] decomposed Boolean functions into common primitives.

There have also been several attempts to map large Boolean functions or more generally large constrained Boolean 
optimization problems to D-Wave hardware. Most of these efforts (e.g. [72–80]) have used global embedding, in which an 
entire Ising model is minor-embedded heuristically [42] or a fixed embedding is used [40,41]. However Su et al. [46] used 
a general place-and-route approach, while Trummer et al. [81], Chancellor et al. [69], Zaribafiyan et al. [41], and Andriyash 
et al. [82] used a placement approach optimized for the specific constraints at hand.

The main new contributions of this paper to the mapping problem, beyond [34] and [45], are:

• a rigorous formalization of the mapping problem in terms of penalty functions and SMT/OMT formulations (§3, §4.1);
• improvements to the efficiency of SMT solutions using variable elimination and symmetries (§4.2, §4.3);
• using SMT/OMT(LRIA∪UF ) to combine variable placement and penalty function generation (§4.4);
• the use of AND-Inverter Graph preprocessing and standard cell mapping to decompose large Boolean functions (§5.2, 

§5.3).

Looking at SAT instances in particular, there have been at least two previous attempts at benchmarking D-Wave hardware 
performance: McGeoch et al. [83] and Santra et al. [84] looked at (weighted) Max2SAT problems, and Douglass et al. [85]
and Pudenz et al. [86] looked at SAT problems with the goal of sampling diverse solutions. Farhi et al. [87] and Hen and 
Young [88] studied the performance of quantum annealing on SAT problems more generally. The applicability of QAs for 
various SAT formulations has also been discussed in [89,90]. The distinguishing feature of the SAT problems considered in 
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this paper is the design of “small but hard” SAT problems, which accommodate the limited connectivity and size of current 
QA hardware while still challenging conventional SAT solvers.

7. Preliminary experimental evaluation

We have implemented and made publicly available prototype encoders built on top of the SMT/OMT tool OptiMathSAT

[33]. In particular each SATtoIsing-specific step outlined in Fig. 9 has been implemented as a Python library. For preprocess-
ing we rely on the ABC tool suite [91]. The same software is capable of performing technology mapping, though a Python 
version is available in the techmapping library.18 Finally the placeandroute library19 performs the combined placement 
and routing step. Regarding the off-line part of the process, the gatecollector library20 extracts the most common gates 
in a dataset of functions and generates a function library in the ABC-compatible genlib format. The pfencoding library21 is 
then used to call OptiMathSAT to encode them for later use. Currently the most expensive step in the on-the-fly process is 
the placement and routing step. In the current setup we use ≈20 minutes on a Intel i7-5600U CPU when we encode the 
problems used in the experimental evaluation. The software run-time is heavily tunable in order to trade off efficiency and 
effectiveness of the place-and-route process.

We offer preliminary empirical validation of the proposed methods for solving SAT via SATtoIsing encoding by evaluating 
the performance of D-Wave’s 2000Q system in solving certain hard SAT problems (§7.1); we perform a similar evaluation 
also on MaxSAT problems (§7.2), despite the limitations highlighted in §3.3.

This task is subject to some limitations. First, we require instances that can be entirely encoded in a quantum annealer of 
2000 qubits (although algorithms for solving much larger constraint satisfaction problems have been proposed; see [34,45]). 
Furthermore, SAT solvers are already quite effective on the average case, so we need concrete worst-case problems. Another 
important consideration in solving [Max]SAT instances is that the QA hardware cannot be made aware of the optimality 
of solution; for example, the algorithm cannot terminate when all clauses in a SAT problem are satisfied. In this way, QA 
hardware behaves more like an SLS solver than a CDCL-based one. To this extent, and in order to evaluate the significance 
of the testbed, we solved the same problems with the state-of-the-art UBCSAT SLS SAT solver using the best performing 
algorithm, namely SAPS [9]. UBCSAT was run on a computer using a 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

Remark 1. The results reported in this section are not intended as a performance comparison between D-Wave’s 2000Q 
system and UBCSAT, or any other classic computing tool. It is difficult to make a reasonable comparison for many reasons, 
including issues of specialized vs. off-the-shelf hardware, different timing mechanisms and timing granularities, and parallel 
processing. In particular, we do not include the cost of encoding in our D-Wave timings, and this time is often greater 
than that required to solve the encoded problem itself (though for some applications such as encoding a Boolean circuit, 
encoding may be treated as a one-time preprocessing cost). Instead, we aim to provide an empirical assessment of QA’s 
potential for [Max]SAT solving, based on currently available systems.

Reproducibility of results To make the results reproducible to those who have access to a D-Wave system, we have set a 
website where experimental data, problem files, translation files, demonstration code and supplementary material can be 
accessed.22 Notice that public access to a D-Wave 2000Q machine is possible through D-Wave’s Leap cloud service.23

7.1. SAT

Choosing the benchmark problems In order to provide a significant empirical evaluation, and due to the limitations in size 
and connectivity of current QA systems, we require SAT problems which have a low number of variables but are nevertheless 
hard for standard SAT solvers.

To this end we chose and modified the tool sgen [92], which has been used to generate the smallest unsolvable problems 
in recent SAT competitions. The problems share a structure that is suited for the problem embedding, as it contains multiple 
clones of slightly complex constraints, and even problems with few hundreds variables are considerably hard. The sgen

family of random generators received many improvements over the years, but the method to generate satisfiable instances 
has remained the same [93,94]. sgen works by setting cardinality constraints over different partitions of the variable set. 
The generator operates as follows:

1. The user decides the number of Boolean variables in the problem.
2. The tool partitions the variable set into sets of 5 elements.

18 Available at https://bitbucket .org /StefanoVt /tech _mapping.
19 Available at https://bitbucket .org /StefanoVt /placeandroute.
20 Available at https://bitbucket .org /StefanoVt /gatecollector.
21 Available at https://bitbucket .org /StefanoVt /pfencoding.
22 https://bitbucket .org /aqcsat /aqcsat.
23 https://cloud .dwavesys .com /leap/.

https://bitbucket.org/StefanoVt/tech_mapping
https://bitbucket.org/StefanoVt/placeandroute
https://bitbucket.org/StefanoVt/gatecollector
https://bitbucket.org/StefanoVt/pfencoding
https://bitbucket.org/aqcsat/aqcsat
https://cloud.dwavesys.com/leap/
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Fig. 11. Median times for the best-performing SLS algorithm on two different variants of the sgen problem on UBCSAT (SAPS). Timeout is marked with a 
gray line. The figure report times on a computer with a 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

Table 1
(a) Number of SATtoIsing problem instances (out of 100) solved by the QA hardware using 5 samples [resp. 10 and 20] 
and average fraction of samples from the QA hardware that are optimal solutions. Annealing was executed at a rate of 
10 μs per sample, for a total of 50 μs, [resp. 100 μs and 200 μs] of anneal time per instance respectively. Total time used 
by the D-Wave processor includes programming and readout; this amounts to about 150 μs per sample, plus a constant 
10 ms of overhead. (b) Run-times in ms for SAT instances solved by UBCSAT using SAPS, averaged over 100 instances of 
each problem size. Computations were performed using an 8-core Intel® Xeon® E5-2407 CPU, at 2.20 GHz.

D-Wave 2000Q

Problem size # solved
5 samples

# solved
10 samples

# solved
20 samples

% optimal
samples

32 vars 100 100 100 97.4
36 vars 100 100 100 96.4
40 vars 100 100 100 94.8
44 vars 100 100 100 93.8
48 vars 100 100 100 91.4
52 vars 100 100 100 93.4
56 vars 100 100 100 91.4
60 vars 100 100 100 88.2
64 vars 100 100 100 84.6
68 vars 100 100 100 84.4
72 vars 98 100 100 84.6
76 vars 99 99 100 86.6
80 vars 100 100 100 86.0

UBCSAT (SAPS)
Problem size Avg time (ms)
32 vars 0.1502
36 vars 0.2157
40 vars 0.3555
44 vars 0.5399
48 vars 0.8183
52 vars 1.1916
56 vars 1.4788
60 vars 2.2542
64 vars 3.1066
68 vars 4.8058
72 vars 6.2484
76 vars 8.2986
80 vars 12.4141

(a) (b)

3. For satisfiable problem instances, the desired solution contains exactly one true variable for each subset. For each subset 
we guarantee that at most one variable is true (10 2-CNF clauses).

4. The partition is shuffled. The tool ensures that each new subset contain exactly one true variable, and minimizes the 
similarity with the previous partition.

5. For each new subset we ensure that at least one variable is true (a single CNF clause).
6. The previous two steps are repeated one more time, further restricting the solution space.

In Fig. 11 (red plot) we can see how UBCSAT SAPS performs on these random sgen problems. Notice that with >

300 variables the solver reaches the timeout of 1000 s. In our experiments, we modify the tool by using exactly-2-in-4 
constraints on partitions with sets of size 4 with exactly two true variables per subset. This kind of constraint has a more 
efficient embedding and the modified problems are harder (see Fig. 11, blue plot, where UBCSAT reaches the timeout with 
> 270 variables).

Experiments and results To solve these SAT instances, we encode and embed them as in §4-§5 and then draw a fixed 
number of samples/instance (5, 10, 20) at an annealing rate of 10 μs per sample. Table 1(a) shows the results from the 
D-Wave 2000Q QA hardware.

The QA hardware solves almost all problems with 5 samples (i.e. within 50 μs of total anneal time), and all of them with 
20 samples (i.e. within 200 μs of total anneal time), and the rates of sampling optimal solutions remain relatively stable at 
this scale of problem.
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Table 2
(a) Number of MaxSATtoIsing problem instances (out of 100) solved by the QA hardware using 100 samples, and 
average fraction of samples from the QA hardware that are optimal solutions. Annealing was executed at a rate 
of 10 μs per sample, for a total of 1 ms of anneal time per instance. (b) Time in ms taken to find an optimal 
solution by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT instances of each problem size. 
Classical computations were performed on an Intel i7 2.90 GHz × 4 processor. The solvers gw2sat [95], rots [96], 
and novelty [97] are as implemented in UBCSAT [9]. All classical algorithms are performed with the optimal target 
weight specified; in the absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved % optimal
samples

32 vars 100 78.7
36 vars 100 69.0
40 vars 100 60.2
44 vars 100 49.9
48 vars 100 40.4
52 vars 100 35.2
56 vars 100 24.3
60 vars 100 22.3
64 vars 99 17.6
68 vars 99 13.0
72 vars 98 9.6
76 vars 94 6.6
80 vars 93 4.3

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.020 0.018 0.034 0.039
36 vars 0.025 0.022 0.043 0.060
40 vars 0.039 0.029 0.056 0.119
44 vars 0.049 0.043 0.070 0.187
48 vars 0.069 0.054 0.093 0.311
52 vars 0.122 0.075 0.115 0.687
56 vars 0.181 0.112 0.156 1.319
60 vars 0.261 0.130 0.167 1.884
64 vars 0.527 0.159 0.207 4.272
68 vars 0.652 0.210 0.270 8.739
72 vars 0.838 0.287 0.312 14.118
76 vars 1.223 0.382 0.396 18.916
80 vars 1.426 0.485 0.430 95.057

(a) (b)

In order to evaluate the significance of the testbed, we also report the results of solving the same problems with the
UBCSAT SLS SAT solver using SAPS [9]. Remark 1 applies here. Table 1(b) shows that the problems are nontrivial despite the 
small number of variables, and the run-times increase significantly with the size of the problem. (See also Fig. 11.)

7.2. Weighted MaxSAT solving and sampling

Choosing the benchmarks To demonstrate the performance of the QA hardware in this regime, we generated MaxSAT in-
stances that have many distinct optimal solutions. These problems were generated from the 2-in-4-SAT instances described 
above by removing a fraction of the constraints and then adding constraints on single variables with smaller weight. More 
precisely:

1. Beginning with the 2-in-4-SAT instances of the previous section, we remove one of the partitions of the variable set, 
and change one 2-in-4 constraint to 1-in-4. (This makes the SAT problem unsatisfiable: for an n variable problem, the 
first partition demands exactly n/2 true variables, while the second demands exactly n/2 − 1.)

2. We change the SAT problem into a weighted MaxSAT problem by assigning existing constraints a soft weight of 3 and 
randomly assigning each variable or its negation a soft constraint of weight 1.

3. We repeatedly generate MaxSAT instances of this form, until we find an instance in which the optimal solution has 
exactly one violated clause of weight 3 and at least n/3 violated clauses of weight 1, and at least 200 distinct optimal 
solutions exist.

As discussed in §3.3, determining an appropriate gap for chains in MaxSAT problems is more complicated than for SAT 
problems, and finding the smallest viable chain gap may be difficult analytically. However, a gap may be found experimen-
tally by sweeping over a range of values and choosing one that results in optimal performance. Chain gaps that are too small 
result in a large number of broken chains, while chain gaps that are too large result in gaps for problem constraints that 
are smaller than the noise levels of the hardware, yielding solutions that are far from optimal. For the MaxSAT experiments 
in this section, the chosen chain gap was always in the range gchain ∈ [2, 6] (relative to penalty functions P F (x, a|θ) with 
θi ∈ [−2, 2], θi j ∈ [−1, 1]).

Experiments and results Table 2 summarizes the performance of the D-Wave processor in generating a single optimal 
MaxSAT solution, as well as the run-times for various high-performing SLS MaxSAT solvers. The QA hardware solves al-
most all problems with 100 samples/instance (i.e. within 1 ms of anneal time). Remark 1 also applies here. One of the 
strengths of D-Wave’s processor is its ability to rapidly sample the near-optimal solutions: current systems typically anneal 
at a rate of 10 μs or 20 μs per sample and are designed to take thousands of samples during each programming cycle. As 
a result, the first practical benefits of QAs will likely come from applications which require many solutions rather than a 
single optimum.

To this extent, Table 3 considers generating distinct optimal solutions. For each solver and problem size, the table in-
dicates the number of distinct solutions found in 1 second, averaged across 100 problem instances of that size. For the 
smallest problems, 1 second is sufficient for all solvers to generate all solutions, while the diversity of solutions found varies 
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Table 3
Number of distinct optimal solutions found in 1 second by various MaxSAT solvers, averaged across 100 in-
stances of each problem size. (a) “Anneal only” accounts for only the 10 μs per sample anneal time used by 
the D-Wave processor. “wall-clock” accounts for all time used by the D-Wave processor, including program-
ming and readout. (b) Classical computations were performed as in Table 2(b).

D-Wave 2000Q
Size anneal only wall-clock
32 vars 448.5 443.9
36 vars 607.0 579.9
40 vars 1007.9 922.0
44 vars 1322.6 1066.6
48 vars 1555.4 1111.8
52 vars 3229.0 1512.5
56 vars 2418.9 1147.4
60 vars 4015.3 1359.3
64 vars 6692.6 1339.1
68 vars 6504.2 1097.1
72 vars 3707.6 731.7
76 vars 2490.3 474.2
80 vars 1439.4 332.7

MaxSAT solvers
Size g2wsat rots maxwalksat novelty
32 vars 448.5 448.5 448.5 448.5
36 vars 607.0 606.9 606.9 606.8
40 vars 1007.7 1006.3 1005.3 1005.0
44 vars 1313.8 1307.1 1311.7 1255.5
48 vars 1515.4 1510.7 1504.9 1320.5
52 vars 2707.5 2813.0 2854.6 1616.2
56 vars 2021.9 2106.2 2186.6 969.8
60 vars 2845.6 3061.7 3289.0 904.4
64 vars 3100.0 4171.0 4770.0 570.6
68 vars 2742.2 3823.3 4592.4 354.8
72 vars 1841.1 2400.2 2943.4 212.6
76 vars 1262.5 1716.0 2059.2 116.4
80 vars 772.2 1111.1 1363.9 66.7

(a) (b)

widely as problem size increases. Although the D-Wave processor returns a smaller fraction of optimal solutions for MaxSAT 
instances than for the SAT instances, it is still effective in enumerating distinct optimal solutions because its rapid sampling 
rate.

Alternative penalty functions Different penalty functions can result in different QA performance, even when those penalty 
functions have the same gap between ground and excited states. As an example of this, we describe another set of MaxSAT 
instances which result in better performance on the D-Wave 2000Q processor relative to classical solvers, even though the 
penalty functions they use are less theoretically justified.

We call these instances “unbiased” to distinguish them from the MaxSAT instances of the previous section. They are 
generated as follows. Beginning with the sgen 2-in-4-SAT instances, we first change one 2-in-4 constraint to 1-in-4, making 
the SAT problem unsatisfiable. We then remove 5 constraints from one partition of the variable set. This increases the total 
number of optimal solutions. Finally, we treat the resulting constraints as a MaxSAT problem in which each 1-in-4 or 2-in-4 
constraint has the same weight. Despite having many solutions, these problems become difficult for MaxSAT solvers with a 
relatively small number of variables.

When solving these instances, we represent each 2-in-4-MaxSAT constraint by the following penalty function: 
P F (x, a|θ) = 4 + x1x2 + x1x4 + x2x3 + x3x4 − x1a1 − x2a2 + x3a1 + x4a2. This model satisfies:

min
a

P F (x,a|θ) =

⎧⎪⎨
⎪⎩

0,
∑

i xi = 0;
2, |∑i xi| = 1;
8, |∑i xi| = 2.

Because the unsatisfiable states | ∑i xi | = 1 and | ∑i xi | = 2 have different minimal energy configurations, this is not an 
exact penalty function as required for MaxSAT as in (21). Nevertheless, this model performs well in practice, because for the 
unbiased MaxSAT instances only configurations with | ∑i xi | ≤ 1 are of interest.

Table 4 summarizes the performance of the D-Wave hardware and classical solvers in finding an optimal solution for 
the unbiased MaxSAT instances. It is instructive to compare these results to the “biased” MaxSAT instances in Table 2. 
The unbiased instances require more time for the best classical solvers to solve, yet result in better D-Wave hardware 
performance, despite the fact that the penalty function used is not exact.

8. Ongoing and future work

Future QA architectures will be larger and more connected, enabling more efficient encodings of larger and more difficult 
SAT problems. Faster and more scalable SMT-based encoding methods for small Boolean functions are currently an important 
direction of research. The ability to increase the number of ancillary variables can lead to larger gaps, which in turn can 
make quantum annealing more reliable. Among the encoding challenges presented in this paper, a few are of particular 
interest and relevance to SMT research:

• Variable placement. Methods for simultaneously placing variables and computing penalty functions are currently less 
scalable, and have been less studied, than those for fixed variable placements.

• Augmenting penalty functions. For large Boolean functions, generating penalty functions directly from SMT becomes dif-
ficult because the number of constraints grows much more quickly than the number of available parameters. Function 



JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.30 (1-34)

30 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Table 4
(a) Number of MaxSATtoIsing problem instances (out of 100) solved by the QA hardware using 100 samples, and 
average fraction of samples from the QA hardware that are optimal solutions, for the “unbiased” MaxSAT instances. 
Annealing was executed at a rate of 10 μs per sample, for a total of 1 ms of anneal time per instance. (b) Time 
in ms taken to find an optimal solution by various inexact weighted MaxSAT solvers, averaged over 100 MaxSAT 
instances of each problem size. Classical computations were performed on an Intel i7 2.90 GHz × 4 processor. 
gw2sat [95], rots [96], and novelty [97] are as implemented in UBCSAT [9]. All classical algorithms are performed 
with the optimal target weight specified; in the absence of a target weight they are much slower.

D-Wave 2000Q

Problem size # solved % optimal
samples

32 vars 100 97.5
36 vars 100 95.7
40 vars 100 92.9
44 vars 100 91.1
48 vars 100 88
52 vars 100 86.1
56 vars 100 83.5
60 vars 100 83.1
64 vars 100 80.8
68 vars 100 81
72 vars 100 79.5
76 vars 100 79
80 vars 100 75.1

MaxSAT solvers: avg time (ms)
Problem size g2wsat rots maxwalksat novelty
32 vars 0.018 0.013 0.025 0.012
36 vars 0.024 0.019 0.036 0.018
40 vars 0.037 0.030 0.052 0.024
44 vars 0.049 0.041 0.076 0.038
48 vars 0.070 0.064 0.115 0.056
52 vars 0.102 0.099 0.176 0.080
56 vars 0.153 0.161 0.262 0.117
60 vars 0.217 0.252 0.403 0.171
64 vars 0.303 0.383 0.598 0.241
68 vars 0.434 0.604 0.938 0.362
72 vars 0.620 0.964 1.448 0.551
76 vars 0.914 1.536 2.262 0.829
80 vars 1.364 2.567 3.618 1.312

(a) (b)

Fig. 12. “Pegasus”, the hardware graph of an experimental QA system under development at D-Wave (720-qubit version). Qubits have maximum degree 15
rather than 6, and qubits do not fall into well-defined unit tiles as in Chimera.
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decomposition and chains provide one way around this, but chains limit the resulting gaps. There may be other meth-
ods of recombining a decomposed function that are not so restrictive. Alternatively, it may be possible to augment 
an existing penalty function with additional qubits for the purposes of increasing its gap. SMT formulations of these 
problems have not yet been explored.

• Solving (15) directly. In the field of automated theorem proving and SMT, novel techniques for solving quantified SMT 
formulas are emerging. It is thus possible to investigate these techniques for solving directly the quantified formulas 
(15), avoiding thus the expensive Shannon expansion of (16)-(19).

• Better function decompositions. While Boolean function decomposition and minimization are mature classical subjects, 
those algorithms can probably be improved by taking into consideration the specifics of the embedding (placement and 
routing onto a QA hardware graph) that follow them.

• More connected topologies. Future QA hardware graphs will be larger, have higher per-qubit connectivity, and have less 
separation between clusters (tiles) of qubits. An example of a next-generation hardware graph under development at D-
Wave is shown in Fig. 12. While these changes will result in the ability to solve larger and more difficult Ising problems, 
they will also require new encoding strategies. In particular, new methods for problem decomposition, placing small 
Boolean functions, and penalty modeling that take advantage of additional connectivity will significantly improve the 
encoding process.

Furthermore, we believe the problems presented here are not only practical, but also complex enough to be used to chal-
lenge new SMT solvers. To encourage the use of these problems as SMT benchmarks, we have provided example.smt files 
on the website of supplementary material.24
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Appendix. Summary of notation

Table 5
Summary of main symbols used in this paper. (Symbols may occur with superscripts 
and subscripts.) Left: symbol syntax and range. Center: symbol meaning. Right: place 
where the symbol appeared first.

Symbol Meaning Appear

G
def= 〈V , E〉 HW Graph §1, (2)

{−1,1}, {⊥,�}, {false,true} Boolean values §1

z
def= {z1, ..., z|V |} ∈ {−1,1}|V | generic Boolean variables/qubits §1, (2)

H(z) Ising Hamiltonian §1, (2)
θi ∈ [−2,2] s.t. 1 ≤ i ≤ |V | bias of the i-th qubit §1, (2)
θi j ∈ [−1,1] s.t. 1 ≤ i < j ≤ |V | coupling of the (i, j)-th qubits §1, (2)

x
def= {x1, ..., xn} ∈ {−1,1}n input Boolean variables/qubits §2.2

y
def= {y1, ..., ym} ∈ {−1,1}m auxiliary Boolean variables §2.2, (4)

{¬,∧,∨,→,↔,⊕} Boolean connectives §2.2
F (x) Boolean Function/Formula §2.2
{〈Fk, ck〉}k , ck ∈Q+ Weighted MaxSAT problem §2.2

a
def= {a1, ...,ah} ∈ {−1,1}h ancillary Boolean variables/qubits §3

P F (x,a|θ), P F (x|θ) Penalty Function s.t. z
def= x ∪ a §3.1, (5)

θ0 ∈ (−∞,+∞) offset §3.1, (5)
gmin ∈ (0,+∞) gap §3.1, (6)
wk ∈ (0,+∞) weights §3.2, (8)

β(x) ∈ {−1,1}h binary witness variables §4.2
g(aVh

): {±1}|Vi | →R factor §4.2 (23)
f (aVh

,ah): {±1}|Vi |+1 →R factor §4.2 (23)
(continued on next page)

24 See Footnote 22.



JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.32 (1-34)

32 Z. Bian et al. / Information and Computation ••• (••••) ••••••
Table 5 (continued)

Symbol Meaning Appear

Fi bucket (set of factors) §4.2
Vi ancillary variables of Fi §4.2
mi(aVi

|x) ∈R message variable §4.2

v
def= (v1, ..., vn+h), v ∈ [1,n+h] vi : the vertex where zi is placed §4.3

b: [1,n+h] �−→ [−2,2] b(i): bias of the i-th qubit vertex §4.4
c: [1,n+h]2 �−→ [−1,1] c(i, j): coupling of the i, j-th edge §4.4
P F (x,a|θ0,b, c,v) Variable-placing Penalty Function §4.4

D
def= 〈V D , AD 〉 directed acyclic graph §5.2

M: V D → 2V D mapping of k-feasible cuts §5.3
χ(C) characteristic vector of C §5.4
Ti ⊆ V Steiner tree terminal §5.4
Ci , Si ⊆ V Steiner tree of Ti §5.4
xi,Si ∈ {0,1} selection variable for Si §5.4

References

[1] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26 (5) (1997) 
1484–1509, https://doi .org /10 .1137 /S0097539795293172.

[2] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of 
Computing, STOC ’96, ACM, New York, NY, USA, 1996, pp. 212–219.

[3] A. Finnila, M. Gomez, C. Sebenik, C. Stenson, J. Doll, Quantum annealing: a new method for minimizing multidimensional functions, Chem. Phys. Lett. 
219 (5) (1994) 343–348, https://doi .org /10 .1016 /0009 -2614(94 )00117 -0.

[4] T. Kadowaki, H. Nishimori, Quantum annealing in the transverse Ising model, Phys. Rev. E 58 (1998) 5355–5363, https://doi .org /10 .1103 /PhysRevE .58 .
5355.

[5] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, arXiv preprint, arXiv:quant -ph /0001106.
[6] P.I. Bunyk, E.M. Hoskinson, M.W. Johnson, E. Tolkacheva, F. Altomare, A.J. Berkley, R. Harris, J.P. Hilton, T. Lanting, A.J. Przybysz, J. Whittaker, Architectural 

considerations in the design of a superconducting quantum annealing processor, IEEE Trans. Appl. Supercond. 24 (4) (2014) 1–10, https://doi .org /10 .
1109 /TASC .2014 .2318294.

[7] B. Selman, H. Kautz, B. Cohen, Local search strategies for satisfiability testing, in: Cliques, Coloring, and Satisfiability, in: DIMACS, vol. 26, 1996, 
pp. 521–532.

[8] W.M. Spears, Simulated annealing for hard satisfiability problems, in: Cliques, Coloring, and Satisfiability, in: DIMACS, vol. 26, American Mathematical 
Society, 1996, pp. 533–558.

[9] D.A.D. Tompkins, H.H. Hoos, UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT, in: H. Hoos, D. 
Mitchell (Eds.), Revised Selected Papers from the Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), in: 
Lecture Notes in Computer Science, vol. 3542, Springer, Berlin, Heidelberg, 2005, pp. 306–320.

[10] V.S. Denchev, S. Boixo, S.V. Isakov, N. Ding, R. Babbush, V. Smelyanskiy, J. Martinis, H. Neven, What is the computational value of finite-range tunneling?, 
Phys. Rev. X 6 (2016) 031015, https://doi .org /10 .1103 /PhysRevX .6 .031015.

[11] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A.D. King, M.M. Nevisi, J.P. Hilton, C.C. McGeoch, Quantum annealing amid local ruggedness and global 
frustration, arXiv preprint, arXiv:1701.04579.

[12] A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.
[13] C.M. Li, F. Manyà, MaxSAT, hard and soft constraints, Ch. 19, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS 

Press, 2009, pp. 613–631.
[14] F. Massacci, L. Marraro, Logical cryptanalysis as a sat problem, J. Autom. Reason. 24 (1) (2000) 165–203, https://doi .org /10 .1023 /A :1006326723002.
[15] I. Mironov, L. Zhang, Applications of SAT solvers to cryptanalysis of hash functions, in: A. Biere, C.P. Gomes (Eds.), Theory and Applications of Satisfia-

bility Testing - SAT 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 102–115.
[16] F. Lafitte, J.N. Jr., D.V. Heule, Applications of SAT solvers in cryptanalysis: finding weak keys and preimages, J. Satisf. Boolean Model. Comput. - JSAT 

9 (1) (2013) 1–25, https://doi .org /10 .3233 /SAT190099.
[17] A. Fréchette, N. Newman, K. Leyton-Brown, Solving the station repacking problem, in: Proceedings of the Thirtieth AAAI Conference on Artificial 

Intelligence, AAAI’16, AAAI Press, 2016, pp. 702–709, http://dl .acm .org /citation .cfm ?id =3015812 .3015917.
[18] C.W. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli, Satisfiability modulo theories, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of 

Satisfiability, IOS Press, 2009, p. 980.
[19] R. Sebastiani, S. Tomasi, Optimization modulo theories with linear rational costs, ACM Trans. Comput. Log. 16 (2) (2015) 12:1–12:43, https://doi .org /

10 .1145 /2699915.
[20] R. Sebastiani, P. Trentin, OptiMathSAT: a tool for optimization modulo theories, J. Autom. Reason. 64 (2020) 423–460, https://doi .org /10 .1007 /s10817 -

018 -09508 -6.
[21] Z. Bian, F. Chudak, W. Macready, A. Roy, R. Sebastiani, S. Varotti, Solving SAT and MaxSAT with a quantum annealer: foundations and a preliminary 

report, in: C. Dixon, M. Finger (Eds.), Frontiers of Combining Systems, Springer International Publishing, Cham, 2017, pp. 153–171.
[22] R. Harris, J. Johansson, A.J. Berkley, M.W. Johnson, T. Lanting, S. Han, P. Bunyk, E. Ladizinsky, T. Oh, I. Perminov, et al., Experimental demonstration of a 

robust and scalable flux qubit, Phys. Rev. B 81 (13) (2010), https://doi .org /10 .1103 /physrevb .81.134510.
[23] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. 

Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. 
Rose, Quantum annealing with manufactured spins, Nature 473 (7346) (2011) 194–198, https://doi .org /10 .1038 /nature10012.

[24] T. Lanting, R. Harris, J. Johansson, M.H.S. Amin, A.J. Berkley, S. Gildert, M.W. Johnson, P. Bunyk, E. Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, I. 
Perminov, E.M. Chapple, C. Enderud, C. Rich, B. Wilson, M.C. Thom, S. Uchaikin, G. Rose, Cotunneling in pairs of coupled flux qubits, Phys. Rev. B 82 (6) 
(2010) 060512.

[25] M.H. Amin, Searching for quantum speedup in quasistatic quantum annealers, Phys. Rev. A 92 (5) (2015) 052323, https://doi .org /10 .1103 /PhysRevA.92 .
052323, arXiv:1503 .04216.

[26] M.H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, R. Melko, Quantum Boltzmann machine, Phys. Rev. X 8 (2018) 021050, https://doi .org /10 .1103 /
PhysRevX .8 .021050.

https://doi.org/10.1137/S0097539795293172
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2300970DFBE2D22F05B69D612577D357s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2300970DFBE2D22F05B69D612577D357s1
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib2FAB72366A59E5C0CEF2547D473C1EB8s1
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibCE305B172FCBC88B1D74E9E8C74E6650s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibCE305B172FCBC88B1D74E9E8C74E6650s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib210E86AAB70A3195AE82C55D82236957s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib210E86AAB70A3195AE82C55D82236957s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibBEF0D7ED6362A1CDD89EABB171EC779Cs1
https://doi.org/10.1103/PhysRevX.6.031015
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib7CA2C4F387A795CCF3B9C2086203AC33s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib7CA2C4F387A795CCF3B9C2086203AC33s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFEF3AF503969D29247B62F36720453C6s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFB49B858A737E219E9914B9F5C520D7Ds1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFB49B858A737E219E9914B9F5C520D7Ds1
https://doi.org/10.1023/A:1006326723002
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib28CCA7F92F26BF981F8E1C23CD8E0ECCs1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib28CCA7F92F26BF981F8E1C23CD8E0ECCs1
https://doi.org/10.3233/SAT190099
http://dl.acm.org/citation.cfm?id=3015812.3015917
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1CF18F37C8284E5084E6EE8876FB80A3s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib1CF18F37C8284E5084E6EE8876FB80A3s1
https://doi.org/10.1145/2699915
https://doi.org/10.1145/2699915
https://doi.org/10.1007/s10817-018-09508-6
https://doi.org/10.1007/s10817-018-09508-6
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib40E5A62E8B5B2746307669F3A72EB651s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bib40E5A62E8B5B2746307669F3A72EB651s1
https://doi.org/10.1103/physrevb.81.134510
https://doi.org/10.1038/nature10012
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
http://refhub.elsevier.com/S0890-5401(20)30097-3/bibFFA2FBDCFDE342D74D83AF982E35ED15s1
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevA.92.052323
https://doi.org/10.1103/PhysRevX.8.021050
https://doi.org/10.1103/PhysRevX.8.021050


JID:YINCO AID:104609 /FLA [m3G; v1.291; Prn:18/08/2020; 10:25] P.33 (1-34)

Z. Bian et al. / Information and Computation ••• (••••) •••••• 33
[27] J. Raymond, S. Yarkoni, E. Andriyash, Global warming: temperature estimation in annealers, Front. ICT 3 (2016) 23, https://doi .org /10 .3389 /fict .2016 .
00023.

[28] J.P. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, Ch. 4, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), 
Handbook of Satisfiability, IOS Press, 2009, pp. 131–153.

[29] G.S. Tseitin, On the Complexity of Derivation in Propositional Calculus, Springer Berlin Heidelberg, Berlin, Heidelberg, 1983, pp. 466–483.
[30] S.A. Cook, The complexity of theorem proving procedures, in: 3rd Annual ACM Symposium on the Theory of Computation, 1971, pp. 151–158.
[31] S.M. Majercik, Stochastic Boolean satisfiability, Ch. 27, in: A. Biere, M.J.H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 

2009, pp. 887–925.
[32] A. Cimatti, A. Griggio, B.J. Schaafsma, R. Sebastiani, The MathSAT 5 SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems, 

TACAS’13, in: LNCS, vol. 7795, Springer, 2013, pp. 95–109.
[33] R. Sebastiani, P. Trentin, Optimathsat: a tool for optimization modulo theories, in: D. Kroening, C.S. Păsăreanu (Eds.), Computer Aided Verification, 
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