
Optimization Modulo the Theory of Floating-Point
Numbers ∗

Patrick Trentin and Roberto Sebastiani

DISI, University of Trento, Italy

Abstract. Optimization Modulo Theories (OMT) is an important extension of
SMT which allows for finding models that optimize given objective functions,
typically consisting in linear-arithmetic or pseudo-Boolean terms. However, many
SMT and OMT applications, in particular from SW and HW verification, require
handling bit-precise representations of numbers, which in SMT are handled by
means of the theory of Bit-Vectors (BV) for the integers and that of Floating-
Point Numbers (FP) for the reals respectively. Whereas an approach for OMT
with (unsigned) BV has been proposed by Nadel & Ryvchin, unfortunately we
are not aware of any existing approach for OMT with FP .
In this paper we fill this gap. We present a novel OMT approach, based on the
novel concept of attractor and dynamic attractor, which extends the work of
Nadel & Ryvchin to signed BV and, most importantly, to FP . We have imple-
mented some OMT(BV) and OMT(FP) procedures on top of OPTIMATHSAT
and tested the latter ones on modified problems from the SMT-LIB repository.
The empirical results support the validity and feasibility of the novel approach.

1 Introduction

Optimization Modulo Theories (OMT) [23, 15, 20, 5, 19, 25, 26, 21, 27, 16] is an impor-
tant extension to Satisfiability Modulo Theories which allows for finding models that
optimize one or more objectives, which typically consist in some linear-arithmetic or
Pseudo-Boolean function application.

However, many SMT and OMT applications, in particular from SW and HW verifi-
cation, require handling bit-precise representations of numbers, which in SMT are han-
dled by means of the theory of Bit-Vectors (BV) for the integers and that of Floating-
Point Numbers (FP) for the reals respectively. (For instance, during the verification
process of a piece of software, one may look for the minimum/maximum value of some
int [resp. float] parameter causing an SMT(BV) [resp. SMT(FP)] call to return
SAT—which typically corresponds to the presence of some bug— so that to guarantee
a safe range for such parameter.)

OMT for the theory of (unsigned) bit-vectors (OMT(BV)) was proposed by Nadel
and Ryvchin [21], although a reduction to the problem to MaxSAT was already imple-
mented in the SMT/OMT solver Z3 [6]. The work in [21] was based on the observation
that OMT on unsigned BV can be seen as lexicographic optimization over the bits in

∗We would like to thank the anonymous reviewers for their insightful comments and sugges-
tions, and we thank Alberto Griggio for support with MATHSAT5 code.

the bitwise representation of the objective, ordered from the most-significant bit (MSB)
to the least-significant bit (LSB).

In this paper we address —for the first time to the best of our knowledge— OMT
for the theory of signed Bit-Vectors and, most importantly, for the theory of Floating-
Point Arithmetic (OMT(FP)), by exploiting some properties of the two’s complement
encoding for signed BV and of the IEEE 754-2008 encoding for FP respectively.

We start from introducing the notion of attractor, which represent (the bitwise en-
coding of) the target value for the objective which the optimization process aims at.
This allows us for easily leverage the procedure of [21] to work with both signed and
unsigned Bit-Vectors, by minimizing lexicographically the bitwise distance between
the objective and the attractor, that is, by minimizing lexicographically the bitwise-xor
between the objective and the attractor.

Unfortunately there is no such notion of (fixed) attractor for FP numbers, because
the target value moves as long as the bits of the objective are updated from the MSB to
the LSB, and the optimization process may have to change dynamically its aim, even at
the opposite direction. (For instance, as soon as the minimization process realizes there
is no solution with a negative value for the objective and thus sets its MSB to 0, the
target value is switched from −∞ to 0+, and the search switches direction, from the
maximization of the exponent and the significand to their minimization.)

To cope with this fact, we introduce the notions of dynamic attractor and attractor
trajectory, representing the dynamics of the moving target value, which are progres-
sively updated as soon as the bits of the objective are updated from the MSB to the
LSB. Based on these ideas, we present novel OMT(FP) procedures, which require at
most n+2, incremental calls to an SMT(FP) solver, n being the number of bits in the
representation of the objective. Notice that these procedures do not depend on the un-
derlying SMT(FP) procedure used, provided the latter allows for accessing and setting
the single bits of the objective.

We have implemented these OMT(BV) and OMT(FP) procedures on top of the
OPTIMATHSAT OMT solver [27]. We have run an experimental evaluation of the
OMT(FP) procedures on modified SMT(FP) problems from the SMT-LIB library.
The empirical results support the validity and feasibility of the novel approach.

The rest of the paper is organized as follows. In §2 we provide the necessary back-
ground on BV and FP theories and reasoning. In §3 we provide the novel theoretical
definitions and results. In §4 we describe our novel OMT(FP) procedures. In §5 we
present the empirical evaluation. In §6 we conclude, hinting some future directions. The
proofs of the theoretical results from §3 are in the extended version of this paper [?].

2 Background

We assume some basic knowledge on SAT and SMT and briefly introduce the reader to
the Bit-Vector and Floating-Point theories.

Bit-Vectors. A bit is a Boolean variable that can be interpreted as 0 or 1. A Bit-Vector
(BV) variable v[n] is a vector of n bits, where v[0] is the Most Significant Bit (MSB)

2

and v[n− 1] is the Least Significant Bit (LSB).1 A BV constant of width n is an inter-
preted vector of n values in {0, 1}. We overline a bit value or a BV value to denote its
complement (e.g., [11010010] is [00101101]). A BV variable/constant of width n can be
unsigned, in which case its domain is [0, 2n−1], or signed, which we assume to comply
with the Two’s complement representation, so that its domain is [−2(n−1), 2(n−1) − 1].
Therefore, the vector [11111111] can be interpreted either as the unsigned BV constant
255[8] or as the signed BV constant −1[8]. Following the SMT-LIBV2 standard [3],
we may also represent a BV constant in binary (e.g. 28[8] is written #b00011100) or in
hexadecimal (e.g. 28[8] is written #x1C) form. A BV term is built from BV constants,
variables and interpreted BV functions which represent standard RTL operators: word
concatenation (e.g. 3[8] ◦ x[8]), sub-word selection (e.g. (3[8][6 : 3])[4]), modulo-n sum
and multiplication (e.g. x[8]+8y

[8] and x[8] ·8y[8]), bit-wise operators (like, e.g., andn,
orn, xorn, nxorn, notn), left and right shift <<n, >>n. A BV atom can be built by
combining BV terms with interpreted predicates like ≥n, <n (e.g. 0[8] ≥8 x[8]) and
equality. We refer the reader to [3] for further details on the syntax and semantics of
Bit-Vector theory.

There are two main techniques for BV satisfiability, the “eager” and the “lazy”
approach, which are substantially complementary to one another [18]. In the eager ap-
proach, BV terms and constraints are encoded into SAT via bit-blasting [17, 13, 22]. In
the lazy approach, BV terms are not immediately expanded –so to avoid any scalability
issue– and the BV solver is comprised by a layered set of techniques, each of which
deals with a sub-portion of the BV theory [12, 7, 14].

Floating-Point. The theory of Floating-Point Numbers (FP), [3, 24, 10], is based on
the IEEE standard 754-2008 [4] for floating-point arithmetic, restricted to the binary
case. A FP sort is an indexed nullary sort identifier of the form (_ FP <ebits>
<sbits>) s.t. both ebits and sbits are positive integers greater than one, ebits de-
fines the number of bits in the exponent and sbits defines the number of bits in the
significand, including the hidden bit. A FP variable v[n] with sort (_ FP <ebits>

<sbits>) can be indifferently viewed as a vector of n def
= ebits+ sbits bits, where v[0]

is the Most Significant Bit (MSB) and v[n − 1] is the Least Significant Bit (LSB), or
as a triplet of Bit-Vectors 〈sign, exp, sig〉 s.t. sign is a BV of size 1, exp is a BV of
size ebits and sig is a BV of size sbits− 1. A FP constant is a triplet of BV constants.
Given a fixed floating-point sort, i.e. a pair 〈ebits, sbits〉, the following FP constants
are implicitly defined:

value Symbol BV Repr.
plus infinity (_ +oo <ebits> <sbits>) (fp #b0 #b1...1 #b0...0)
minus infinity (_ -oo <ebits> <sbits>) (fp #b1 #b1...1 #b0...0)
plus zero (_ +zero <ebits> <sbits>) (fp #b0 #b0...0 #b0...0)
minus zero (_ -zero <ebits> <sbits>) (fp #b1 #b0...0 #b0...0)
not-a-number (_ NaN <ebits> <sbits>) (fp t #b1...1 s)

1 Although most often in the literature the indexes i ∈ [0, ..., n − 1] use to grow from the
LSB to the MSB, in this paper we use the opposite notation because we always reason from the
MSB down to the LSB, so that to much simplify the explanation.

3

where t is either 0 or 1 and s is a BV which contains at least a 1.
Setting aside specialFP constants, the remainingFP values can be classified to be

either normal or subnormal (a.k.a. denormal) [4]. AFP number is said to be subnormal
when every bit in its exponent is equal to zero, and normal otherwise. The significand
of a normal FP number is always interpreted as if the leading binary digit is equal 1,
while for denormalized FP values the leading binary digit is always 0. This allows for
the representation of numbers that are closer to zero, although with reduced precision.

Example 1. Let x be the normalFP constant (_ FP #b0 #b1100 #b0101000),
and y be the subnormal FP constant (_ FP #b0 #b0000 #b0101000), so that
their corresponding sort is (_ FP <4> <8>). Then, according to the semantics de-
fined in the IEEE standard 754-2008 [4], the floating-point value of x and y in decimal
notation is given by:

x = (−1)0 · 2(12−7) ·
(
1 +

7∑
i=1

(
x[4 + i] · 2−i

))
= 1 · 25 ·

(
1 +

1

22
+

1

24

)
= 42

y = (−1)0 · 2(0−7+1) ·
(
0 +

7∑
i=1

(
y[4 + i] · 2−i

))
= 1 · 2−6 ·

(
1

22
+

1

24

)
=

5

210
.�

The theory of FP provides a variety of built-in floating-point operations as de-
fined in the IEEE standard 754-2008. This includes binary arithmetic operations (e.g.
+,−, ?,÷), basic unary operations (e.g. abs,−), binary comparison operations (e.g.
≤, <, 6=,=, >,≥), the remainder operation, the square root operation and more. Impor-
tantly, arithmetic operations are performed as if with infinite precision, but the result
is then rounded to the “nearest” representable FP number according to the specified
rounding mode. Five rounding modes are made available, as in [4].

The most common approach for FP-satisfiability is to encode FP expressions into
BV formulas based on the circuits used to implement floating-point operations, using
appropriate under- and over-approximation schemes –or a mixture of both– to improve
performance [11, 29, 28]. Then, the BV-Solver is used to deal with the FP formula,
using either the eager or the lazy BV approach. An alternative approach, based on ab-
stract interpretation, is presented in [8, 9]. With this technique, called Abstract CDCL
(ACDCL), the set of feasible solutions is over-approximated with floating-point inter-
vals, so that intervals-based conflict analysis is performed to decide FP-satisfiability.

3 Theoretical Framework

We present our generalization of [21] to the case of signed/unsigned Bit-Vector Opti-
mization, and then move on to deal with Floating-Point Optimization.

3.1 Bit-Vector Optimization

Without any loss of generality, we assume that every objective function f(...) is re-
placed by a variable obj of the same type by conjoining “obj = f(...)” to the input

4

formula. We use the symbol n to denote the bit-width of obj, and obj[i] to denote the
i-th bit of obj, where obj[0] and obj[n− 1] are the Most Significant Bit (MSB) and the
Least Significant Bit (LSB) of obj respectively.1

Definition 1. (OMT(BV)). Let ϕ be a SMT(BV) formula and obj be a –signed or
unsigned– BV variable occurring in ϕ. We call an Optimization Modulo BV prob-
lem, OMT(BV), the problem of finding a modelM for ϕ (if any) whose value of obj,
denoted with minobj(ϕ), is minimum wrt. the total order relation ≤n for signed BVs if
obj is signed, and the one for unsigned BVs otherwise. (The dual definition where we
look for the maximum follows straightforwardly)

Hereafter, we generalize the unsigned BV maximization procedures described in
[21] to the case of signed and unsigned BV optimization. To this extent, we introduce
the novel notion of BV attractor.

Definition 2. (Attractor, attractor equalities). When minimizing [resp. maximizing],
we call attractor for obj the smallest [resp. greatest] BV-value attr of the sort of obj.
We call vector of attractor equalities the vector A s.t. A[k] def

= (obj[k] = attr[k]),
k ∈ [0..n− 1].

Example 2. If obj[8] is an unsigned BV objective of width 8, then its corresponding
attractor attr is 0[8], i.e. [00000000], when obj[8] is minimized and it is 255[8], i.e.
[11111111], when obj[8] is maximized. When obj[8] is instead a signed BV objec-
tive, following the two’s complement encoding, the corresponding attr is −128[8],
i.e. [10000000], for minimization and 127[8], i.e. [01111111], for maximization. �

In essence, the attractor can be seen as the target value of the optimization search
and therefore it can be used to determine the desired improvement direction and to guide
the decisions taken by the optimization search. By construction, if a modelM satisfies
all equalities A[i], thenM(obj) = attr.

We use the symbol µk to denote a generic (possibly partial) assignment which as-
signs at least the k most-significant bits of obj. We use the symbol τk to denote an
assignment to all and only the k most-significant bits of obj. Given i < k, we denote
by µk[i] [resp. τk[i]] the value in {0, 1} assigned to obj[i] by µk [resp. τk]. Moreover,
we use the expression [[µk]]i where i ≤ k to denote the restriction of µk to all and only
the i most-significant bits of obj, obj[0], ..., obj[i − 1]. Given a model M of ϕ and a
variable v, we denote byM(v) the evaluation of v inM. With a little abuse of nota-
tion, and when this does not cause ambiguities, we sometimes use an attractor equality
A[i]

def
= (obj[i] = attr[i]) to denote the single-bit assignment obj[i] := attr[i] and its

negation ¬A[i] to denote the assignment to the complement value obj[i] := attr[i].

Definition 3. (lexicographic maximization) Consider an OMT instance 〈ϕ, obj〉 and
the vector of attractor equalities A. We say that an assignment τn to obj lexicographi-
cally maximizes A wrt. ϕ iff, for every k ∈ [0..n− 1],

– τn[k] = attr[k] if ϕ ∧ [[τn]]k ∧A[k] is unsatisfiable,
– τn[k] = attr[k] otherwise.

5

whereA[k] is the attractor equality (obj[k] = attr[k]). Given a modelM for ϕ, we say
thatM lexicographically maximizesA wrt. ϕ iff its restriction to obj lexicographically
maximizes A wrt. ϕ.

Starting from the MSB to the LSB, τn [resp. M] in Definition 3 assigns to each
obj[k] the value attr[k] unless it is inconsistent wrt. ϕ and the assignments to the previ-
ous obj[i]s, i ∈ [0..k−1]. Notice that this corresponds to minimize [resp. maximize] the
value

∑n−1
k=0 2

n−1−k·(obj[k]xor1attr[k]) [resp.
∑n−1
k=0 2

n−1−k·(obj[k] nxor1 attr[k])],
—where xorn is the bitwise-xor operator and nxorn is its complement— because
2n−1−i >

∑n−1
k=i+1 2

n−1−k.
The following fact derives from the above definitions and the properties of two’s

complement representation adopted by the SMT-LIBV2 standard for signed BV .

Theorem 1. An optimal solution of an OMT(BV) problem 〈ϕ, obj〉 is any modelM of
ϕ which lexicographically maximizes the vector of attractor equalities A.

Definitions 2 and 3 with Theorem 1 suggest thus a direct extension to the mini-
mization/maximization of signed BV of the algorithm for unsigned BV in [21]: apply
the unsigned-BV maximization [resp. minimization] algorithm of [21] to the objective
obj′

def
= (obj nxorn attr) [resp. obj′ def

= (obj xorn attr)] instead than simply to obj
[resp. obj].

Example 3. Let obj[3] be a signed BV goal of 3 bits to be minimized and attr def
= [100]

be its attractor, so that the corresponding vector of attractor equalities A is equal to
[obj[0] = 1, obj[1] = 0, obj[2] = 0].

An assignment τ3
def
= {A[0],¬A[1],¬A[2]} (for which obj[3] = −1[3]) is lexico-

graphically better than τ ′3
def
= {¬A[0], A[1], A[2]} (for which obj[3] = 0[3]), because

the former satisfies the attractor equality corresponding to the MSB while the latter
does not. Moreover, the assignment τ3 is lexicographically worse than the assignment
τ ′′3

def
= {A[0],¬A[1], A[2]} (for which obj[3] = −2[3]), because –all the rest being equal–

the latter assignment makes the attractor equality (obj[2] = 0) true. �

3.2 Floating-Point Optimization

We define the Floating-Point Optimization problem as follows.

Definition 4. (OMT(FP)). Let ϕ be a SMT(FP) formula and obj be a FP variable
occurring in ϕ. We call an Optimization Modulo FP problem, the problem of finding
a modelM for ϕ (if any) whose value of obj, denoted with minobj(ϕ), is either

– minimum wrt. the usual total order relation ≤ for FP numbers, if ϕ is satisfied by
at least one modelM′ s.t.M′(obj) is not NAN,

– some binary representation of NAN, otherwise.

(The dual definition where we look for the maximum follows straightforwardly.)

6

Definition 4 is made necessarily convoluted by the fact that obj can be NAN. In fact,
in the SMT-LIBV2 standard the comparisons {≤, <,≥, >} between NAN and any
other FP value are always evaluated false because NAN has multiple representations
at the binary level. Also, requiring the optimal solution to be always different from NAN
makes the resulting OMT(FP) problem 〈ϕ ∧ ¬IsNaN(obj), obj〉 unsatisfiable when ϕ
is satisfied only by modelsM s.t.M(obj) is NAN. For these reasons, we admit NAN
as the optimal solution value for obj if and only if ϕ is satisfied only by modelsM s.t.
M(obj) is NAN.

In the rest of this section we assume that we have already checked, in sequence, that

i) the input formula ϕ is satisfiable —by invoking an SMT(FP) solver on ϕ. If the
solver returns UNSAT, then there is no need to proceed;

ii) ϕ is satisfied by at least one modelM′ s.t.M′(obj) is not NAN —by invoking an
SMT(FP) solver on ϕ ∧ ¬IsNaN(obj) if the model M returned by the previous
SMT call is s.t. M(obj) is NAN. If the solver returns UNSAT, then we conclude
that the minimum is NAN.

After that, we can safely focus our investigation on the restricted OMT(FP) problem
〈ϕnoNaN, obj〉, where ϕnoNaN

def
= ϕ ∧ ¬IsNaN(obj), knowing it is satisfiable.

Definition 5. (Dynamic Attractor.) Let 〈ϕnoNaN, obj〉 be a restricted OMT(FP) prob-
lem, where ϕnoNaN

def
= ϕ ∧ ¬IsNaN(obj) is a satisfiable SMT(FP) formula and obj

is a FP objective to be minimized [resp. maximized]. Let k ∈ [0..n] and τk be an
assignment to the k most-significant bits of obj.

Then, we say that an FP-value attrτk for obj is a dynamic attractor for obj wrt.
τk iff it is the smallest [resp. largest] FP value different from NAN s.t. the k most-
significant bits of attrτk have the same value of the k most-significant bits of obj in τk.
We call vector of attractor equalities the vector Aτk s.t. Aτk [i]

def
= (obj[i] = attrτk [i]),

i ∈ [0..n− 1].

The following fact derives from the above definitions and the properties of IEEE
754-2008 standard representation adopted by SMT-LIBV2 standard for FP .

Lemma 1. Let 〈ϕnoNaN, obj〉 be a restricted minimization [resp. maximization] OMT(FP)
problem, let τk be an assignment to obj[0]...obj[k − 1] and attrτk be its corresponding
dynamic attractor, for some k ∈ [0..n − 1]. Let τk+1

def
= τk ∪ {obj[k] := attrτk [k]}

and τ ′k+1
def
= τk ∪ {obj[k] := attrτk [k]}, and letM,M′ two models for ϕnoNaN which

extend τk+1 and τ ′k+1 respectively.
ThenM(obj) ≤M′(obj) [resp.M(obj) ≥M′(obj)].

Lemma 1 states that, given the current assignment τk to the k most-significant-bits
of obj, obj[k] = attrτk [k] is always the best extension of τk to the next bit (when
consistent). A dynamic attractor attrτk can thus be used by the optimization search to
guide the assignment of the k + 1-th bit of obj towards the direction of maximum gain
which is allowed by τk, so that to obtain the “best” extension τk+1 of τk. Once the (new)
assignment τk+1 is found, the OMT solver can compute the dynamic attractor attrτk+1

for obj wrt. τk+1 and then use it to assign the k + 2-th bit of obj, and so on.

7

Let 〈ϕnoNaN, obj〉 be an OMT(FP) instance, s.t. obj is a FP variable of n bits,
and τ0 be an initially empty assignment. If at each step of the optimization search the
assignment of the k-th bit of obj is guided by the dynamic attractor for obj wrt. τk, then
the corresponding sequence of n dynamic attractors (of increasing order k) is unique
and depends exclusively on ϕnoNaN. Intuitively, this is the case because the (current)
dynamic attractor always points in the direction of maximum gain. We illustrate this in
the following example.

Example 4. Let 〈ϕnoNaN, obj〉 be an OMT(FP) problem where obj is a FP objective,
of sort (_ FP 3 5), to be minimized. At the beginning of the search, nothing is
known about the structure of the solution. Therefore, τ0 = ∅ and, since obj is being
minimized, the dynamic attractor for obj wrt. τ0 (i.e. attrτ0) is equal to (fp #b1
#b111 #b0000) (i.e. −∞), which gives a preference to any feasible value of obj in
the negative domain.

If at some point of the optimization search we discover that the domain of the ob-
jective function can only be positive, so that the first bit of obj is permanently set to 0
in τ1, then the new dynamic attractor for obj wrt. τ1 (i.e. attrτ1) is equal to (fp #b0
#b000 #b0000) (i.e. +0).

Furthermore, if later on we also find out that at least one bit in the exponent of obj
can be assigned to 0 in a feasible solution of the problem that extends τi, for some i,
then we can remove +∞ from the optimization search interval. �

Definition 6. (Attractor Trajectory Aϕ). Consider the restricted OMT(FP) problem
〈ϕnoNaN, obj〉 s.t. ϕnoNaN

def
= ϕ∧¬IsNaN(obj) as in Definition 5, a triplet of inductively-

defined sequences 〈{τ0, τ1, ..., τn}, {attrτ0 , attrτ1 ,, attrτn}, {Aτ0 , Aτ1 , ..., Aτn}〉—
where each τk is an assignment to the first k most-significant bits of obj s.t. τk ⊂ τk+1,
attrτk is its corresponding dynamic attractor and Aτk is its corresponding vector of
attractor equalities— so that, for every k ∈ [0..n− 1]:

(i) τk+1[k] = attrτk [k] if ϕnoNaN ∧ τk ∧Aτk [k] is unsatisfiable,
(ii) τk+1[k] = attrτk [k] otherwise.

Then we define the attractor trajectory Aϕ as the vector [Aτ0 [0], ..., Aτn−1
[n− 1]].

The attractor trajectory Aϕ contains those attractor equalities (obj[k] = attrτk [k])
which are of critical importance for the decisions taken by the optimization search.
Intuitively, this is the case because the value of the k-th bit of obj (i.e. obj[k]) is still
undecided in τk.

Example 5. Let 〈ϕnoNaN, obj〉 be a restricted OMT(FP) problem where obj is a FP
objective, of sort (_ FP 3 5), to be minimized. We consider the case in which the
input formula ϕnoNaN requires obj to be larger or equal 29/2 and it does not impose
any other constraint on the value of obj. Given the sequence of (partial) assignments
τ0, ..., τ8 in Figure 1, the corresponding list of dynamic attractors and the corresponding
vectors of attractor equalities, then the attractor trajectory Aϕ is equal to the vector
[obj[0] = 1, obj[1] = 0, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] =
0, obj[7] = 0]. �

8

τ0 = ∅ attrτ0 = (fp #b1 #b111 #b0000) = [1.111.1111] [i.e.−∞] ⇒ UNSAT

τ1 = τ0 ∪ {obj[0] = 0} attrτ1 = (fp #b0 #b000 #b0000) = [0.000.0000] [i.e. +0] ⇒ UNSAT

τ2 = τ1 ∪ {obj[1] = 1} attrτ2 = (fp #b0 #b100 #b0000) = [0.100.0000] [i.e. +2] ⇒ UNSAT

τ3 = τ2 ∪ {obj[2] = 1} attrτ3 = (fp #b0 #b110 #b0000) = [0.110.0000] [i.e. +8] ⇒ SAT

τ4 = τ3 ∪ {obj[3] = 0} attrτ4 = (fp #b0 #b110 #b0000) = [0.110.0000] [
′′ ′′

] ⇒ UNSAT

τ5 = τ4 ∪ {obj[4] = 1} attrτ5 = (fp #b0 #b110 #b1000) = [0.110.1000] [i.e. +12] ⇒ UNSAT

τ6 = τ5 ∪ {obj[5] = 1} attrτ6 = (fp #b0 #b110 #b1100) = [0.110.1100] [i.e. +14] ⇒ SAT

τ7 = τ6 ∪ {obj[6] = 0} attrτ7 = (fp #b0 #b110 #b1100) = [0.110.1100] [
′′ ′′

] ⇒ UNSAT

τ8 = τ7 ∪ {obj[7] = 1} attrτ8 = (fp #b0 #b110 #b1101) = [0.110.1101] [i.e. 29/2]

Aτ0 = [obj[0] = 1, obj[1] = 1, obj[2] = 1, obj[3] = 1, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ1 = [obj[0] = 0, obj[1] = 0, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ2 = [obj[0] = 0, obj[1] = 1, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ3 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ4 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ5 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 0, obj[6] = 0, obj[7] = 0]

Aτ6 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 0]

Aτ7 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 0]

Aτ8 = [obj[0] = 0, obj[1] = 1, obj[2] = 1, obj[3] = 0, obj[4] = 1, obj[5] = 1, obj[6] = 0, obj[7] = 1]

Fig. 1. An example of FP optimization using the dynamic attractor. (“⇒ SAT/UNSAT” denotes
the satisfiability of ϕnoNaN ∧ τk ∧ Aτk [k], the symbols “′′ ′′” stand for “the same as above”.
For ease of illustration, we have underlined the critical bit attrτk [k] in the attractors and each
attractor equality of the attractor trajectory Aϕ inside the vectors of attractor equalities.)

Lemma 2. Consider 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 ,, attrτn , Aτ0 , ..., Aτn , andAϕ
as in definition 6. Then τn lexicographically maximizes Aϕ wrt. ϕnoNaN.

Theorem 2. Let 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 ,, attrτn , Aτ0 , ..., Aτn , and Aϕ be
as in definition 6. Then, any modelM of ϕnoNaN which lexicographically maximizes the
attractor trajectoryAϕ is an optimal solution for the OMT(FP) problem 〈ϕnoNaN, obj〉.

4 OMT(FP) Procedures

In this paper, we consider two approaches for dealing with OMT(FP): a basic linear/bi-
nary search, based on the inline OMT schema for OMT(LRA ∪ T) presented in [25],
and Floating-Point Optimization with Binary Search (OFP-BS), a brand-new engine in-
spired by the OBV-BS algorithm for unsigned Bit-Vectors in [21] and by Theorem 2 and
relative definitions in §3.2.

4.1 OMT-based Approach

The OMT-based approach for OMT(FP) adapts the linear- and binary-search schemata
for OMT(LRA ∪ T) presented in [25] to deal with FP objectives.

In the basic linear-search schema, the optimization search is advanced by means
of a sequence of linear cuts, each of which forces the OMT solver to look for a new

9

model M′ which improves the value of obj wrt. the most recent model M. In the
binary-search schema, instead, the OMT solver learns an incremental sequence of cuts
which bisect the current domain of the objective function. In general, it is reasonable to
expect the binary-search schema to converge towards the optimal solution faster than
the linear-search schema, because the feasible domain of a FP goal can be comprised
by an exponentially large number of values (wrt. the bit-width of the cost function).

In either schema, whenever the optimization engine encounters for the first time a
solution s.t. obj = NAN, the OMT solver learns a unit-clause of the form¬(ISNAN(obj))
so as to look for an optimal solution different from NAN (if any).

When dealing with FP objectives, differently from the case of LRA in [25], it is
not necessary to implement a specialized optimization procedure within the FP-Solver
in order to guarantee the termination of the optimization search.

4.2 Floating-Point Optimization with Binary Search

The Floating-Point Optimization with Binary Search algorithm is a new engine for
OMT(FP) which is inspired by the OBV-BS algorithm for OMT(BV) [21] and is a
direct implementation of Definition 6 and Theorem 2.

The optimization search tries to lexicographically maximize an implicit attractor
trajectory vector Aϕ, which is incrementally derived from the current value of the dy-
namic attractor. The raw value of the dynamic attractor’s bits drive the optimization
search towards the direction of maximum gain at any given point in time, without dis-
rupting any decision that has been already made. The dynamic attractor is incrementally
updated along the search, based on the outcome of the previous rounds of the optimiza-
tion search. At each round, one bit of the objective function is assigned its final value.
The first round decides the sign, the next batch of rounds decides the exponent and the
remaining rounds decide the fine-grained details of the significand.

The pseudo-code of OFP-BS is shown in Figure 2. The arguments of the algorithm
are the input formula ϕ and theFP objective obj, where obj is aFP variable with ebits
bits in the exponent, sbits− 1 in the significand and n def

= ebits+ sbits bits overall.
The procedure starts by checking whether the input formula ϕ is satisfiable and

immediately terminates if that is not the case (lines 1-3). If obj = NAN in M then
the procedure checks whether there exists a modelM′ for ϕ ∧ ¬IsNaN(obj) (lines 4-
5). If this is not the case, the procedure terminates immediately and returns the pair
〈SAT,M〉 (line 7). Otherwise, the modelM is updated with the new modelM′, and ϕ
is permanently extended with the constraint ¬IsNaN(obj) (lines 9-10).

At this point, the procedure initializes the value of the dynamic attractor by invoking
an external function UPDATE_DYNAMIC_ATTRACTOR() with the empty assignment τ
as parameter, so that the returned value is equal to−∞when minimizing and +∞when
maximizing (lines 11-12). Then, the execution moves to the section of code implement-
ing the core part of the OFP-BS algorithm (lines 15-28), which consists of a loop over
the bits of obj, starting from the MSB obj[0] down to the LSB obj[n− 1].

Inside this loop, OFP-BS first checks whether the value of obj[i] inM matches the
i-th bit of the (current) dynamic attractor attrτ . If this is the case, then the i-th bit is
already set to its “best” value inM. Thus, the assignment τ is extended so as to per-
manently set obj[i] = attrτ [i] (line 16), and the optimization search moves to the next

10

function OFP-BS (ϕ, obj)
1: 〈res,M〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, ∅)
2: if (res == UNSAT) then
3: return 〈res, ∅〉 // ϕ is unsatisfiable
4: if (M(obj) == NAN) then
5: 〈res,M′〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ ∧ ¬IsNaN(obj), ∅)
6: if (res == UNSAT) then
7: return 〈SAT,M〉 // obj can only be NAN
8: else
9: M :=M′

10: ϕ := ϕ ∧ ¬IsNaN(obj)
11: τ := ∅ // from now on, obj cannot be equal NAN
12: attrτ := UPDATE_DYNAMIC_ATTRACTOR(τ)
13: SMT.SET_BRANCHING_PREFERENCE(obj)
14: SMT.UPDATE_BITS_POLARITY_TO(obj, attrτ)
15: for i := 0 up to n− 1 do
16: eq := (obj[i] = attrτ [i]) // attractor equality Aτ [i]
17: if (M |= eq) then
18: τ := τ ∪ {eq}
19: else
20: SMT.SET_BRANCHING_PREFERENCE(obj)
21: SMT.UPDATE_BITS_POLARITY_TO(obj, attrτ)
22: 〈res,M′〉 := SMT.CHECK_UNDER_ASSUMPTIONS(ϕ, τ ∪ {eq})
23: if (res == SAT) then
24: τ := τ ∪ {eq}
25: M :=M′
26: else
27: τ := τ ∪ {¬eq}
28: attrτ := UPDATE_DYNAMIC_ATTRACTOR(τ)
29: return 〈SAT,M〉

Fig. 2. OFP-BS Algorithm for Floating-Point optimization.

iteration of the loop. If instead obj[i] 6= attrτ [i] inM, we need to verify whether the
value of the objective function inM can be improved by forcing the i-th bit of obj equal
to the i-th bit of the dynamic attractor. To do so, we incrementally invoke the underly-
ing SMT solver, this time checking the satisfiability of ϕ under the list of assumptions
τ ∪ {obj[i] = attrτ [i]} (line 22). If the SMT solver returns SAT, then the value of
the objective function has been successfully improved. Hence, τ is extended with an
assignment setting obj[i] equal to attrτ [i], andM is replaced with the new modelM′
(lines 23-25). Otherwise, it is not possible to improve the objective function by toggling
the value of obj[i], and τ is extended so as to permanently set obj[i] 6= attrτ [i] (line
27). At this point, there is a mismatch between the value of the first i+ 1 bits of obj in
M, corresponding to the assignment τ , and those of the current dynamic attractor. This
mismatch is resolved by calling the function UPDATE_DYNAMIC_ATTRACTOR() with
the updated assignment τ as parameter (line 28). In either case, the execution moves to
the next iteration of loop.

11

After exactly n iterations of the loop, the optimization search terminates with the
pair 〈SAT,M〉, where M is the optimum model of the given OMT(FP ∪ T) in-
stance. The OFP-BS algorithm requires at most n+2 incremental calls to an underlying
SMT(FP) solver. The test in rows 17-18 allows for saving lots of such SMT calls when
the current model already assigns obj[i] to its corresponding value in the attractor.

The function UPDATE_DYNAMIC_ATTRACTOR() takes as input τ , a (partial) as-
signment over the k most-significant bits of obj and, when obj is minimized 2, and it
essentially works as follows. If τ = ∅, then nothing is known about the solution of the
problem, so −∞ is returned. Otherwise, the procedure must compute the smallest FP
value different from NAN (if any) which extends τ . Since τ 6= ∅ then we know that the
sign of the objective function has been permanently decided in τ . If obj[0] = 0 in τ , i.e.
obj must be positive, the procedure must return the smallest positiveFP value admitted
by τ . Hence, we extend τ with

⋃i=n−1
i=|τ | obj[i] = 0 and return the corresponding FP

value. If obj[0] = 1 in τ , i.e. obj can be negative values, the procedure must return the
largest negative FP value admitted by τ . We first check whether there exists a bit in
the exponent of obj which is assigned to 0 in τ . If that is the case, we extend τ with⋃i=n−1
i=|τ | obj[i] = 1 and return the corresponding FP value. Otherwise, the procedure

returns the value −∞, which is still a viable extension of τ .

4.3 Search Enhancements

Given a FP value attr and a FP goal obj, (a combination of) the following techniques
can be used to adjust the behavior of the optimization search, similarly what has been
proposed for the case of OMT(BV) by Nadel et al. in [21].

– branching preference: the bits of the FP objective obj are marked, inside the
OMT solver, as preferred variables for branching starting from the MSB down to
the LSB. This ensures that conflicts involving the value of the objective function
are handled as early as possible, possibly reducing the amount of work that needs
to be redone after each back-jump.

– polarity initialization: the phase-saving value of each obj[i] is initialized with the
value of attr[i]. This encourages the OMT solver to assign the bits of obj so as to
reassemble the bits of attr, thus possibly speeding-up the convergence towards the
optimal value.

In the case of the basic OMT schema described in Section §4.1, the effectiveness
of either technique depends on the initial choice for attr. In the lucky case, the value
of attr pulls the optimization search in the right direction and speeds up the search. In
the unlucky case, when attr pulls in the wrong direction, there is no visible effect or an
overall slow down. For instance, in the case of the linear-search optimization schema,
enabling both options with an unlucky choice of attr can cause the OMT solver to
start the search from the furthest possible point from the optional solution, and thus
enumerate an exponential number of intermediate solutions.

In the case of the OFP-BS algorithm described in Section §4.2, we use the latest
value of the dynamic attractor attrτ for both the branching preference (lines 11 and 18

2The implementation of UPDATE_DYNAMIC_ATTRACTOR() is dual when obj is maximized.

12

of Figure 2) and the polarity initialization (rows 12 and 19 of Figure 2) techniques. We
observe that the value of every bit in the dynamic attractor can change after the sign
of the objective function has been decided. Furthermore, the value of all the signifi-
cand’s bits in the dynamic attractor can also change during the process of determining
the optimal exponent value of the objective function. As a consequence, if the OMT
solver applies either enhancement before the correct improving direction is known,
this may cause the underlying OMT engine to advance the search starting from a sub-
optimal set of initial decisions. Enabling both enhancements at the same time could
make things even worse. In order to mitigate this issue, we have designed a variant of
our optimization-search approach which does not apply either enhancement on those
bits of the objective function for which the best improving direction is not yet known.
We have called this variant safe bits restriction.

5 Experimental Evaluation

We assess the performance of OPTIMATHSAT (v. 1.6.2) on a set of OMT(FP) formu-
las that have been automatically generated using the SMT(FP) benchmark-set of [3].
The formulas, the results and the scripts necessary to reproduce these results are made
publicly available and can be downloaded from [1].

Experiment Setup. This experiment has been performed on an i7-6500U 2.50GHz In-
tel Quad-Core machine with 16GB of ram and running Ubuntu Linux 17.10. For each
formula being tested we used a timeout of 600 seconds. The OMT(FP) instances used
in this experiment have been automatically generated starting from the satisfiable for-
mulas included in the SMT(FP) benchmark-set of [3]. We did not consider any of the
unsatisfiable instances that are present in the remote repository. Since the majority of
the original SMT(FP) formulas admits only one solution, in order to increase the sig-
nificance of the resulting OMT(FP) benchmark set, we relaxed or removed some of
the constraints in these formulas so as to broaden the set of feasible solutions.

We consider two OMT-based baseline configurations, OPTIMATHSAT(OMT+LIN)
and OPTIMATHSAT(OMT+BIN), that run the linear- and the binary-search respectively.
These configurations have been tested using both the eager and the lazyFP approaches.
The third baseline approach, named OPTIMATHSAT(EAGER+OBV-BS), is based on
a reduction of the OMT(FP) problem to OMT(BV) and it uses OPTIMATHSAT’s
implementation of the OBV-BS engine3 presented by Nadel et al. in [21]. For this test,
we have generated an OMT(BV) benchmark-set using a BV encoding that mimics the
essential aspects of the OFP-BS algorithm described Section §4.2.

We compared these baseline approaches with a configuration using the OFP-BS al-
gorithm and the eager FP approach, namely OPTIMATHSAT(EAGER+OFP-BS).

We have separately tested the effect of enabling the branching preference (BP), the
polarity initialization (PI) and the safe bits restriction (SO) enhancements described in
Section §3.2, whenever these options were supported by the given configuration.

We have not included other tools in our experiment because we are not aware of
any other OMT(FP) solver. For all problem instances, we verified the correctness of

3The binaries of the original OMT(BV) tools presented in [21] are not publicly available.

13

tool, configuration & encoding inst. term. t.o. u bt st time (s.)
OPTIMATHSAT(EAGER+OMT+LIN) 1120 1003 117 0 5 73 76375
OPTIMATHSAT(EAGER+OMT+LIN+PI) 1120 1003 117 0 5 71 76785
OPTIMATHSAT(EAGER+OMT+LIN+BP) 1120 956 164 0 6 105 77480
OPTIMATHSAT(EAGER+OMT+LIN+BP+PI) 1120 873 247 0 77 217 54859

OPTIMATHSAT(EAGER+OMT+BIN) 1120 1014 106 0 11 281 67834
OPTIMATHSAT(EAGER+OMT+BIN+PI) 1120 970 150 0 8 285 69765
OPTIMATHSAT(EAGER+OMT+BIN+BP) 1120 1016 104 0 14 205 68255
OPTIMATHSAT(EAGER+OMT+BIN+BP+PI) 1120 991 129 0 65 321 56941

OPTIMATHSAT(LAZY+OMT+LIN) 1120 868 252 0 93 203 29832

OPTIMATHSAT(LAZY+OMT+BIN) 1120 900 220 0 90 243 33260

OPTIMATHSAT(EAGER+OBVBS) [REDUCTION] 1120 1013 107 0 14 141 65954

OPTIMATHSAT(EAGER+OFPBS) 1120 1017 103 0 9 171 70732
OPTIMATHSAT(EAGER+OFPBS+PI) 1120 1019 101 0 34 280 64896
OPTIMATHSAT(EAGER+OFPBS+PI+SO) 1120 1018 102 0 7 179 71430
OPTIMATHSAT(EAGER+OFPBS+BP) 1120 975 145 0 2 145 65543
OPTIMATHSAT(EAGER+OFPBS+BP+SO) 1120 1000 120 0 3 124 68390
OPTIMATHSAT(EAGER+OFPBS+BP+PI) 1120 1001 119 0 77 273 60365
OPTIMATHSAT(EAGER+OFPBS+BP+PI+SO) 1120 1006 114 19 32 245 59463

VIRTUAL BEST 1120 1074 46 - 559 1074 27788
Table 1. Comparison among various OPTIMATHSAT configurations on the OMT(FP)
benchmark-set. The columns list the total number of instances (inst.), the number of instances
solved (term.), the number of timeouts (t.o.), the number of instances uniquely solved by the
given configuration (u), the number of instances solved faster than any other configuration (bt),
the total number of instances solved in the shortest amount of time (st) and the total solving time
for all solved instances (time).

the optimal solution found by each configuration with an SMT solver (MATHSAT5).
When terminating, all tools returned the same optimum value.

Experiment Results. The results of this experiment are listed in Table 1.
For what concerns OMT-based linear-search optimization, we observe that OPTI-

MATHSAT performs the best when no enhancement is enabled. In particular, the em-
pirical evidence suggests that enabling branching preference significantly increases the
number of timeouts, generally deteriorating the performance. Enabling only polarity
initialization does not result in an appreciable change on the running time of the solver.
In contrast, enabling both enhancements at the same time generally worsens the perfor-
mance and results in a drastic increase in the number of timeouts (Table 1). We justify
these results as follows. First, when only polarity initialization is used, the phase-saving
value that is being set by OPTIMATHSAT does not really matter because the optimiza-
tion search is dominated by the structure of the formula itself rather than by the bits
of the FP objective. Second, when polarity initialization is used on top of branching
preference, there is an even more drastic decrease in performance due to the fact that
the initial phase-saving value that is statically assigned by the OMT solver to the bits of
the FP objective cannot be expected to be “good enough” for any situation.

14

In the case of the OMT-based binary-search optimization approach, we observe that
it solves more formulas than linear-search and it generally appears to be faster. Over-
all, polarity initialization does not seem to be beneficial, whereas enabling branching
preference increases the number of formulas solved within the timeout. This behavior
is different from the linear-search approach, and we conjecture that it is due to the fact
that, with the OMT-based binary-search approach, branching over the bits of the objec-
tive function can reveal in advance any (partial) assignment to the bits of the objective
function that it is inconsistent wrt. the pivoting cuts learned by the optimization engine.

Using the lazy FP engine results in fewer formulas being solved, although a sig-
nificant number of these benchmarks is solved faster than with any other configuration.

The OPTIMATHSAT(EAGER+OBV-BS) configuration is able to solve 1013 formu-
las within the timeout, showing that OMT(FP) can be reduced to OMT(BV) effec-
tively, and that –on the given benchmark-set– the performance of this approach are
comparable with the best OMT(FP) configurations being tested.

Overall, the best performance is obtained by using the OFP-BS engine, with up
to 1019 benchmark-set instances being solved in correspondence to the OPTIMATH-
SAT(EAGER+OFP-BS+PI) configuration. Similarly to the case of OMT-based opti-
mization with linear-search, we observe that enabling branching preference generally
makes the performance worse. Instead, when polarity initialization is used we observe
a general performance improvement that does not only result in an increase in the num-
ber of formulas being solved within the timeout, but also a noticeable reduction of the
solving time as a whole. This is in contrast with the case of OMT-based optimization,
and it can be explained by the fact that OFP-BS uses an internal heuristic function to
dynamically determine and update the most appropriate phase-saving value for the bits
of the objective function. An equally important role is played by the safe bits restric-
tion, that limits the effects of branching preference and polarity initialization to only
certain bits of the dynamic attractor. This feature is particularly effective when used in
combination with branching preference.

6 Conclusions and Future Work

We have presented for the first time OMT procedures (for signed Bit-Vectors and)
Floating-Point numbers, based on the novel notions of attractor, dynamic attractor and
attractor trajectory, which we have implemented in OPTIMATHSAT and tested on mod-
ified problems from SMT-LIB.

Ongoing research involves implementing our OFP-BS procedure on top of the ACDCL
SMT(FP) procedure —which is not immediate to do efficiently because the latter ap-
proach does not allow directly accessing and setting the single bits of the objective
(since BV and FP are not signature-disjoint). Future research involves experimenting
the new OMT procedure directly on problems coming from bit-precise SW and HW
verification, produced, e.g., by the NuXmv model checker [2].

15

References

1. http://disi.unitn.it/trentin/resources/floatingpoint_test.
tar.gz.

2. NUXMV. https://nuxmv.fbk.eu.
3. SmtLibv2. www.smtlib.cs.uiowa.edu/.
4. IEEE standard 754, 2008. http://grouper.ieee.org/groups/754/.
5. N. Bjorner and A.-D. Phan. νZ - Maximal Satisfaction with Z3. In Proc International

Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December
2014. EasyChair Proceedings in Computing (EPiC).

6. N. Bjorner, A.-D. Phan, and L. Fleckenstein. νZ - An Optimizing SMT Solver. In Proc.
TACAS, volume 9035 of LNCS. Springer, 2015.

7. M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzèn, Z. Hanna, Z. Khasidashvili, A. Palti,
and R. Sebastiani. Encoding RTL Constructs for MathSAT: a Preliminary Report. In Proc.
3rd Workshop of Pragmatics on Decision Procedure in Automated Reasoning, PDPAR’05,
ENTCS. Elsevier, 2005.

8. M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening. Interpolation-Based Verifica-
tion of Floating-Point Programs with Abstract CDCL. In SAS, pages 412–432, 2013.

9. M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening. Deciding floating-point logic
with abstract conflict driven clause learning. Formal Methods in System Design, 45(2):213–
245, 2014.

10. M. Brain, C. Tinelli, P. Rümmer, and T. Wahl. An Automatable Formal Semantics for IEEE-
754 Floating-Point Arithmetic. In ARITH, pages 160–167. IEEE, 2015.

11. A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-point arithmetic. In
2009 Formal Methods in Computer-Aided Design, pages 69–76, Nov 2009.

12. R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear program-
ming. In Proc. ASP-DAC 2002, pages 741–746. IEEE, 2002.

13. R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, pages 174–177, Berlin, Heidelberg, 2009. Springer-Verlag.

14. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Se-
bastiani. A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification Problems.
In CAV, volume 4590 of LNCS, pages 547–560. Springer, 2007.

15. A. Cimatti, A. Franzén, A. Griggio, R. Sebastiani, and C. Stenico. Satisfiability modulo
the theory of costs: Foundations and applications. In TACAS, volume 6015 of LNCS, pages
99–113. Springer, 2010.

16. K. Fazekas, F. Bacchus, and A. Biere. Implicit Hitting Set Algorithms for Maximum Satis-
fiability Modulo Theories. In IJCAR, volume 10900 of Lecture Notes in Computer Science,
pages 134–151. Springer, 2018.

17. V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In CAV, 2007.
18. L. Hadarean, K. Bansal, D. Jovanovic, C. Barrett, and C. Tinelli. A Tale of Two Solvers: Ea-

ger and Lazy Approaches to Bit-Vectors. In CAV, volume 8559 of Lecture Notes in Computer
Science, pages 680–695. Springer, 2014.

19. D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Minimal-Model-Guided
Approaches to Solving Polynomial Constraints and Extensions. In SAT, 2014.

20. Y. Li, A. Albarghouthi, Z. Kincad, A. Gurfinkel, and M. Chechik. Symbolic Optimization
with SMT Solvers. In POPL, 2014.

21. A. Nadel and V. Ryvchin. Bit-Vector Optimization. In Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS 2016, volume 9636 of LNCS. Springer, 2016.

22. A. Niemetz, M. Preiner, A. Fröhlich, and A. Biere. Improving Local Search For Bit-Vector
Logics in SMT with Path Propagation. In Proc. 4th Intl. Work. on Design and Implementation
of Formal Tools and Systems (DIFTS’15), page 10 pages, 2015.

i

23. R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In
Proc. Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS.
Springer, 2006.

24. P. Ruemmer and T. Wahl. An SMT-LIB Theory of Binary Floating-Point Arithmetic. SMT
2010 Workshop, July 2010. Available at http://www.philipp.ruemmer.org/
publications/smt-fpa.pdf.

25. R. Sebastiani and S. Tomasi. Optimization Modulo Theories with Linear Rational Costs.
ACM Transactions on Computational Logics, 16(2), March 2015.

26. R. Sebastiani and P. Trentin. Pushing the Envelope of Optimization Modulo Theories with
Linear-Arithmetic Cost Functions. In Proc. Int. Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’15, volume 9035 of LNCS. Springer, 2015.

27. R. Sebastiani and P. Trentin. OptiMathSAT: A Tool for Optimization Modulo Theories.
Journal of Automated Reasoning, Dec 2018.

28. A. Zeljić, P. Backeman, C. M. Wintersteiger, and P. Rümmer. Exploring approximations for
floating-point arithmetic using uppsat. In D. Galmiche, S. Schulz, and R. Sebastiani, editors,
Automated Reasoning, pages 246–262, Cham, 2018. Springer International Publishing.

29. A. Zeljić, C. M. Wintersteiger, and P. Rümmer. Approximations for model construction.
In S. Demri, D. Kapur, and C. Weidenbach, editors, Automated Reasoning, pages 344–359,
Cham, 2014. Springer International Publishing.

ii

