
Ann Math Artif Intell
DOI 10.1007/s10472-009-9152-7

Delayed theory combination vs. Nelson-Oppen
for satisfiability modulo theories: a comparative analysis

Roberto Bruttomesso · Alessandro Cimatti ·
Anders Franzen · Alberto Griggio · Roberto Sebastiani

© Springer Science + Business Media B.V. 2009

Abstract Most state-of-the-art approaches for Satisfiability Modulo Theories
(SMT(T)) rely on the integration between a SAT solver and a decision procedure
for sets of literals in the background theory T (T -solver). Often T is the combination
T1 ∪ T2 of two (or more) simpler theories (SMT(T1 ∪ T2)), s.t. the specific Ti-solvers
must be combined. Up to a few years ago, the standard approach to SMT(T1 ∪ T2)

was to integrate the SAT solver with one combined T1 ∪ T2-solver, obtained from
two distinct Ti-solvers by means of evolutions of Nelson and Oppen’s (NO) combi-
nation procedure, in which the Ti-solvers deduce and exchange interface equalities.

This research was supported in part by the grant SFU/PRG 06-3. The second author is partly
supported by the European Commission under project FP7-2007-IST-1-217069 COCONUT.
The last author is partly supported by SRC under GRC Custom Research Project 2009-TJ-1880
WOLFLING, and by MIUR under PRIN project 20079E5KM8_002.

R. Bruttomesso (B)
Università della Svizzera Italiana, Lugano, Switzerland
e-mail: roberto.bruttomesso@unisi.ch

A. Cimatti · A. Franzen
FBK-Irst, Povo, Trento, Italy

A. Cimatti
e-mail: cimatti@fbk.eu

A. Franzen
e-mail: franzen@fbk.eu

A. Griggio · R. Sebastiani
DISI, University of Trento, Povo, Trento, Italy

A. Griggio
e-mail: griggio@disi.unitn.it

R. Sebastiani
e-mail: rseba@disi.unitn.it

R. Bruttomesso et al.

Nowadays many state-of-the-art SMT solvers use evolutions of a more recent
SMT(T1 ∪ T2) procedure called Delayed Theory Combination (DTC), in which each
Ti-solver interacts directly and only with the SAT solver, in such a way that part or all
of the (possibly very expensive) reasoning effort on interface equalities is delegated
to the SAT solver itself. In this paper we present a comparative analysis of DTC
vs. NO for SMT(T1 ∪ T2). On the one hand, we explain the advantages of DTC in
exploiting the power of modern SAT solvers to reduce the search. On the other
hand, we show that the extra amount of Boolean search required to the SAT solver
can be controlled. In fact, we prove two novel theoretical results, for both convex and
non-convex theories and for different deduction capabilities of the Ti-solvers, which
relate the amount of extra Boolean search required to the SAT solver by DTC with
the number of deductions and case-splits required to the Ti-solvers by NO in order
to perform the same tasks: (i) under the same hypotheses of deduction capabilities
of the Ti-solvers required by NO, DTC causes no extra Boolean search; (ii) using
Ti-solvers with limited or no deduction capabilities, the extra Boolean search re-
quired can be reduced down to a negligible amount by controlling the quality of
the T -conflict sets returned by the T -solvers.

Keywords Delayed theory combination · Nelson-Oppen ·
Satisfiability modulo theories

Mathematics Subject Classification (2000) 94-02

1 Introduction

Satisfiability Modulo a Theory T (SMT(T)) is the problem of checking the satis-
fiability of a quantifier-free (or ground) first-order formula with respect to a given
first-order theory T . (Actually, some SMT solvers can also handle quantifiers to
some extent.) Theories of interest for many applications are, e.g., the theory EUF of
equality and uninterpreted functions, the theory of difference constraints DL (over
the rationals DL(Q) or over the integers DL(Z)), the quantifier-free fragment of
Linear Arithmetic over the rationals LA(Q) and that over the integers LA(Z), the
theory of arrays AR and the theory of bit-vectors BV .

The prominent “lazy” approach to SMT(T) which underlies most state-of-the-art
systems (e.g., BarceLogic [32], CVC3 [4], DPT [27], MathSAT [10], Yices [19], Z3
[15]) is based on extensions of SAT technology: a SAT engine, typically based on
modern implementations of the DPLL algorithm [45, 46], is modified to enumerate
Boolean assignments, and integrated with a decision procedure for sets of literals in
the theory T (T -solver).

In many practical applications of SMT, the theory T is a combination of two (or
more) theories T1 and T2, SMT(T1 ∪ T2). For better readability, in this paper we
always deal with only two theories T1 and T2; the discourse generalizes to more
than two theories. For instance, an atom of the form f (x + 4y) = g(2x − y), that
combines uninterpreted function symbols (from EUF) with arithmetic functions
(from LA(Z)), could be used to naturally model in a uniform setting the abstraction
of some functional blocks in an arithmetic circuit (see e.g. [7, 11]).

Delayed theory combination vs. Nelson-Oppen

The work on combining decision procedures (i.e., T -solvers in our terminology)
for distinct theories was pioneered by Nelson and Oppen [30, 33] and Shostak [39].1

In particular, Nelson and Oppen established the theoretical foundations onto which
most current combined procedures are still based on (hereafter Nelson-Oppen (NO)
logical framework). They also proposed a general-purpose procedure for integrating
Ti-solvers into one combined T -solver (hereafter Nelson-Oppen (NO) procedure),
based on the deduction and exchange of (disjunctions of) equalities between shared
variables (interface equalities).

Up to a few years ago, the standard approach to SMT(T1 ∪ T2) was thus to inte-
grate the SAT solver with one combined T1 ∪ T2-solver, obtained from two distinct
Ti-solvers by means of the NO combination procedure. Variants and improvements
of the NO procedure were implemented in the CVC/CVCLite [2], ICS [16], Simplify
[17], Verifun [22], Zapato [1] lazy SMT tools. In particular, [5] introduced two im-
portant improvements of N.O procedure: they show that purificaton is not necessary,
because it is possible to use equalities between shared terms as interface equalities,
and they show how to use Shostak’s canonizers [39] to achieve eij-deduction.

More recently Bozzano et al. [9, 10] proposed Delayed Theory Combination,
DTC, a novel combination procedure in which each Ti-solver interacts directly and
only with the SAT solver, in such a way that part or all of the (possibly very
expensive) reasoning effort on interface equalities is delegated to the SAT solver
itself. Variants and improvements of the DTC procedure are currently implemented
in the CVC3 [3, 4], DPT [27],2 MathSAT [10], Yices [19], and Z3 [15] lazy SMT
tools; in particular, Yices [19], and Z3 [15] introduced many important improvements
on the DTC schema (e.g., that of generating interface equalities on-demand, and
important “model-based” heuristic to drive the Boolean search on the interface
equalities); CVC3 [4] combines the main ideas from DTC with that of splitting-on-
demand [3], which pushes even further the idea of delegating to the DPLL engine
part of the reasoning effort previously due to the Ti-solvers.

In this paper we present a detailed comparative analysis of DTC wrt. NO
procedure for SMT(T1 ∪ T2).

On the one hand, we analyze, compare and discuss the behavior of the NO and the
DTC procedures for SMT(T1 ∪ T2), both with convex and with non-convex theories,
and we highlight some important advantages of DTC in exploiting the power of
modern lazy DPLL-based SAT solvers: first, it allows for learning in form of clauses
the results of reasoning on interface equalities, so that to reuse them in future
branches; second, it does not require exhaustive deduction capabilities to the Ti-
solvers, although it can fully exploit them; third, it nicely encompasses the case of
non-convex theories.

On the other hand, we prove and discuss two novel results, for both convex and
non-convex theories and for different deduction capabilities of the Ti-solvers, which

1Nowadays there seems to be a general consensus on the fact that Shostak’s procedure should not
be considered as an independent combination method, rather as a collection of ideas on how to
implement Nelson-Oppen’s combination method efficiently [5, 17, 35].
2Notice that, although [27] speak of “Nelson-Oppen with DPLL”, their formalism implements and
further improves the key ideas of DTC: Boolean Reasoning also on interface equalities, conflict
clauses involving interface equalities, deduction of interface equalities exploited as T -propagation.
(See Section 5)

R. Bruttomesso et al.

relate the amount of extra Boolean search required to the SAT solver by DTC with
the number of deductions and case-splits required to the Ti-solvers by NO in order
to perform the same tasks. We show that, by exploiting the full power of advanced
SMT techniques like Early Pruning, T -propagation, T -backjumping and T -learning,
DTC can be implemented in such a way as to mimic the behavior of NO, so that:

(i) under the same hypotheses of eij-deduction capabilities of the Ti-solvers re-
quired by NO, DTC requires no extra Boolean search;

(ii) using Ti-solvers with limited or no eij-deduction capabilities, the extra Boolean
search required can be reduced down to a negligible amount by controlling the
quality of the T -conflict sets returned by the T -solvers.

Content of the paper The paper is structured as follows. In Section 2 we provide
the main logical background necessary for the comprehension of the paper, plus we
recall the Nelson-Oppen logical framework. In Section 3 we describe and discuss
the schema and the main features of a modern lazy SMT solver. In Section 4 we
describe the NO procedure and discuss issues related to its integration within the lazy
SMT schema. In Section 5 we describe the DTC procedure and discuss its advantages
wrt. the NO procedure. In Section 6 we prove and discuss the two theoretical results
mentioned above. Finally, in Section 7 we draw some conclusions.

A shorter version of this paper has been presented at LPAR’06 conference [12].

2 Logical background

In this section we recall the main logical background necessary for the compre-
hension of the paper, plus we introduce the notation, conventions and terminology
adopted. In particular, we recall the Nelson-Oppen logical framework, which pro-
vides the logical foundations for both the Nelson-Oppen and the Delayed Theory
Combination procedures.

2.1 Basic definitions and notation

We assume the usual syntax and semantics of first-order logic, and the usual first-
order notions of interpretation, satisfiability, validity, logical consequence, and the-
ory, as given, e.g., in [20]. In this paper we restrict our attention to quantifier-free
formulae on some theory T .3 All the theories T we consider are first-order theories
with equality, which means that the equality symbol = is a predefined predicate and
it is always interpreted as the identity on the underlying domain. Consequently, =
is interpreted as a relation which is reflexive, symmetric, transitive, and it is also a
congruence.

Notationally, we will often use the prefix “T -” to denote “in the theory T ”: e.g., we
call a “T -formula” a formula in (the signature of) T , “T -model” a model in T , and
so on. We call a theory solver for T (T -solver) a procedure establishing whether any

3Notice that in SMT the variables are implicitly existentially quantified, and hence equivalent to
Skolem constants. To this extent, as it is common practice in the SMT community, we often call
“variables” uninterpreted constants and “Boolean variables” 0-ary uninterpreted predicates.

Delayed theory combination vs. Nelson-Oppen

given finite conjunction of quantifier-free T -literals (or equivalently, any given finite
set of T -literals) is T -satisfiable or not. Given a T -inconsistent set of T -literals μ =
{l1, . . . , ln}, a T -conflict set η is a T -inconsistent subset of μ. A literal l is redundant
in T -conflict set η iff it plays no role in the T -unsatisfiability of η, i.e., η \ {l} |=T ⊥;
η is a minimal if it contains no redundant literals.

We use the Greek letters ϕ, ψ to represent T -formulas, the capital letters Ai’s
and Bi’s to represent Boolean atoms, and the Greek letters α, β, γ to represent T -
atoms in general, the letters li’s to represent T -literals, the letters μ, η to represent
sets of T -literals. If l is a negative T -literal ¬β, then by “¬l” we conventionally mean
β rather than ¬¬β. We sometimes represent a set of literals as the conjunction of
its components (e.g., by ¬μ me mean ¬(

∧
li∈μ li) or even the clause

∨
li∈μ ¬li). We

sometimes write a clause in the form of an implication:
∧

i li → ∨
j l j for

∨
i ¬li ∨ ∨

j l j

and
∧

i li → ⊥ for
∨

i ¬li.
We define the following functions. The function Atoms(ϕ) takes a T -formula ϕ

and returns the set of distinct atomic formulas (atoms) occurring in the T -formula
ϕ. The bijective function T 2B (“Theory-to-Boolean”) and its inverse B2T def= T 2B−1

(“Boolean-to-Theory”) are s.t. T 2B maps Boolean atoms into themselves and non-
Boolean T -atoms into fresh Boolean atoms—so that two atom instances in ϕ

are mapped into the same Boolean atom iff they are syntactically identical—and
extend to T -formulas and sets of T -formulas in the obvious way—i.e., B2T (¬ϕ1)

def=
¬B2T (ϕ1), B2T (ϕ1 �� ϕ2)

def= B2T (ϕ1) �� B2T (ϕ2) for each Boolean connective ��,
B2T ({ϕi}i)

def= {B2T (ϕi)}i. T 2B and B2T are also called Boolean abstraction and
Boolean refinement respectively. To this extent, we frequently use the superscript p to
denote Boolean abstractions: given a T -expression e, we write ep to denote T 2B(e),
and vice versa. If T 2B(μ) |= T 2B(ϕ), then we say that μ propositionally satisfies ϕ,
written μ |=p ϕ.

2.2 The Nelson-Oppen logical framework

A theory T is stably-infinite iff every quantifier-free T -satisfiable formula is satisfi-
able in an infinite model of T . Notice that EUF , DL(Q), DL(Z), LA(Q), LA(Z) are
stably-infinite, whereas e.g. theories of fixed-width bit-vectors BV are not. (E.g., the
theory of bit-vectors of width n admits only models of cardinality up to 2n and thus it
is not stably-infinite.)

A theory T is convex iff, for every collection l1, ..., lk, e, e′ of literals in T s.t. e, e′
are in the form (x = y), x, y being variables, we have that

{l1, ..., lk} |=T (e ∨ e′) ⇐⇒ {l1, ..., lk} |=T e or {l1, ..., lk} |=T e′.

Notice that EUF , DL(Q), LA(Q) are convex, whereas DL(Z) and LA(Z) are not.
In fact, e.g.:

{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} |=LA(Z) ((v = v0) ∨ (v = v1)),

{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} �|=LA(Z) (v = v0),

{(v0 = 0), (v1 = 1), (v ≥ v0), (v ≤ v1)} �|=LA(Z) (v = v1).

Notice also that every convex theory whose models are non-trivial (i.e., s.t. the
domains of the models have all cardinality strictly greater than one) is stably-
infinite [5].

R. Bruttomesso et al.

Consider two theories T1, T2 with equality and disjoint signatures �1, �2. A �1 ∪
�2-term t is an i-term iff either it is a variable or it has the form f (t1, ..., tn), where f
is in �i. Notice that a variable is both a 1-term and a 2-term. A non-variable subterm
s of an i-term t is alien if s is a j-term, and all superterms of s in t are i-terms, where
i, j ∈ {1, 2} and i �= j. An i-term is i-pure if it does not contain alien subterms. An
atom (or a literal) is i-pure if it contains only i-pure terms and its predicate symbol is
either equality or in �i. A T1 ∪ T2-formula ϕ is said to be pure if every atom occurring
in the formula is i-pure for some i ∈ {1, 2}. (Intuitively, ϕ is pure if each atom can can
be seen as belonging to one theory Ti only.) Every non-pure T1 ∪ T2 formula ϕ can be
converted into an equi-satisfiable pure formula ϕ′ by recursively labeling each alien
subterm t with a fresh variable vt, and by adding the atom (vt = t). E.g.:

(f (x + 3y) = g(2x − y))

=⇒ (f (vx+3y) = g(v2x−y)) ∧ (vx+3y = x + 3y) ∧ (v2x−y = 2x − y).

This process is called purification, and is linear in the size of the input formula. Thus,
henceforth we assume w.l.o.g. that all input formulas ϕ ∈ T1 ∪ T2 are pure.4

If ϕ is a pure T1 ∪ T2 formula, then v is an interface variable for ϕ iff it occurs in
both 1-pure and 2-pure atoms of ϕ. An equality (vi = v j) is an interface equality for ϕ

iff vi, v j are interface variables for ϕ. We assume a unique representation for (vi = v j)

and (v j = vi). Henceforth we denote the interface equality (vi = v j) by “eij”; to this
extent, we also say that a T -conflict set η is ¬eij-minimal if it contains no redundant
negated interface equality ¬eij; a T -solver is called ¬eij-minimal if it always returns
eij-minimal conflict sets.

Consider two decidable stably-infinite theories with equality T1 and T2 and disjoint
signatures �1 and �2 (often called Nelson-Oppen theories) and consider a pure
conjunction of T1 ∪ T2-literals μ

def= μT1 ∧ μT2 s.t. μT1 is i-pure for each i. Nelson
and Oppen’s key observation is that μ is T1 ∪ T2-satisfiable if and only if it is
possible to find two satisfying interpretations I1 and I2 s.t. I1 |=T1 μT1 and I2 |=T2 μT2

which agree on all equalities on the shared variables. This is stated in the following
theorem.5

Theorem 1 [40] Let T1 and T2 be two stably-infinite theories with equality and disjoint
signatures; let μ

def= μT1 ∧ μT2 be a conjunction of T1 ∪ T2-literals s.t. μTi is i-pure for
each i. Then μT1 ∧ μT2 is T1 ∪ T2-satisfiable if and only if there exists some equivalence
relation e(., .) over Vars(μT1) ∩ Vars(μT2) s.t. μTi ∧ μe is Ti-satisfiable for every i,
where:

μe
def=

∧

(vi,v j) ∈ e(.,.)

(vi = v j) ∧
∧

(vi,v j) �∈ e(.,.)

¬(vi = v j). (1)

μe is called the arrangement of e(., .).

4Notice that this assumption is made only for the sake of better comprehension of the paper, because
both NO procedure and the DTC procedure can work also with non-pure formulas, thanks to some
techniques described in [5].
5Since [30] many different formulations of NO correctness and completeness results have been
presented (e.g. [30, 33, 40, 41]). Here we adopt a notational variant of that in [40].

Delayed theory combination vs. Nelson-Oppen

Example 1 Consider the following pure conjunction of EUF ∪ LA(Z)-literals μ
def=

μEUF ∧ μLA(Z) s.t.

μEUF : ¬(f (v1) = f (v2)) ∧ ¬(f (v2) = f (v4)) ∧ (f (v3) = v5) ∧ (f (v1) = v6)

μLA(Z) : (v1 ≥ 0) ∧ (v1 ≤ 1) ∧ (v5 = v4 − 1) ∧ (v3 = 0) ∧ (v4 = 1)

∧(v2 ≥ v6) ∧ (v2 ≤ v6 + 1).

(2)

Here v1, . . . , v6 are interface variables, because they occur in both EUF and LA(Q)-
pure terms. We consider the arrangement

μe
def= (v1 = v4) ∧ (v3 = v5) ∧

∧

(vi=v j) �∈{(v1=v4),(v3=v5)}
¬(vi = v j).

It is easy to see that μEUF ∧ μe is EUF -consistent (because no equality or con-
gruence constraint is violated) and that μLA(Z) ∧ μe is LA(Z)-consistent (e.g., v3 =
v5 = 0, v1 = v4 = 1, v2 = 4, v6 = 3 is a LA(Z)-model). Thus, by Theorem 1, μ is
EUF ∪ LA(Z)-consistent.

Overall, Nelson-Oppen results reduce the T1 ∪ T2-satisfiability problem of a set
of pure literals μ to that of finding (the arrangement of) an equivalence relation on
the shared variables which is consistent with both pure parts of μ. The condition
of having only pure conjunctions as input allows to partition the problem into two
independent Ti-satisfiability problems μTi ∧ μe, whose Ti-satisfiability can be checked
separately. The condition of having stably-infinite theories is sufficient to guarantee
enough values in the domain to allow the satisfiability of every possible set of
disequalities one may encounter.

A significant research effort has been paid to extend NO framework by releasing
the conditions it is based on (purity the of inputs, stably-infiniteness and signature-
disjointness of the theories.) We briefly overview some of them.6

First, [5] shows that the purity condition is not really necessary in practice.
Intuitively, one may consider alien terms as if they were variables, and consider
equalities between alien terms as interface equalities. We refer the reader to [5] for
details.

Many approaches have been presented in order to release the condition of stably-
infiniteness (e.g., [6, 23, 34, 42–44]). In particular, [42, 44] proposed a method which
extends the NO framework by reasoning not only on interface equalities, but also
on particular cardinality constraints; this method has been extended to many-sorted
logics in [34]; the problem has been further explored theoretically in [6], and related
to that of combining rewrite-based decision procedures. Finally, the paradigm in [42]
has been recently extended in [28] so that to handle also parametric theories.

A few approaches have been proposed also to release the condition of signature-
disjointness [25, 41]. A theoretical framework addressing this problem was proposed
in [41], which allowed for producing semi-decision procedures. [25] proposed a
general theoretical framework based on classical model theory. An even more
general framework for combining decision procedures, which captures that in [25]
as a subcase, has been recently presented in [26].

6The list of references and approaches listed here is by no means intended to be exhaustive.

R. Bruttomesso et al.

All these results, however, involve a theoretical analysis which exceeds the scope
of this paper, so that we refer the reader to the cited bibliography for further details.

3 Modern SMT solvers

In order to facilitate the comprehension of the rest of the paper, in this section we
need to explain with some detail the schema and the main features of a modern
“lazy” SMT solver based on the DPLL algorithm. (See [36] for a much more detailed
explanation.)

3.1 The lazy SMT schema and its main optimizations

In a nutshell a lazy SMT solver works as follows. Given an input T -formula ϕ, a SAT
solver is used to enumerate a complete set of truth assignments μ

p
i satisfying the

Boolean abstraction ϕ p def= T 2B(ϕ). The set of literals μi
def= B2T (μ

p
i) is then fed to a

T -solver, which checks the satisfiability in T of μi. The process is repeated until either
a T -satisfiable μi is found, so that ϕ is T -satisfiable, or no more truth assignments
μ

p
i can found, so that ϕ is T -unsatisfiable. This approach is referred to as “lazy”, in

contraposition to the “eager” approach, consisting in encoding the formula into an
equi-satisfiable SAT formula (when possible) and into feeding it to a SAT solver.

Figure 1 represents the schema of a modern lazy SMT solver based on a DPLL
engine (see e.g. [46]). The input ϕ and μ are a T -formula and a reference to
an (initially empty) set of T -literals respectively. The DPLL solver embedded in

Fig. 1 An online schema of T -DPLL based on modern DPLL

Delayed theory combination vs. Nelson-Oppen

T -DPLL reasons on and updates ϕ p and μp, and T -DPLL maintains some data
structure encoding the bijective mapping T 2B/B2T on atoms.7

T -preprocess simplifies ϕ into a simpler formula, and updates μ if it is the case,
so that to preserve the T -satisfiability of ϕ ∧ μ. If this process produces some conflict,
then T -DPLL returns unsat. T -preprocess may combine most or all the Boolean
preprocessing steps available from SAT literature with theory-dependent rewriting
steps on the T -literals of ϕ. This step involves also the conversion to CNF of the input
formula, if required.

T -decide_next_branch selects some literal l p and adds it to μp. It plays the
same role as the standard literal selection heuristic decide_next_branch in
DPLL [46], but it may take into consideration also the semantics in T of the literals
to select. (This operation is called decision, l p is called decision literal and the number
of decision literals in μ after this operation is called the decision level of l p.)

T -deduce, in its simplest version, behaves similarly to deduce in DPLL [46]: it
iteratively deduces Boolean literals l p which derive propositionally from the current
assignment (i.e., s.t. ϕ p ∧ μp |= l p) and updates ϕ p and μp accordingly. (The iterative
application of unit-propagation performed by deduce and T -deduce is often
called Boolean Constraint Propagation, BCP.) This step is repeated until one of the
following facts happens:

(i) μp propositionally violates ϕ p (μp ∧ ϕ p |= ⊥). If so, T -deduce behaves like
deduce in DPLL, returning Conflict.

(ii) μp satisfies ϕ p (μp |= ϕ p). If so, T -deduce invokes T -solver on B2T (μp):
if T -solver returns sat, then T -deduce returns sat; otherwise, T -deduce
returns Conflict.

(iii) no more literals can be deduced. If so, T -deduce returns Unknown.

A slightly more elaborated version of T -deduce can invoke T -solver on
B2T (μp) also if μp does not yet satisfy ϕ p: if T -solver returns unsat, then T -deduce
returns Conflict. (This enhancement is called Early Pruning, EP.)

Moreover, during EP calls, if T -solver is able to perform deductions in the form
η |=T l s.t. η ⊆ μ and l p def= T 2B(l) is an unassigned literal in ϕ p, then T -deduce can
append l p to μp and propagate it. (This enhancement is called T -propagation.)

T -analyze_conflict is an extension of analyze_conflict of DPLL [46]: if the
conflict produced by T -deduce is caused by a Boolean failure (case (i) above), then
T -analyze_conflict produces a Boolean conflict set ηp and the corresponding
value blevel of the decision level where to backtrack; if instead the conflict is caused
by a T -inconsistency revealed by T -solver, then T -analyze_conflict produces
the Boolean abstraction ηp def= T 2B(η) of the T -conflict set η produced by T -solver.

7Hereafter we implicitly assume that all functions called in T -DPLL have direct access to T 2B/B2T ,
and that both T 2B and B2T require constant time for mapping each atom.

R. Bruttomesso et al.

T -backtrack behaves analogously to backtrack in DPLL [46]: once the conflict
set ηp and blevel have been computed, it adds the clause ¬ηp to ϕ p, either temporarily
and permanently, and backtracks up to blevel. (These features are called T -learning
and T -backjumping.)

Example 2 Consider the following LA(Q)-formula ϕ and its Boolean abstraction ϕ p:

c1 : ϕ = {¬(2x2 − x3 > 2) ∨ A1}
c2 : {¬A2 ∨ (x1 − x5 ≤ 1)}
c3 : {(3x1 − 2x2 ≤ 3) ∨ A2}
c4 : {¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1}
c5 : {A1 ∨ (3x1 − 2x2 ≤ 3)}
c6 : {(x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ¬A1}
c7 : {A1 ∨ (x3 = 3x5 + 4) ∨ A2}

ϕ p = {¬B1 ∨ A1}
{¬A2 ∨ B2}
{B3 ∨ A2}
{¬B4 ∨ ¬B5 ∨ ¬A1}
{A1 ∨ B3}
{B6 ∨ B7 ∨ ¬A1}
{A1 ∨ B8 ∨ A2}

Consider the Boolean search tree in Fig 2a. Suppose T -decide_next_branch
selects, in order, ¬B5, B8, B6 (occurring in c4, c7 and c6 respectively). In this process
T -deduce cannot unit-propagate any literal and EP calls to T -solver produce no
information.

Then T -decide_next_branch selects ¬B1 (occurring in c1). By EP, T -
deduce invokes T -solver on B2T ({¬B5, B8, B6,¬B1}):

{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2)}.
T -solver not only returns sat, but also it performs the deduction

{¬(3x1 − x3 ≤ 6),¬(2x2 − x3 > 2)} |=LA(Q) ¬(3x1 − 2x2 ≤ 3) (3)

of the literal ¬(3x1 − 2x2 ≤ 3) occurring in c3 and c5. The corresponding Boolean
literal ¬B3 is added to μp and propagated (T -propagation). Hence A1, A2 and B2

are unit-propagated from c5, c3 and c2.

Fig. 2 Boolean search sub-trees in the scenarios of Examples 2, 3 and 4 respectively (a–c).
(A diagonal line, a vertical line and a vertical line tagged with “T ” denote literal selection, unit
propagation and T -propagation respectively; a bullet denotes a call to T -solver)

Delayed theory combination vs. Nelson-Oppen

Then T -deduce invokes T -solver on B2T ({¬B5,B8,B6,¬B1,¬B3,A1, A2,B2}):
{¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),

¬(2x2 − x3 > 2),¬(3x1 − 2x2 ≤ 3), (x1 − x5 ≤ 1)}
which is inconsistent because of the 1st, 2nd, and 6th literals. Thus, T -solver returns
unsat and the conflict clause

c8
def= B5 ∨ ¬B8 ∨ ¬B2

corresponding to the conflict. Then T -DPLL adds c8 (either temporarily or perma-
nently) to the clause set and backtracks, popping from μp all literals up to {¬B5, B8},
and then unit-propagates ¬B2 on c8 (T -backjumping and T -learning). Then, starting
from {¬B5, B8,¬B2}, also ¬A2 and B3 are unit-propagated on c2 and c3 respectively,
and the search proceeds from there.

An important further improvement of T -deduce is the following: when T -solver
is invoked on EP calls and performs a deduction η |=T l (step (iii) above), then
the clause T 2B(¬η ∨ l) (called deduction clause) can be added to ϕ p, either tem-
porarily or permanently. The deduction clause will be used for the future Boolean
search, with benefits analogous to those of T -learning. To this extent, notice that
T -propagation can be seen as a unit-propagation on a deduction clause. (As both
T -conflict clauses and deduction clauses are T -valid, they are also called T -lemmas.)

Example 3 Consider the formulas ϕ and ϕ p of Example 2 and the search tree of
Fig. 2b. The deduction step (3) can be represented as

(3x1 − x3 ≤ 6) ∨ (2x2 − x3 > 2) ∨ ¬(3x1 − 2x2 ≤ 3),

corresponding to the deduction clause:

c9
def= B5 ∨ B1 ∨ ¬B3,

which is returned to T -DPLL, which adds it (either temporarily or permanently) to
the clause set. If this is the case, then also B1 and hence A1 are unit-propagated on
c9 and c1 respectively.

Another important improvement of T -analyze_conflict and T -
backtrack [24] is that of building from ¬ηp also a “mixed Boolean+theory
conflict clause”, by recursively removing non-decision literals l p from the clause
¬ηp (in this case called conflicting clause) by resolving the latter with the clause Cl p

which caused the unit-propagation of l p (called the antecedent clause of l p); if l p

was propagated by T -propagation, then the deduction clause is used as antecedent
clause. This is done until the conflict clause contains no non-decision literal which
has been assigned after the last decision (last-UIP strategy) or at most one such
non-decision literal (first-UIP strategy).8

8These are standard techniques for SAT solvers to build the Boolean conflict clauses [45].

R. Bruttomesso et al.

Example 4 Consider again the formulas ϕ and ϕ p of Examples 1 and 2 and the search
tree of Fig. 2c. T -analyze_conflict may also look for a mixed Boolean+theory
conflict clause c′

8 by resolving backward c8 with c2 and c3, (i.e., with the antecedent
clauses of B2 and A2) and with the deduction clause c9 (which “caused” the
propagation of ¬B3):

c8: theory conf licting clause
︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷
¬A2 ∨ B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷
B3 ∨ A2

B5 ∨ ¬B8 ∨ B3
(A2)

c9
︷ ︸︸ ︷
B5 ∨ B1 ∨ ¬B3

B5 ∨ ¬B8 ∨ B1︸ ︷︷ ︸
c′

8: mixed Boolean+theory conf lict clause

(¬B3)

finding the mixed Boolean+theory conflict clause c′
8 : B5 ∨ ¬B8 ∨ B1. (Notice that,

unlike with c8 and c9, B2T (c′
8) = (3x1 − x3 ≤ 6) ∨ ¬(x3 = 3x5 + 4) ∨ (2x2 − x3 > 2)

is not LA(Q)-valid.) This pattern corresponds to the last-UIP schema in [45], because
the process terminates when all literals which have been propagated after the last
decision (B2, A2, ¬B3) have been removed from the conflict clause.

Then (Fig. 2c) T -backtrack pops from μp all literals up to {¬B5, B8}, and then
unit-propagates B1 on c′

8, so that also A1 is unit-propagated on c1. If also c8 is added
to the clause set, then also B1, ¬A2 and B3 are unit-propagated on c8, c2 and c3

respectively.

On the whole, T -DPLL differs from the DPLL schema of [46] because it exploits:

– an extended notion of deduction and propagation of literals: not only unit
propagation (μp ∧ ϕ p |= l p), but also T -propagation (B2T (μp) |=T B2T (l p));

– an extended notion of conflict: not only Boolean conflict (μp ∧ ϕ p |= ⊥), but
also theory conflict (B2T (μp) |=T ⊥), or even mixed Boolean+theory conflict
(B2T (μp ∧ ϕ p) |=T ⊥).

T -DPLL is a coarse abstraction of the algorithms underlying most state-of-the art
SMT solvers, including BarceLogic, CVC3, DPT, MathSAT, Yices, Z3. Many other
optimizations and improvements have been proposed in the literature, which are not
of interest for this paper. (We refer the reader, e.g., to [36] for a survey.)

3.2 Discussion

In order to fully understand the differences between the N.O. and DTC procedures,
it is important to discuss the role played by Early Pruning, T -propagation, T -
backjumping and T -learning in a lazy SMT solver like T -DPLL, and their strict
relation with important features of the T -solvers. We elaborate a little on these
issues.

Early pruning (EP) is based on the observation that, if the T -unsatisfiability of an
assignment μ is detected during its construction, then this prevents checking the T -
satisfiability of all the up to 2|Atoms(ϕ)|−|μ| total truth assignments which extend μ.
In general, early pruning may introduce a very relevant reduction of the Boolean
search space, and consequently of the number of calls to T -solvers. This may partly

Delayed theory combination vs. Nelson-Oppen

be counterbalanced by the fact that EP may cause useless calls to T -solver. Different
strategies for interleaving EP calls and DPLL steps have been presented in the
literature.

T -propagation allows T -solver for efficiently driving the Boolean search of DPLL
and to prune a priori branches corresponding to T -inconsistent sets of literals.
For theories when the deduction is cheap, this may bring to dramatic performance
improvements [14, 31, 32]. In general, there is a tradeoff between the benefits of
search pruning and the expense of T -propagation, so that different strategies for
interleaving T -propagation and DPLL steps have been presented in the literature.

T -learning implements the intuitive idea “never repeat the same mistake twice” as
with standard DPLL: once the clause ¬ηp is added in conjunction to ϕ p, T -DPLL will
never again generate any branch containing ηp, because as soon as |ηp| − 1 literals
in ηp are assigned to true, the remaining literal will be immediately assigned to false
by unit-propagation on ¬ηp. The T -conflict set returned by the T -solver drives the
future search of DPLL to avoid generating the same T -conflict set again.

T -backjumping implements the intuitive idea “go back to the earliest point where
you could have made a smarter assignment if only you had known the conflict
clause in advance, and make it”. The T -conflict set returned by the T -solver drives
DPLL to jump up to many different decision levels. In particular, e.g., in case
of a mixed Boolean+theory conflict clause obtained from the T -conflict by the
last UIP strategy, T -analyze_conflict reveals the most recent decision which
caused deterministically the T -conflict (alone or by any combination of unit- and T -
propagation) and backtracks to the earliest point where DPLL can take the opposite
decision in accordance to the conflict clause.

The effectiveness of these techniques is strongly related to some important
features of the T -solvers.

Incrementality and backtrackability Due to EP calls, it is often the case that
T -solver is invoked sequentially on incremental assignments, in a stack-based man-
ner, like in the following trace (left column first, then right) [8]:

T -solver (μ1) =⇒ sat Undo μ4, μ3, μ2

T -solver (μ1 ∪ μ2) =⇒ sat T -solver (μ1 ∪ μ′
2) =⇒ sat

T -solver (μ1 ∪ μ2 ∪ μ3) =⇒ sat T -solver (μ1 ∪ μ′
2 ∪ μ′

3) =⇒ sat
T -solver (μ1 ∪ μ2 ∪ μ3 ∪ μ4) =⇒ unsat ...

Thus, a key efficiency issue of T -solver is that of being incremental and backtrackable.
Incremental means that T -solver “remembers” its computation status from one call
to the other, so that, whenever it is given in input an assignment μ1 ∪ μ2 such that μ1

has just been proved T -satisfiable, it avoids restarting the computation from scratch
by restarting the computation from the previous status. Backtrackable means that it
is possible to undo steps and return to a previous status on the stack in an efficient
manner.9

9“Backtrackable” is also called “resettable” by Nelson and Oppen [30].

R. Bruttomesso et al.

There are incremental and backtrackable versions of the congruence closure
algorithm for EUF [17, 31], of the Bellman-Ford algorithm for DL [14, 32], and of
the Simplex LP procedure for LA(Q) [18].

Deduction of unassigned literals (T -deduction) For many theories it is possible
to implement T -solver so that, when returning sat, it can also perform efficiently
enough a set of deductions in the form η |=T l, s.t. η ⊆ μ and l is a literal on a not-
yet-assigned atom in ϕ.10 We say that T -solver is deduction-complete if it can perform
all possible such deductions, or say that no such deduction can be performed.

For EUF , the computation of congruence closure allows for efficiently deducing
positive equalities [31]; for DL, a very efficient implementation of a deduction-
complete T -solver was presented by [14, 32]; for LA the task is much harder, and
only T -solvers capable of incomplete forms of deduction have been presented [18].

Generation of “high-quality” T -lemmas A key efficiency issue is the “quality” of
the T -lemmas returned by T -solver: the less redundant literals it contains, the more
effective it will be for T -backjumping (which may allow for higher jumps) and for
T -learning (which may prune more branches in the future).

There exist conflict-set-producing variants for the Bellman-Ford algorithm for
DL, [14], for the Simplex LP procedures for LA(Q) [18] and for the congruence
closure algorithm for EUF [31], producing high-quality T -conflict sets.

Another feature is essential for implementing Nelson-Oppen procedure (see
later).

Deduction of interface equalities (ei j-deduction) For most theories it is possible
to implement T -solver so that , when returning sat, it can also perform a set of
deductions in the form μ |=T e (if T is convex) or in the form μ |=T

∨
j e j (if T is

not convex) s.t. e, e1, ..., en are equalities between variables occurring in μ. (Notice
that here the deduced equalities need not occur in the input formula ϕ.) As typically
e, e1, ..., en are interface equalities, we call these forms of deductions eij-deductions,
and we say that a T -solver is eij-deduction-complete if it can perform all possible such
deductions, or say that no such deduction can be performed.

eij-deduction-complete T -solvers are often (implicitly) implemented by means of
canonizers [39]. Intuitively, a canonizer canonT for a theory T is a function which
maps a term t into another term canonT (t) in canonical form, that is, canonT maps
terms which are semantically equivalent in T into the same term. Thus, if xt1 , xt2
are interface variables labeling the terms t1 and t2 respectively, then the interface
equality (xt1 = xt2) can be deduced in T if and only if canonT (t1) and canonT (t2)
are syntactically identical.

It is important to highlight that, whilst for some theories T like EUF eij-deduction-
completeness can be cheap [31], for some other theories it can be extremely
expensive, often much more expensive than T -satisfiability itself. (E.g., for DL(Z)

10Notice that, in principle, every T -solver has T -deduction capabilities, as it is always possible to call
T -solver(μ ∪ {¬l}) for every unassigned literal l. We call this technique, plunging [17]. In practice
plunging is very inefficient.

Delayed theory combination vs. Nelson-Oppen

the problem is NP-complete [29] even though solving a set of difference constraints
requires only quadratic time in worst case.)

4 SMT for combined theories via Nelson-Oppen’s procedure

In [30] Nelson and Oppen (and later Shostak [39]) proposed also a general-
purpose combination procedure for combining two (or more) Ti-solvers into one
T1 ∪ T2-solver if all Ti’s are Nelson-Oppen theories, which is based on the logical
framework of Section 2.2. The combined T1 ∪ T2-solver works by performing a
structured interchange of interface equalities (disjunctions of interface equalities if
Ti is non-convex) which are inferred by either Ti-solver and then propagated to the
other, until convergence is reached.

In order to leverage the procedure to a SMT(T1 ∪ T2) context, the combined
T1 ∪ T2-solver is then integrated with DPLL according to the lazy SMT schema
described in Section 3.1.

4.1 The Nelson-Oppen procedure

A basic architectural schema of SMT(T1 ∪ T2) via N.O. is described in Fig. 3. (Here
we provide only a high-level description; the reader may refer, e.g., to [5, 17, 21, 30,
37, 38] for more details.) We assume that all Ti’s are N.O. theories and their Ti-solvers
are eij-deduction complete (see Section 3.2).

We consider first the case in which both theories are convex. The combined
T1 ∪ T2-solver receives from DPLL a pure set of literals μ, and partitions it into
μT1 ∪ μT2 , s.t. μTi is i-pure, and feeds each μTi to the respective Ti-solver. Each
Ti-solver, in turn:

(i) checks the Ti-satisfiability of μTi ,
(ii) deduces all the interface equalities deriving from μTi ,

(iii) passes them to the other T -solver, which adds it to his own set of literals.

Fig. 3 A basic architectural
schema of SMT(T1 ∪ T2) via
the N.O. procedure

R. Bruttomesso et al.

This process is repeated until either one Ti-solver detects inconsistency (μ1 ∪ μ2

is T1 ∪ T2-unsatisfiable), or no more eij-deduction is possible (μ1 ∪ μ2 is T1 ∪ T2-
satisfiable).

Example 5 Consider the following pure EUF ∪ LA(Q)-formula ϕ:

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

(4)

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not. (Thus, e.g., (v0 = v1) is
an interface equality, whilst (v0 = v6) is not.) RESET5 is a Boolean variable.

Consider the search tree in Fig. 4. After the first run of unit-propagations, assume
DPLL selects the literal RESET5, resulting in the assignment μ

def= μEUF ∪ μLA(Q)

s.t.

μEUF = {(v3 = h(v0)), (v4 = h(v1)), (v6 = f (v2)), (v7 = f (v5)),¬(v6 = v7)}
μLA(Q) = {(v0 ≤ v1), (v0 ≥ v1), (v2 = v3 − v4), (v5 = 0)}, (5)

which propositionally satisfies ϕ. Now, the set of literals μEUF is given to the EUF -
solver, which reports its consistency and deduces no new interface equality. Then the
set μLA(Q) is given to the LA(Q)-solver, which reports consistency and deduces the
interface equality v0 = v1, which is passed to the EUF -solver. The new set μEUF ∪
{(v0 = v1)} is still EUF -consistent, but this time the EUF -solver can deduce from
it the equality (v3 = v4), which is in turn passed to the LA(Q)-solver, which deduces
(v2 = v5). The EUF -solver is then invoked again to check the EUF -consistency of the
assignment μEUF ∪ {(v0 = v1), (v2 = v5)}: since this check fails, the Nelson-Oppen
procedure reports the EUF ∪ LA(Q)-unsatisfiability of the whole assignment μ.

In the case in which at least one theory is non-convex, the N.O. procedure becomes
more complicated, because the two solvers need to exchange arbitrary disjunctions

Fig. 4 Search tree for the scenario of Examples 5 (branch 1) and 7 (branch 2)

Delayed theory combination vs. Nelson-Oppen

of interface equalities. As each Ti-solver can handle only conjunctions of literals,
the disjunctions must be managed by means of case splitting and of backtrack
search. Thus, in order to check the consistency of a set of literals, the combined
T1 ∪ T2-solver must internally explore a number of branches which depends on how
many disjunctions of equalities are exchanged at each step: if the current set of literals
is μ, and one of the Ti-solver sends the disjunction

∨n
k=1(eij)k to the other, the latter

must further investigate up to n branches to check the consistency of each of the
μ ∪ {(eij)k} sets separately.

4.2 Discussion

N.O. procedure was originally conceived to combine decision procedures on sets of
literals, much before the lazy SMT approach was conceived, so that it was not tailored
for interfacing with a SAT solver and for exploiting its full power. In what follows we
analyze, with the help of a few examples, the behaviour of N.O. procedure when used
within a lazy SMT context, with both convex and non-convex theories.

4.2.1 Returning “eij-unaware” conflict clauses

First, in the above schema the DPLL solver is not made aware of the interface
equalities eij, so that the latter cannot occur in conflict clauses. Therefore, in order
to construct the T1 ∪ T2-conflict clause, it is necessary to resolve backwards the
last conflict clause with (the deduction clauses corresponding to) the eij-deductions
performed by each Ti-solver. This causes the generation of possibly very long and
lowly-informative conflict(ing) clauses.

Example 6 Consider the scenario of Example 5 (left branch in Fig. 4). Starting from
the final EUF conflict, and resolving backwards wrt. the deductions performed, it is
possible to obtain a final EUF ∪ LA(Q)-conflict clause as follows:

EUF -conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v5)) → ⊥
LA(Q)-deduction : ((v2 = v3 − v4) ∧ (v5 = 0) ∧ (v3 = v4)) → (v2 = v5)

EUF -deduction : ((v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 = v1)) → (v3 = v4)

LA(Q)-deduction : ((v0 ≥ v1) ∧ (v0 ≤ v1)) → (v0 = v1)

=⇒
EUF ∪ LA(Q)-conflict : ((v6 = f (v2)) ∧ (v7 = f (v5)) ∧ ¬(v6 = v7) ∧ (v2 = v3 − v4)

∧(v5 = 0) ∧ (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v0 ≥ v1)) → ⊥.

4.2.2 No learning from eij-reasoning

Second, the conflict(ing) clauses above cannot provide any information about the
theory-combination steps performed by the T1 ∪ T2-solver. Thus, in future branches,
if run on very similar set of of literals, the combined T1 ∪ T2-solver may have to repeat
part or all the same eij-deduction steps.

R. Bruttomesso et al.

Example 7 Consider the scenario at the end of Example 5 (Fig. 4). Thus, DPLL
backtracks on the conflict found in Example 6 and assigns false to RESET5,11

resulting in the new assignment μ′ def= μEUF ∪ μ′
LA(Q)

s.t.

μEUF = {(v3 = h(v0)), (v4 = h(v1)), (v6 = f (v2)), (v7 = f (v5)),¬(v6 = v7)}
μ′
LA(Q)

= {(v0 ≤ v1), (v0 ≥ v1), (v2 = v3 − v4)(v5 = v8)}, (6)

which is found EUF ∪ LA(Q)-satisfiable with a similar process (see Fig. 4), in which
the eij-deductions of (v0 = v1) and (v3 = v4) have to be performed again. Notice that
the conflict clause found in Example 6 provides no help to avoid repeating the two
eij-deduction steps in the right branch in Fig. 4.

4.2.3 Forcing internal case-splits in non-convex theories

Third, in case of non-convex theories, the combined T1 ∪ T2-solver must handle
internally the case-splits caused by the fact that each Ti-solver may receive from the
other disjunctions of interface equalities.

Example 8 Consider the conjunction of literals μ
def= μEUF ∧ μLA(Z) (2) of Exam-

ple 1:

μEUF : ¬(f (v1) = f (v2)) ∧ ¬(f (v2) = f (v4)) ∧ (f (v3) = v5) ∧ (f (v1) = v6)∧
μLA(Z) : (v1 ≥ 0) ∧ (v1 ≤ 1) ∧ (v5 = v4 − 1) ∧ (v3 = 0) ∧ (v4 = 1)

∧(v2 ≥ v6) ∧ (v2 ≤ v6 + 1).

(7)

Here all the variables (v1, . . . , v6) are interface ones. μ contains only unit clauses, so
after the first run of unit-propagations, DPLL generates the assignment μ which is
simply the set of literals in μ. One possible run of the NO procedure is depicted in
Fig. 5.12

First, the sub-assignment μEUF is given to the EUF -solver, which reports its
consistency and deduces no interface equality. Then, the sub-assignment μLA(Z) is
given to the LA(Z)-solver, which reports its consistency and deduces first (v3 = v5)

and then the disjunction (v1 = v3) ∨ (v1 = v4), which are both passed to the EUF -
solver. Whilst the first produces no effect, the second forces a case-splitting so that
the two equalities (v1 = v3) and (v1 = v4) must be analyzed separately by the EUF -
solver. The first branch, corresponding to selecting (v1 = v3), is opened: then the
set μEUF ∪ {(v1 = v3)} is EUF -consistent, and the equality (v5 = v6) is deduced.
After that, the assignment μLA(Z) ∪ {(v5 = v6)} is passed to the LA(Z)-solver, that
reports its consistency and deduces another disjunction, (v2 = v3) ∨ (v2 = v4). At
this point, another case-splitting is needed in the EUF -solver, resulting in the two
branches μEUF ∪ {(v1 = v3), (v2 = v3)} and μEUF ∪ {(v1 = v3), (v2 = v4)}. Both of
them are found inconsistent, so the whole branch previously opened by the selection
of (v1 = v3) is found inconsistent.

11We assume that DPLL adopts the last UIP strategy using the T -conflict clause described in
Example 6. Other strategies may lead to propagate also ¬(v5 = 0) in the right branch, which would
not affect the result.
12 Notice that there may be different runs depending on the order in which the eij-deductions are
performed.

Delayed theory combination vs. Nelson-Oppen

Fig. 5 The NO search tree for the formula of Example 8

At this point, the other case of the branch (i.e., the equality (v1 = v4)) is selected,
and since the assignment μEUF ∪ {(v1 = v4)} is EUF -consistent and no new interface
equality is deduced, the NO method reports the EUF ∪ LA(Z)-satisfiability of μ.

4.2.4 Requiring eij-deduction complete Ti-solvers

Finally, as highlighted from the two previous examples, the ability of the Ti-solvers to
carry out eij-deductions (see Section 3.2) is crucial: each solver must be eij-deduction
complete, that is, it must be able to derive the (disjunctions of) interface equalities
eij which are entailed by its current facts μTi . As highlighted in Section 3.2, for some
theories this operation can be very expensive.

Remark 1 For the sake of simplicity and better readability, we have provided
only a high-level description of N.O., which does not consider the optimizations
and implementation techniques which have been proposed in the literature (see
[5, 17, 21, 30, 37, 38] for more details). To the best of our knowledge, however, all
optimizations and implementation techniques for N.O. introduced before DTC are
orthogonal to the issues raised in Sections 4.2.1–4.2.4.

5 SMT for combined theories via the DTC procedure

Delayed Theory Combination (DTC) is a more recent general-purpose procedure
for tackling the problem of theory combination directly in the context of lazy SMT

R. Bruttomesso et al.

[9, 10]. DTC works by performing Boolean reasoning on interface equalities, possibly
combined with T -propagation, with the help of the embedded DPLL solver. As
with N.O. procedure, DTC is based on the N.O. logical framework of Section 2.2,
and thus considers signature-disjoint stably-infinite theories with their respective Ti-
solvers, and pure input formulas (although most of the considerations on releasing
purity and stably-infiniteness in Section 2.2 hold for DTC as well). Importantly, no
assumption is made about the eij-deduction capabilities of the Ti-solvers (Section 3.2):
for each Ti-solver, every intermediate situation from complete eij-deduction to no
eij-deduction capabilities is admitted.

5.1 The DTC procedure

A basic architectural schema of DTC is described in Fig. 6. In DTC, each of the
two Ti-solvers interacts directly and only with the Boolean enumerator (DPLL), so
that there is no direct exchange of information between the Ti-solvers. The Boolean
enumerator is instructed to assign truth values not only to the atoms in Atoms(ϕ), but
also to the interface equalities eij’s. Consequently, each assignment μp enumerated
by DPLL is partitioned into three components μ

p
T1

, μ
p
T2

and μ
p
e , s.t. each μTi is the

set of i-pure literals and μe is the set of interface (dis)equalities in μ, so that each
μTi ∪ μe is passed to the respective Ti-solver.

An implementation of DTC [9, 10] is based on the online schema of Fig. 1
in Section 3.1, exploiting early pruning, T -propagation, T -backjumping and T -
learning. Each of the two Ti-solvers interacts with the DPLL engine by exchanging
literals via the assignment μ in a stack-based manner. The T -DPLL algorithm of
Fig. 1 in Section 3.1 is modified to the following extents:

1. T -DPLL is instructed to assign truth values not only to the atoms in ϕ, but
also to the interface equalities not occurring in ϕ. B2T and T 2B are modified
accordingly.

Fig. 6 A basic architectural
schema of SMT(T1 ∪ T2) via
the DTC procedure

Delayed theory combination vs. Nelson-Oppen

2. T -decide_next_branch is modified to select also interface equalities eij’s not
occurring in the formula yet,13 but only after the current assignment proposition-
ally satisfies ϕ.

3. T -deduce is modified to work as follows: instead of feeding the whole μ to a
(combined) T -solver, for each Ti, μTi ∪ μe, is fed to the respective Ti-solver. If
both return sat, then T -deduce returns sat, otherwise it returns Conflict.

4. T -analyze_conflict and T -backtrack are modified so that to use the
conflict set returned by one Ti-solver for T -backjumping and T -learning. Impor-
tantly, such conflict sets may contain interface (dis)equalities.

5. Early-pruning and T -propagation are performed. If one Ti-solver performs
the eij-deduction μ∗ |=Ti

∨k
j=1 e j s.t. μ∗ ⊆ μTi ∪ μe and each e j is an interface

equality, then the deduction clause T 2B(μ∗ → ∨k
j=1 e j) is learned.

6. [If and only if both Ti-solvers are ei j-deduction complete.] If an assignment μ

which propositionally satisfies ϕ is found Ti-satisfiable for both Ti’s, and neither
Ti-solver performs any eij-deduction from μ, then T -DPLL stops returning sat.14

In order to achieve efficiency, other heuristics and strategies have been further
suggested in [9, 10], and more recently in [15, 19].

In short, in DTC the embedded DPLL engine not only enumerates truth as-
signments for the atoms of the input formula, but it also assigns truth values for
the interface equalities that the T -solvers are not capable of inferring, and handles
the case-split induced by the entailment of disjunctions of interface equalities in
non-convex theories. The rationale is to exploit the full power of a modern DPLL
engine and to delegate to it part of the heavy reasoning effort on interface equalities
previously due to the Ti-solvers.

5.2 Discussion

DTC has been conceived in such a way to fully exploit the power of DPLL within
a lazy SMT framework. We analyze the behaviour of DTC with the help of the
examples we used in Section 4.2 for N.O., considering both the case in which the
Ti-solvers are eij-deduction complete and the case in which the Ti-solvers have no
eij-deduction capability, with both convex and non-convex theories.

In all the following examples we assume that DTC adopts the “N.O.-mimicking
strategy” of Fig. 7, which will be discussed in Section 6. Moreover, in order to simplify
the explanation and to introduce some concepts which will be elaborated in Section 6,
in both Examples 9 and 11 (Ti-solvers with no eij-deduction capability) we will assume
that both Ti-solver always return ¬eij-minimal conflict sets.

Notationally, μ′
Ti

, μ′′
Ti

, μ′′′
Ti

denote generic subsets of μTi and “Cij” denotes either
the T -deduction clause causing the T -propagation of (vi = v j) or the conflicting
clause causing the backjump to (vi = v j). For better readability, we represent directly

13Notice that an interface equality occurs in the formula after a clause containing it is learned, see
point 4.
14This is identical to the T1 ∪ T2-satisfiability termination condition of N.O. procedure.

R. Bruttomesso et al.

Fig. 7 A “NO-mimicking” strategy for DTC

the assignment to T -atoms rather than to their Boolean abstraction (e.g., we say
“assign ¬(v5 = 0)” instead of “assign ¬Bi” s.t. Bi

def= T 2B((v5 = 0))).

5.2.1 Delaying theory combination

First, thanks to the fact that T -decide_next_branch can select new interface
equalities after μ propositionally satisfies ϕ (point 2. above), the Boolean search tree
is divided into two parts: the top part, performed on the atoms currently occurring
in the formula, in which a (partial) truth assignment μ propositionally satisfying ϕ is
searched, and the bottom part, performed on the eij’s which do not yet occur in the
formula, in which the T1 ∪ T2-satisfiability of μ is checked by building a candidate
arrangement μe. Thus, in every branch the reasoning on eij’s is not performed
until (and unless) it is strictly necessary. (From which the name “Delayed Theory

15This avoids invoking a Ti-solver twice in sequence on the same input. The restriction “which ... by
Ti-solver itself” means that, if Ti-solver (μ) returns “Sat” and deduces eij, then Ti-solver is not invoked
on μ ∪ {eij}.

Delayed theory combination vs. Nelson-Oppen

Combination”.) E.g., if in one branch μ is such that one μTi component is Ti-
unsatisfiable, no Boolean reasoning on eij’s is performed.

To this extent, it is important to exploit the issue of partial assignments [36]:
when the current partial assignment μ propositionally satisfies the input formula ϕ,
the remaining atoms occurring in ϕ can be ignored and only the new eij’s are then
selected. Importantly, if μ is a partial assignment, then it is sufficient that μe assigns
only the eij’s which have an actual interface role in μ. (E.g., if μ is partial and v is an
interface variable in ϕ but it occurs in no 1-pure literal in μ, then v has no “interface
role” for μ, so that every interface equality containing v can be ignored by μe.)

Example 9 Consider again the EUF ∪ LA(Q)-formula ϕ (4) of Example 5:

EUF : (v3 = h(v0)) ∧ (v4 = h(v1)) ∧ (v6 = f (v2)) ∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1) ∧ (v0 ≤ v1) ∧ (v2 = v3 − v4) ∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8)) ∧ ¬(v6 = v7).

(8)

and consider the assignment μ (5) obtained after T -DPLL assigns RESET5 and
unit-propagates (v5 = 0). Let μ be partitioned into μLA(Q) and μEUF as in Fig. 8.
μ propositionally satisfies ϕ (μ |=p ϕ), and μ is a partial assignment because it
does not assign (v5 = v8). By a call to the Ti-solvers, both μLA(Q) and μEUF are
found consistent in the respective theories. Thus, in order to check the T1 ∪ T2-
consistency of μ, T -DPLL generates and explores a Boolean search sub-trees on
the eijs according to the Strategy of Fig. 7.

First T -DPLL starts selecting (the negated value of) the new eij’s, each time
invoking incrementally the Ti-solvers (EP), until it selects ¬(v0 = v1), which causes

Fig. 8 DTC execution of the first branch of Example 9, with no eij-deduction. Here we assume that
all conflict sets returned by the Ti-solvers are ¬eij-minimal

R. Bruttomesso et al.

a LA(Q) conflict. As LA(Q) is convex and LA(Q)-Solver is ¬eij-minimal, it returns
a conflict set in the form μ′

LA(Q)
∪ {¬(v0 = v1)} s.t. {(v0 ≥ v1), (v0 ≤ v1)} ⊆ μ′

LA(Q)
⊆

μLA(Q). Thus DTC learns the corresponding clause C01 and backjumps up to μ (or
even higher), hence unit propagating (v0 = v1).

What happens next depends on whether the learned clause C01 contains the
redundant LA(Q) atom (v5 = 0) or not. Here we consider the “worst” case, when
such atom occurs in C01. This means that DTC backjumps after the unit-propagation
of (v5 = 0).16 Then (v0 = v1) is unit-propagated and new unassigned ¬eij’s are
selected again, until ¬(v3 = v4) generates another conflict represented by clause C34,
which causes backjumping and unit-propagating (v3 = v4). The same is repeated for
(v2 = v5). Then μ ∪ {(v0 = v1), (v3 = v4), (v2 = v5)} is found EUF -inconsistent s.t.
the conflict is represented by the clause C67, and the whole procedure backtracks,
causing the unit-propagation of ¬RESET5 and (v5 = v8).

Then the search proceeds from here, with the benefit that T -DPLL can reuse the
clauses C01-C67 to avoid repeating research performed in the previous branch, as
explained below.

5.2.2 Learning from eij reasoning

Second, thanks to points 1., 2., 4. and 5., the interface equalities eij’s are included
in the conflict(ing) and deduction clauses derived by T -conflicts and T -deduction.
Therefore, instead of one long eij-free T1 ∪ T2-conflict clause, it is possible to learn
several (much shorter) conflicts and deduction clauses corresponding to the conflicts
and deductions returned by the Ti-solvers. Moreover, the reasoning steps on eij’s
which are performed in order to decide the T1 ∪ T2-consistency of one branch μ (both
Boolean search on eij’s and eij-deduction steps) are saved in the form of clauses and
thus they can be reused to check the T1 ∪ T2-consistency of all subsequent branches.
This allows from pruning search and prevents redoing the same search/deduction
steps from scratch.

Example 10 Consider again the EUF ∪ LA(Q) formula ϕ of Examples 5 and 9.
Figure 9 illustrates a DTC execution when both Ti-solvers are eij-deduction complete
(that is, under the same hypotheses as NO). As before, we assume T -DPLL adopts
Strategy 1 of Fig. 7.

On the left branch (when RESET5 is selected), after (v5 = 0) is unit-propagated,
the LA(Q)-solver deduces (v0 = v1), and thus the deduction clause C01 is learned and
(v0 = v1) is unit-propagated. Consequently, the EUF -solver can deduce (v3 = v4),
causing the learning of C34 and the unit-propagation of (v3 = v4), which in turn causes
the LA(Q)-deduction of (v2 = v5), the learning of C25 and the unit-propagation of
(v2 = v5).

At this point, μ′′
EUF ∪ {(v2 = v5)} is found EUF -inconsistent, so that the EUF -

solver returns (the negation of) the clause C67, which is resolved backward with
the clauses C25, C34, C01, and (RESET5 → (v5 = 0)) forcing DTC to backjump

16More precisely, by Step 2. of Strategy 1, DTC eliminates (v5 = 0) from the conflict clause C01
by resolving the latter with the clause RESET5 → (v5 = 0) in ϕ, thus substituting (v5 = 0) with
RESET5 into the conflict clause used to drive T -backjumping. A similar process happens in the
next steps.

Delayed theory combination vs. Nelson-Oppen

Fig. 9 DTC execution of Example 10, with eij-deduction-complete Ti-solvers

up to the last branching point and to unit-propagate ¬RESET5. Hence (v5 = v8)

is unit-propagated on the clause ¬RESET5 → (v5 = v8), which produces another
assignment propositionally satisfying ϕ.

Then, (v0 = v1) and hence (v3 = v4) are unit-propagated on C01 and C34 respec-
tively, with no need to call the T -solvers.17 At this point, since neither Ti-solver can
deduce any new eij, by step 6. DTC concludes that ϕ is EUF ∪ LA(Q)-satisfiable.

We notice that in the right branch of the DTC search tree, all values are assigned
directly by unit-propagation. Thus, DTC “remembers” in form of clauses the eij-
deductions performed in the first branch and reuses them in the subsequent branch
so that to avoid redoing them from scratch.

A similar situation happens in the right branch of Example 9.

5.2.3 Allowing lack of eij-deduction capability

Third, DTC allows for using Ti-solvers with partial or no eij-deduction capability,
because part of or all the eij-deductions can be substituted by extra Boolean search
on the eij’s performed by the DPLL engine. Vice versa, if the Ti-solvers do have some
or full eij-deduction capability, DTC exploits this fact by means of T -propagation.
Thus, by adopting T -solvers with different eij-deduction power, one can trade part or
all the (possibly very expensive) eij-deduction effort for extra Boolean search.

Example 11 (See also Example 9) Consider again the conjunction of literals μ
def=

μEUF ∧ μLA(Z) of Examples 1 and 8. We assume here that both the EUF - and
LA(Z)-solver’s have no eij-deduction capabilities, and that they always return conflict
sets which do not contain redundant negated interface equalities. One possible
session of DTC is depicted in Fig. 10.

17Here we assume for simplicity that μ′
LA(Q) in C01 does not contain the redundant literal (v5 = 0).

If this is not the case, one more T -propagation of (v0 = v1) is needed.

R. Bruttomesso et al.

Fig. 10 DTC execution of Example 11 on LA(Z) ∪ EUF , with no eij-deduction. Here we assume that
all conflict sets returned by the Ti-solvers are ¬eij-minimal

Initially, both μLA(Z) and μEUF are found consistent in each of the theories by
the respective Ti-solvers. Then T -DPLL starts selecting new ¬eij’s, and proceeds
without causing conflicts, until it selects ¬(v3 = v5) , which causes a LA(Z) conflict
on the conflicting clause C35, and forces T -DPLL to backjump and to unit-propagate
(v3 = v5).

Then T -DPLL selects new ¬eij’s until it selects ¬(v1 = v4) and ¬(v1 = v3), which
cause a LA(Z) conflict. The branch is in the form μ ∪ ⋃

j ¬e j, so that, the ¬eij-
minimal conflict set η13 returned is in the form μ′

LA(Z)
∪ {¬(v1 = v3), ¬(v1 = v4)}

s.t. μ′
LA(Z)

contain no other negated interface equality. Thus T -DPLL uses the
corresponding clause C13 (see Fig. 10) to backjump up to the highest point which
allows for unit-propagating (v1 = v3) on C13, and performs such unit propagation.
Then T -DPLL proceeds selecting new ¬eij’s without causing conflicts, until it selects
¬(v5 = v6), which causes a EUF conflict represented by the clause C56. As EUF
is convex, ¬(v5 = v6) is the only ¬eij occurring in the conflict set, so that T -DPLL
backtracks over the last chain of ¬eij’s and unit-propagates (v5 = v6).

Again, T -DPLL selects a chain of new ¬eij’s until it selects ¬(v2 = v4) and ¬(v2 =
v3), which cause a LA(Z) conflict represented by clause C23. As before, it backjumps
to the highest point where it can unit-propagate (v2 = v3). Performing the latter unit
propagation causes a EUF conflict (clause C24). By applying Step 2. of Strategy 1,
resolving on literal (v2 = v3) the conflicting clause C24 with the clause C23 (which
caused the unit-propagation of (v2 = v3)), T -DPLL backjumps over all the remaining
¬eij’s of the current chain and unit-propagating (v2 = v4).

The latter causes a new EUF conflict represented by the clause C14. Again, by
Step 2. of Strategy 1, C14 is resolved with the clauses C′

24, C56, C13 (which caused the

Delayed theory combination vs. Nelson-Oppen

propagation of (v2 = v4), (v5 = v6), (v1 = v3) respectively), backjumping up to μ and
unit-propagating (v1 = v4).

Finally, T -DPLL starts and proceeds selecting ¬eij’s (possibly unit-propagating
some value due to the clauses learned) without generating conflicts, so that to
conclude that the formula is T1 ∪ T2-satisfiable.

5.2.4 Handling case-splits in non-convex theories

Finally, in case of non-convex theories, in DTC the case-splits caused by the deduc-
tion of disjunctions of eij’s by the Ti-solvers are handled directly by the DPLL engine.
(Notice that, unlike with the “splitting on demand” approach of [3], here we refer to
the case-splits which are necessary to handle the deductions performed by the other
Ti-solver, rather to those which may be necessary to perform such deductions.)

Example 12 (See also Example 11) Consider the EUF ∪ LA(Z) formula ϕ and
assignment μ of Example 8. Figure 11 illustrates a DTC execution when both Ti-
solvers are eij-deduction complete. As before, we assume T -DPLL adopts Strategy 1
of Fig. 7.

Fig. 11 DTC execution of Example 12 on LA(Z) ∪ EUF , with eij-deduction-complete Ti-solvers

R. Bruttomesso et al.

The first invocation of the LA(Z) solver results in deducing (v3 = v5) and the
disjunction (v1 = v4) ∨ (v1 = v3) and in learning of the corresponding clauses C35 and
C13. By Step 4.(iii) of Strategy 1, then, (v1 = v4) and (v1 = v3) are put on the top
of the literal selection list. As a consequence, DTC selects ¬(v1 = v4), and thanks
to C13 it immediately unit-propagates (v1 = v3). At this point the EUF solver can
deduce (v5 = v6), so that the clause C56 is learned and the deduced equality is unit-
propagated immediately. When μLA(Z) ∪ {(v5 = v6)} is passed to the LA(Z) solver,
this deduces the disjunction (v2 = v4) ∨ (v2 = v3), learning C23. Selecting ¬(v2 = v4)

results in the unit-propagation of (v2 = v3), which in turn causes a EUF conflict.
After the EUF -solver returns (the negation of) C24, DTC backjumps up to a point
where (v2 = v4) can be unit-propagated. This results again in an EUF -conflict, so that
the EUF -solver returns (the negation of) C14, which causes another backjumping up
to where (v1 = v4) can be unit-propagated. Then, after another invocation to the
theory solvers, DTC stops, declaring ϕ to be EUF ∪ LA(Z)-satisfiable.

6 Controlling the enlargement of the Boolean search space

The benefits of DTC wrt. NO highlighted in Section 5 come at the potential cost of
an enlargement of the Boolean search space explored by T -DPLL. To this extent,
in this section, we analyze the enlargement of the Boolean search space in DTC wrt.
NO procedure, and prove the following facts.

1. Under the same working hypotheses of NO procedure (stably-infinite theories,
incremental, backtrackable and eij-deduction-complete Ti-solvers), there is a
“NO-mimicking” strategy for DTC s.t. no extra Boolean search on the eij’s is per-
formed wrt. N.O procedure: in case of convex theories, no extra Boolean search
on eij’s is performed; in case on non-convex theories, the only Boolean search on
eij’s performed is that caused by the case-splits induced by the disjunctions of eij’s
(which NO procedure must perform internally to the combined T1 ∪ T2-solver).

2. If some Ti-solver is not eij-deduction complete, then the “NO-mimicking” strat-
egy for DTC mimics the eij-deductions performed by NO procedure via T -
backjumping, and the cost in terms of Boolean search can be controlled in terms
of the “quality” of the T -conflict sets η returned by the Ti-solvers: the more
redundant ¬eij’s are removed from η, the more branches are pruned; if the η’s
contain no redundant ¬eij, then the Boolean search reduces to only one branch
for every eij-deduction mimicked.

Result 1 states that, under the same working hypotheses, the DTC procedure is “at
least as good as the NO procedure” in terms of Boolean search space. Result 2 states
that, if the Ti-solver have partial or no eij-deduction capabilities, then the amount
of extra Boolean search required can be reduced down to a negligible amount
by reducing the presence of redundant negated disequalities in the T -conflict sets
returned by the T -solvers.

The NO-mimicking strategy for DTC is described in Fig. 7. For convenience, we
prove results 2 and 1 in reverse order, in Sections 6.2 and 6.1 respectively.

Delayed theory combination vs. Nelson-Oppen

6.1 DTC with non eij-deduction-complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are ¬eij-minimal
and have limited or no eij-deduction capabilities. Under these assumptions, we have
the following result.

Theorem 2 Let T1 and T2 be two stably-infinite (possibly non-convex) theories. Let
both Ti-solvers be ¬eij-minimal, and possibly have some eij-deduction capabilities; let
ϕ be a pure T1 ∪ T2 formula and let μ be a total assignment propositionally satisfying
ϕ. Let DTC with Strategy 1 prove the T1 ∪ T2-consistency (resp. T1 ∪ T2-inconsistency)
of μ, returning a conflict set η in the case of inconsistency. Let dtc_br and dtc_ded be
the number of Boolean branches and of eij-deductions performed in the DTC proof.
Then we have:

dtc_br + dtc_ded ≤ no_br + no_ded, (9)

no_ded and no_br being respectively the number of deductions and of branches
performed by a corresponding NO proof of the T1 ∪ T2-consistency (resp. T1 ∪ T2-
inconsistency) of μ.

Proof We consider a generical branch μ s.t. μ propositionally satisfies the input
formula ϕ. We reason by induction on the structure of the DTC Boolean search tree
required to prove the T1 ∪ T2-unsatisfiability of μ.

Base We have two basic cases (Fig. 12, top).

1. Let μ be Ti-unsatisfiable for some Ti. The Ti-solver detects this fact returning an
¬eij-minimal conflict set η. Thus dtc_br = 1 and dtc_ded = 0. Similarly, in every
N.O. refutation Ti-solver detects the Ti-unsatisfiability of μ. Thus no_ded = 0 and
no_br = 1, so that (9) holds.

2. Let μ be Ti-satisfiable for both Ti’s, and no (disjunction of) eij’s can be deduced
from μ. DTC selects a chain of new negated eij’s, invoking an early-pruning check
before each new selection which cause no eij-deduction, until no new eij’s are
available, from which it concludes that μ is T1 ∪ T2-satisfiable. Here dtc_br = 1
and dtc_ded = 0. In every corresponding N.O. proof, both Ti-solvers return “Sat”
without performing eij-deductions (i.e., no_br = 1, no_ded = 0). Therefore (9)
holds.

Step If none of the previous cases holds, then DTC selects a chain of new negated
eij’s, invoking an early-pruning check before each new selection, until either (Fig. 12,
bottom):

(a) one early-pruning call to one Ti-solver returns Unsat. In this case, let B denote
the current branch. The Ti-solver returns also a ¬eij-minimal conflict set η,
corresponding to the conflicting clause

η∗ →
k∨

j=1

e j, (10)

R. Bruttomesso et al.

Fig. 12 Graphical representations of base cases 1. and 2. (1st row) and Step cases (a), (b), (c)
(2nd row)

where ¬e1, ..., ¬ek are all the ¬eij’s occurring in η, and η∗ def= η \ {¬e1, ..., ¬ek}.
(In the corresponding N.O. refutation, this corresponds to the eij-deduction
μ |=Ti

∨k
j=1 e j.) DTC learns the conflicting clause (10) and backjumps, popping

up the literals from the branch (if k > 1) up to ¬ek−1 or (if k = 1) up to the
highest point in μ where ek can be unit-propagated on (10), and hence unit
propagating ek. (In the N.O. refutation, this corresponds to selecting the branch
μ ∪ {ek}.)

(b) one positive18 eij, namely ek, is unit-propagated due to some previously-learned
conflict clause, which we can write w.l.o.g. in the form (10), s.t. all ¬e1, ..., ¬e j−1

18The case where one negative eij is unit-propagated due to some previously-learned conflict clause
C does not affect the overall discussion, because it will be eliminated from every conflict clause by
means of of Step 2. in Strategy 1. No literal other than (negated) eij’s can be unit propagated, because
μ assigns a truth value to all the atomic expressions in ϕ.

Delayed theory combination vs. Nelson-Oppen

Fig. 13 Graphical representation of the recursive behaviour. Case 1 (left) and 2 (right)

and all the literals in η∗ are in the current branch, and η∗ contains no negated
eij’s. (Notice that, in the N.O. refutation, this might require a novel eij-deduction
μ |=Ti

∨k
j=1 e j.19)

(c) One Ti-solver performs a eij-deduction, namely η∗ |=Ti

∨k
j=1 e j, s.t. η∗ is part of

the current branch and the e j’s are not. By Step 4. of Strategy 1, the clause
(10) is learned immediately, DTC selects in order ¬e1, ..., ¬ek−1, and hence
it unit-propagates ek on clause (10). (In the corresponding N.O. refutation,
this corresponds to the eij-deduction η∗ |=Ti

∨k
j=1 e j and to the selection of the

branch ek.)

In each of the three cases above, let Bek

def= μk ∪ {ek} be the current branch, s.t. μk ⊇ μ

and ¬e j ∈ μk for every j < k. Now DTC checks recursively the T1 ∪ T2-satisfiability
of Bek . We have that Bek |=p ϕ and Bek ⊃ μ, so that the subtree below Bek is a strict
subtree of that below μ, so that we can apply the inductive hypothesis to Bek .

If Bek is recursively found T1 ∪ T2-satisfiable, then DTC concludes that μ is T1 ∪
T2-satisfiable.

Otherwise, Bek is recursively found T1 ∪ T2-unsatisfiable. By inductive hypothesis,
the DTC sub-proof requires dtc_dedk eij-deductions and dtc_brk branches, whilst the
N.O. subproof requires no_dedk eij-deductions and no_brk branches, s.t. dtc_brk +
dtc_dedk ≤ no_brk + no_dedk. Let ηk be the conflict set returned and let Nk be the

19E.g., the EUF deduction of (v3 = v4) in the right branch of Fig. 4 corresponds to a simple unit-
propagation on clause C34 in Fig. 8.

R. Bruttomesso et al.

number of negated equalities in ηk. We distinguish two subcases (Fig. 13, left and
right):

1. ek ∈ ηk. Thus ηk = η∗
k ∪ {¬e′

j}Nk
j=1 ∪ {ek}, s.t. η∗

k does not contain ¬eij’s. By Step 2.
of Strategy 1, DTC eliminates ek from the conflicting clause ¬ηk by resolving it
with (10), obtaining the new conflict clause:

(
η∗ ∪ η∗

k

) →
⎛

⎝
k−1∨

j=1

e j ∨
Nk∨

j=1

e′
j

⎞

⎠ . (11)

Let ¬e be the most recently assigned ¬eij in {¬e j}k−1
j=1 ∪ {¬e′

j}Nk
j=1. Then DTC

backjumps up to the highest point in Bek where e can be unit-propagated on
(11), and hence unit-propagates e. (Notice that (11) dominates (10) in driving
the backjumping mechanism because all the ¬e′

j’s occur higher in B than ¬ek.)

2. ek �∈ ηk. Thus ηk = η∗
k ∪ {¬e′

j}Nk
j=1, s.t. η∗

k does not contain ¬eij’s, corresponding to
the clause:

η∗
k →

Nk∨

j=1

e′
j. (12)

Let ¬e be the most recently assigned ¬eij in {¬e′
j}Nk

j=1. Then DTC backjumps up to
the highest point in Bek where e can be unit-propagated on (12), and hence unit-
propagates e. (Notice that also (12) dominates (10) in driving the backjumping
mechanism because all the ¬e′

j’s occur higher in B than ¬ek.)

Then, DTC proceeds, each time checking recursively the T1 ∪ T2-satisfiability on
one open branch Be j

def= μ j ∪ {e j}, each e j corresponding to either one of the original
negated eij’s ¬e1, ..., ¬ek in B, or to one of the negated eij’s occurring in the conflict
sets reported by the recursive sub-proofs. This is done until either a subbranch is
recursively found to be T1 ∪ T2-satisfiable, or the current dominating conflict clause
forces DTC backjumping up to a point within μ, so that μ can be declared T1 ∪ T2-
unsatisfiable, and the negation of the dominating clause is the conflict set returned.

Let N be the number of sub-proofs performed. By inductive hypothesis, the j-
th DTC sub-proof requires dtc_br j branches and dtc_ded j eij-deductions, whilst the
corresponding N.O. sub-proof requires no_ded j eij-deductions and no_br j branches,
s.t. dtc_br j + dtc_ded ≤ no_br j + no_ded j. In the cases (a)–(c) above we have re-
spectively:

Case (a): dtc_br=1+∑N
j=1dtc_br j, dtc_ded=∑N

j=1dtc_ded j, no_br=∑N
j=1 no_br j,

and no_ded = 1 + ∑N
j=1 no_ded j.

Case (b): no_br = ∑N
j=1 no_br j, dtc_ded = ∑N

j=1 dtc_ded j, dtc_br = ∑N
j=1 dtc_br j,

and either no_ded = ∑N
j=1 no_ded j or no_ded = 1 + ∑N

j=1 no_ded j.

Case (c): dtc_br=∑N
j=1dtc_br j, dtc_ded=1+∑N

j=1dtc_ded j, no_br=∑N
j=1no_br j,

and no_ded = 1 + ∑N
j=1 no_ded j.

In all cases, (9) holds. ��

Theorem 2 states that, if the Ti-solvers are both ¬eij-minimal, then there is a
strategy for DTC which emulates some NO proof (even though the Ti-solvers have

Delayed theory combination vs. Nelson-Oppen

limited or no eij-deduction capabilities!) at the cost of (at most) one extra Boolean
branch for every eij-deduction performed by NO. Therefore the (possibly very
expensive) eij-deduction steps of the NO schema can be avoided at the cost of one
extra Boolean branch each.

More generally, we notice that one key idea in the proof of Theorem 2 is that,
when the DPLL engine detects an inconsistency and generates a conflict set η, it
backjumps up to the second-most-recently-assigned ¬eij in η, if any. (See, e.g., the
case of C23 in Fig. 10.) Therefore, in a more general case than that of Theorem 2 (no
¬eij-minimality), the more redundant ¬eij’s the Ti-solvers are able to remove from the
conflict set returned, the more Boolean branches are skipped by backjumping.

Example 13 (convex case) Compare the behaviour of NO and of DTC in the first
branch of Figs. 4 and 8 of Examples 5 and 9 respectively. We notice that in DTC the
whole process mimics the NO deduction process of the first branch in Example 5,
requiring a number of extra Boolean branches equal to the number of deductions
performed by the corresponding NO process (dtc_br = 4, dtc_ded = 0, no_br = 1
and no_ded = 3. Notice that the three leftmost diagonal branches in Fig. 8 obtain the
same effect as the eij-deduction steps in Fig. 4 (and in Fig. 9).

Example 14 (non-convex case) Compare the behaviour of NO and of DTC in Figs. 5
and 10 of Examples 8 and 11 respectively. Again, we notice that in DTC the
whole process mimics the NO deduction process in Example 5, in the sense that
the backjumping steps on the clauses C35, C13, C56, and C23 mimic the effects of
performing the corresponding eij-deductions in Fig. 5. Overall, we notice that in
Fig. 10 DTC explores only seven branches, four for mimicking the corresponding eij-
deductions and three for mimicking the three case-split branches in Fig. 5 (dtc_br =
7, dtc_ded = 0, no_br = 3 and no_ded = 4).

6.2 DTC with eij-deduction-complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are eij-
deduction complete. Under these assumptions, we have the following result.

Theorem 3 Let T1 and T2 be two stably-infinite (possibly non-convex) theories and
let both Ti-solvers be eij-deduction complete; let ϕ be a pure T1 ∪ T2 formula and let
μ be an assignment propositionally satisfying ϕ. Let DTC with Strategy 1 prove the
T1 ∪ T2-consistency (resp. T1 ∪ T2-inconsistency) of μ, returning a conflict set η in the
case of inconsistency. Let dtc_br be the number of Boolean branches required in the
DTC proof. Then we have:

dtc_br ≤ no_br (13)

no_br being the number of branches performed by a corresponding NO proof of the
T1 ∪ T2-consistency (resp. T1 ∪ T2-inconsistency) of μ.

Proof As before, we consider a generical branch μ s.t. μ propositionally satisfies the
input formula ϕ, and we reason by induction on the structure of the DTC Boolean
search tree required to prove the T1 ∪ T2-unsatisfiability of μ.

R. Bruttomesso et al.

Base Let μ be Ti-unsatisfiable for some Ti’s. In this case, the proof is as for
Theorem 2.

Let μ be Ti-satisfiable for both Ti’s, and neither Ti-solver can perform any eij-
deduction from μ. Then by step 5. of Strategy 1, DTC can conclude that μ if T1 ∪ T2-
satisfiable. The same would do every NO tool. Thus dtc_br = no_br = 1, so that (13)
holds.

Step If some previously-learned clauses forces some unit-propagation, the proof is
as for Theorem 2.

If none of the two base conditions hold, and no unit propagation can be performed
on μ, then μ is Ti-satisfiable for both Ti’s and one Ti-solver performs a deduction,
namely μ |=Ti

∨k
j=1 e j. By Step 4. of Strategy 1, the clause (10) is learned immedi-

ately, and hence DTC selects in order ¬e1, ..., ¬ek−1, and hence it unit-propagates
ek on clause (10). (In the corresponding NO refutation, this corresponds to the eij-
deduction μ |=Ti

∨k
j=1 e j and to the selection of the branch ek.)

Henceforth, the proof is as for Theorem 2, except for the fact that, by induction
hypothesis, dtc_brk ≤ no_brk, and dtc_br := ∑N

j=1 dtc_br j, no_br := ∑N
j=1 no_br j

for every j. Thus (13) holds. ��

Theorem 3 states that, under the same hypotheses of eij-deduction as NO, DTC
mimics NO with no extra cost in terms of Boolean search.

Example 15 (convex case) Compare the behaviour of NO and of DTC in the first
branch of Figs. 4 and 9 of Examples 5 and 10 respectively. We notice that in DTC the
whole process mimics the NO deduction process of the first branch in Example 5,
requiring no extra Boolean branches and the same number of deductions per-
formed by the corresponding NO process (dtc_br = 1, dtc_ded = 3, no_br = 1 and
no_ded = 3). (The main difference relies on the fact that, unlike with NO, the
deduced eij’s are not exchanged directly by the Ti-solvers; rather, they are added to
the current assignment μ and unit-propagated.)

In the right branch, instead, in DTC all values are assigned directly by unit-
propagation, saving two deductions wrt. NO (dtc_br = 1, dtc_ded = 0, no_br = 1
and no_ded = 2).

Example 16 (non-convex case) Compare the behaviour of NO and of DTC in
Figs. 5 and 11 of Examples 8 and 12 respectively. Again, we notice that in DTC
the whole process mimics the NO deduction process in Example 8, requiring a
number of Boolean branches corresponding to the branches performed internally
to the T1 ∪ T2-solver in NO (dtc_br = 3, no_br = 3) and and the same number of
deductions performed by the corresponding NO process (dtc_ded = 4, no_ded = 4).

7 Conclusions

In this paper we have presented a detailed comparative analysis of the NO and
the DTC procedures for SMT(T1 ∪ T2). Our analysis has highlighted some im-
portant advantages of DTC in exploiting the power of modern lazy DPLL-based
SAT solvers: first, DTC naturally allows for learning clauses containing interface

Delayed theory combination vs. Nelson-Oppen

equalities, which can be used in subsequent branches to prune search and avoid redo-
ing the same search/deductions from scratch; second, it does not require exhaustive
deduction capabilities to the Ti-solvers, although it can fully exploit them by means
of T -propagation; third, it nicely encompasses the case of non-convex theories, by
delegating to the embedded DPLL solver the task of handling the case-splits causes
by the non-convexity of the theories.

As far as the possible increase of Boolean search space, we have shown that,
by exploiting the full power of advanced SMT techniques like Early Pruning, T -
propagation, T -backjumping and T -learning, there is a strategy which allows DTC
to mimic the behavior of NO, so that:

(i) under the same hypotheses of eij-deduction capabilities of the Ti-solvers re-
quired by NO, DTC requires no extra Boolean search (Theorem 3);

(ii) using Ti-solvers with limited or no eij-deduction capabilities, the extra Boolean
search required can be reduced down to a negligible amount by controlling the
quality of the T -conflict sets returned by the T -solvers (Theorem 2).

We remark that the NO-mimicking strategy has been conceived only for the sake
of proving Theorems 2 and 3 (e.g., last UIP is used instead of the more efficient 1st
UIP in order to mimic the naive case-splits performed by NO, see Section 4.2.3), and
that the strategies implemented by actual tools introduce further improvements in
terms of efficiency. E.g., in MathSAT [8, 13] 1st UIP is used, which typically allows
for a stronger pruning of the Boolean search space [45], Step 3.(ii) is substituted
with a weakened version of EP [8], which reduces the effort of repeated calls to the
Ti-solvers, and more effective literal-selection strategies are preferred to Step 3.(i)
and (iii).

As far as the ¬eij-minimality hypothesis is concerned, we notice that, at least for
theories like EUF and LA(Q), there are known decision procedures that fulfill this
requirement (see [31] and [8] respectively.) For other theories, the problem of ¬eij-
minimization opens a novel research branch.20 However, we remark that DTC works
also when the Ti-solvers are not ¬eij-minimal, at the cost of (at most) one extra branch
to explore for each redundant ¬eij returned in a conflict set.

On the whole, the results presented in this paper show that DTC allows for
trading Boolean search for eij-deduction. Thus everyone can choose and implement
the most suitable Ti-solvers without being forced by the eij-deduction-completeness
straitjacket: for theories for which efficient eij-deduction complete procedures are
available (e.g., EUF [31]), DTC allows for exploiting the full power of eij-deduction;
for harder theories (e.g., LA(Z)), the research task changes from that of finding
eij-deduction complete T -solvers to that of finding ¬eij-minimal or nearly-¬eij-
minimal ones.

20Bottom line, one can always make μ ¬eij-minimal by dropping the remaining ¬eij’s one by one,
each time checking μ \ {¬eij}. Notice that, in general, with ¬eij-minimization the search for the
candidate ¬eij’s to drop is restricted to only those occurring in μ, whilst with eij-deduction the search
for the candidate eij’s to deduce extends to all the unassigned eij’s.

R. Bruttomesso et al.

References

1. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: automatic theorem proving for predicate
abstraction refinement. In: Proc. CAV’04. LNCS, vol. 3114. Springer, New York (2004)

2. Barrett, C., Berezin, S.: CVC Lite: a new implementation of the cooperating validity checker. In:
Proceedings of the 16th International Conference on Computer Aided Verification (CAV ’04).
LNCS, vol. 3114. Springer, New York (2004)

3. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo
theories. In: Proc. LPAR’06. LNAI, vol. 4246. Springer, New York (2006)

4. Barrett, C., Tinelli, C.: Cvc3. In: Proc. CAV’07. LNCS, vol. 4590. Springer, New York (2007)
5. Barrett, C.W., Dill, D.L., Stump, A.: A generalization of Shostak’s method for combining de-

cision procedures. In: Frontiers of Combining Systems (FROCOS). Lecture Notes in Artificial
Intelligence. Springer, Santa Margherita Ligure (2002)

6. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and undecid-
ability results for Nelson-Oppen and rewrite-based decision procedures. In: Proc. of IJCAR’06.
LNAI, no. 4130 (2006)

7. Bozzano, M., Bruttomesso, R., Cimatti, A., Franzen, A., Hanna, Z., Khasidashvili, Z., Palti,
A., Sebastiani, R.: Encoding RTL constructs for MathSAT: a preliminary report. In: Proc.
PDPAR’05. ENTCS, vol. 144. Elsevier, Amsterdam (2006)

8. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P., Schulz, S., Sebastiani, R.:
An incremental and layered procedure for the satisfiability of linear arithmetic logic. In: Proc.
TACAS’05. LNCS, vol. 3440. Springer, New York (2005)

9. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Sebastiani, R.:
Efficient satisfiability modulo theories via delayed theory combination. In: Proc. CAV 2005.
LNCS, vol. 3576. Springer, New York (2005)

10. Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P., Ranise, S., Sebastiani, R.:
Efficient theory combination via boolean search. Inf. Comput. 204(10), 1493–1525 (2006)

11. Brinkmann, R., Drechsler, R.: RTL-datapath verification using integer linear programming.
In: Proc. ASP-DAC 2002, pp. 741–746. IEEE, Piscataway (2002)

12. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: Delayed theory com-
bination vs. Nelson-Oppen for satisfiability modulo theories: a comparative analysis. In: Proc.
LPAR’06. LNAI, vol. 4246. Springer, New York (2006)

13. Bruttomesso, R., Cimatti, A., Franzen, A., Griggio, A., Sebastiani, R.: The MathSAT 4 SMT
solver. In: CAV. LNCS, vol. 5123. Springer, New York (2008)

14. Cotton, S., Maler, O.: Fast and flexible difference logic propagation for DPLL(T). In: Proc.
SAT’06. LNCS, vol. 4121. Springer, New York (2006)

15. de Moura, L., Bjørner, N.: Model-based theory combination. In: Proc. of the 5th Workshop on
Satisfiability Modulo Theories SMT’07. http://www.lsi.upc.edu/~oliveras/smt07/ (2007)

16. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar, N.: The ICS decision procedures for
embedded deduction. In: Proc. IJCAR’04. LNCS, vol. 3097, pp. 218–222. Springer, New York
(2004)

17. Detlefs, D., Nelson, G., Saxe, J.: Simplify: a theorem prover for program checking. J. ACM 52(3),
365–473 (2005)

18. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Proc. CAV’06.
LNCS, vol. 4144. Springer, New York (2006)

19. Dutertre, B., de Moura, L.: System description: Yices 1.0. In: Proc. on 2nd SMT competition,
SMT-COMP’06. yices.csl.sri.com/yices-smtcomp06.pdf (2006)

20. Enderton, H.: A Mathematical Introduction to Logic. Academic, London (1972)
21. Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonizer and Solver. In: Proc.

CAV’2001 (2001)
22. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In:

Proc. CAV 2003. LNCS. Springer, New York (2003)
23. Fontaine, P., Ranise, S., Zarba, C.G.: Combining lists with non-stably infinite theories. In: Proc.

LPAR’04. LNCS, vol. 3452. Springer, New York (2004)
24. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision

procedures. In: Proc. CAV’04. LNCS, vol. 3114, pp. 175–188. Springer, New York (2004)
25. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. J. Autom. Reason.

33(3), 221–249 (2004)
26. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive framework for combined decision

procedures. In: Proc. FroCos’05. LNCS, vol. 3717. Springer, New York (2005)

http://www.lsi.upc.edu/~oliveras/smt07/
http://yices.csl.sri.com/yices-smtcomp06.pdf

Delayed theory combination vs. Nelson-Oppen

27. Krstic, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen with DPLL.
In: Proc. Frontiers of Combining Systems, 6th International Symposium, FroCoS 2007. LNAI,
vol. 4720. Springer, New York (2007)

28. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories.
In: TACAS’07. LNCS, vol. 4424. Springer, New York (2007)

29. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints. In: Proc. of
5th International Workshop on Frontiers of Combining Systems (FroCos ’05). LNCS, vol. 3717.
Springer, New York (2005)

30. Nelson, C.G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2),
245–257 (1979)

31. Nieuwenhuis, R., Oliveras, A.: Congruence closure with integer offsets. In: Proc. 10th LPAR.
LNAI, no. 2850, pp. 77–89. Springer, New York (2003)

32. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application
to difference logic. In: Proc. CAV’05. LNCS, vol. 3576. Springer, New York (2005)

33. Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comp. Sci. 12,
291–302 (1980)

34. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite
theories using many-sorted logic. In: Proc FroCos’05. LNCS, vol. 3717. Springer, New York
(2005)

35. Rueß, H., Shankar, N.: Deconstructing Shostak. In: Proc. LICS ’01. IEEE Computer Society,
Piscataway (2001)

36. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability, Boolean Modeling
and Computation, JSAT. 3, 141–224 (2007)

37. Shankar, N., Rueß, H.: Combining Shostak theories. Invited paper for Floc’02/RTA’02 (2002)
38. Shostak, R.: A pratical decision procedure for arithmetic with function symbols. J. ACM 26(2),

51–360 (1979)
39. Shostak, R.: Deciding combinations of theories. J. ACM 31, 1–12 (1984)
40. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combination proce-

dure. In: Proc. Frontiers of Combining Systems, FroCoS’06. Applied Logic. Kluwer, Dordrecht
(1996)

41. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability
procedures. Theor. Comp. Sci. 290(1), 291–353 (2003)

42. Tinelli, C., Zarba, C.: Combining nonstably infinite theories. J. Autom. Reason. 34(3), 209–238
(2005)

43. Zarba, C.G.: A tableau calculus for combining non-disjoint theories. In: Proc. Tableaux’02.
Lecture Notes in Computer Science, vol. 2381, pp. 315–329. Springer, New York (2002)

44. Zarba, C.G.: Combining sets with integers. In: FroCos’02. Lecture Notes in Computer Science,
vol. 2309, pp. 103–116. Springer, New York (2002)

45. Zhang, L., Madigan, C.F., Moskewicz, M.H., Malik, S.: Efficient conflict driven learning in a
boolean satisfiability solver. In: Proc. ICCAD ’01. IEEE, Piscataway (2001)

46. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proc. CAV’02.
LNCS, no. 2404, pp. 17–36. Springer, New York (2002)

	Delayed theory combination vs. Nelson-Oppen for satisfiability modulo theories: a comparative analysis
	Abstract
	Introduction
	Logical background
	Basic definitions and notation
	The Nelson-Oppen logical framework

	Modern SMT solvers
	The lazy SMT schema and its main optimizations
	Discussion

	SMT for combined theories via Nelson-Oppen's procedure
	The Nelson-Oppen procedure
	Discussion
	Returning ``eij-unaware'' conflict clauses
	No learning from eij-reasoning
	Forcing internal case-splits in non-convex theories
	Requiring eij-deduction complete Ti-solvers

	SMT for combined theories via the DTC procedure
	The DTC procedure
	Discussion
	Delaying theory combination
	Learning from eij reasoning
	Allowing lack of eij-deduction capability
	Handling case-splits in non-convex theories

	Controlling the enlargement of the Boolean search space
	DTC with non eij-deduction-complete Ti-solvers vs. NO
	DTC with eij-deduction-complete Ti-solvers vs. NO

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

