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Weighted model integration (WMI) is a recent formalism generalizing weighted model 
counting (WMC) to run probabilistic inference over hybrid domains, characterized by both 
discrete and continuous variables and relationships between them. WMI is computationally 
very demanding as it requires to explicitly enumerate all possible truth assignments to 
be integrated over. Component caching strategies which proved extremely effective for 
WMC are difficult to apply in this formalism because of the tight coupling induced by the 
arithmetic constraints. In this paper we present a novel formulation of WMI, which allows 
to exploit the power of SMT-based predicate abstraction techniques in designing efficient 
inference procedures. A novel algorithm combines a strong reduction in the number of 
models to be integrated over with their efficient enumeration. Experimental results on 
synthetic and real-world data show drastic computational improvements over the original 
WMI formulation as well as existing alternatives for hybrid inference.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The development of efficient exact and approximate algorithms for probabilistic inference is a long standing goal of 
artificial intelligence research. Whereas substantial progress has been made in dealing with purely discrete or purely con-
tinuous domains, probabilistic inference on hybrid domains, characterized by both discrete and continuous variables and their 
relationships, is still a challenge. Hybrid domains are however extremely common in real-world scenarios, from transport 
modeling and traffic forecasting [27] to probabilistic robotics [48] and cyber-physical systems [32].

Weighted model counting (WMC) is the task of computing the weighted sum of all satisfying assignments of a proposi-
tional formula, where weights are associated to models and are typically factorized into the product of weights of individual 
variables. In recent years, WMC was shown to be an effective solution for addressing probabilistic inference in a wide 
spectrum of formalisms [13,15,23,47]. Exact WMC solvers are based on knowledge compilation [17,37] or exhaustive DPLL 
search [41]. In both cases, substantial efficiency gains can be obtained by leveraging component caching techniques [3,40], 
in which the weighted model counts of disjoint components of a formula are cached once and reused whenever the formula 
is encountered again in the computation.

An inherent limitation of WMC is that it can only deal with discrete distributions. In order to overcome this restriction, 
weighted model integration (WMI) [7] was recently introduced as a formulation generalizing WMC to deal with hybrid 
domains. The formalism relies on satisfiability modulo theories (SMT) [5] technology, which allows to reason about the 
satisfiability of formulas involving e.g. linear constraints over integers or reals. WMI works by replacing the weighted sum 
of truth assignments satisfying a propositional formula with a sum of integrals over weight functions defined over the truth 

✩ A preliminary and much shorter version of this work was presented at IJCAI’17 [36].
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assignments satisfying an SMT formula. Weight functions here play the role of (unnormalized) densities, whereas logic 
formulas in the model define the integration domain. WMI is computationally very demanding as it requires to explicitly 
enumerate all possible truth assignments to be integrated over. Component caching strategies which proved extremely 
effective for WMC are difficult to apply in this formalism because of the tight coupling induced by the arithmetic constraints.

In this paper, we elaborate on the notion of WMI and provide a refined formalization which allows to design more 
efficient inference procedures. In particular, our novel formulation:

• easily captures the previous definition;
• allows for defining arbitrary weight functions (involving e.g., arbitrary combinations of sums, products, if-then-elses, 

case-splits. . . ) without requiring to specify them in terms of combinations of weights over literals;
• allows for exploiting state-of-the-art SMT-based techniques.

Building on the properties of this novel formulation, we devise an efficient algorithm combining a strong reduction in 
the number of models to be generated and integrated over, with efficiency in enumerating these models. The key ingredient 
is the use of SMT-based predicate abstraction techniques [11,26,30] to efficiently and effectively generate the set of models 
needed to compute the exact integral. Our experimental evaluation confirms that the approach is drastically faster than 
existing alternatives over synthetic and real-world problems, and that both aspects contribute to the gain.

The paper is organized as follows. We start by introducing relevant background, including the original definition of 
WMI (§2). We then proceed by identifying its shortcomings and proposing a revised and general formulation, proving 
some essential properties (§3). In order to show the expressiveness and features of the novel definition, we propose a case 
study coming from a real-world application (§4). Then we show how to efficiently compute WMI by exploiting SMT-based 
predicate abstraction techniques (§5). In §6 we summarize some related work. In §7 we present an empirical evaluation on 
synthetic and real-world problems comparing the algorithm proposed in §5 with existing alternatives. In §8 we conclude, 
and describe some future research directions.

2. Background

We provide the necessary background notions on SMT, AllSMT and Predicate Abstraction (§2.1), and on WMC and the 
original formulation of WMI (§2.2).

2.1. SMT, AllSMT and predicate abstraction

We assume the reader is familiar with the basic syntax, semantics and results of propositional and first-order logics. We 
adopt some terminology and concepts from Satisfiability Modulo Theories (SMT), which we briefly summarize below (see 
[5,44] for details).

Our context is that of SMT on quantifier-free formulas in the theory of linear arithmetic over the reals, LRA. R denotes 
the set of real values and B def= {�,⊥} the set of Boolean values. LRA formulas are combinations by means of the standard 
Boolean operators {¬,∧,∨,→,↔} of atomic propositions Ai ∈B (aka Boolean atoms/variables) and of LRA atomic formu-
las (aka LRA atoms) in the form (

∑
i ci xi 
� c), s.t. xi are variables in R, ci are rational values and 
� ∈ {=, �=,≥,≤,>,<}, 

with their usual semantics. A Boolean/LRA literal is either a Boolean/LRA atom (a positive literal) or its negation (a 
negative literal).

“|=LRA” denotes entailment in LRA (e.g. (x ≥ 2) |=LRA (x ≥ 1)), whereas “|=B” denotes tautological entailment (e.g. 
A1 ∧ (x ≥ 2) |=B (A1 ∨ (x ≤ 1)) ∧ (¬A1 ∨ (x ≥ 2))). Note that |=B is strictly stronger than |=LRA , that is, if ϕ1 |=B ϕ2 then 
ϕ1 |=LRA ϕ2, but not vice versa. We say that ϕ1 implies ϕ2 in LRA, written ϕ1 ⇒LRA ϕ2, iff ϕ1 |=LRA ϕ2. We say that 
ϕ1, ϕ2 are LRA-equivalent, written ϕ1 ⇔LRA ϕ2, iff both ϕ1 |=LRA ϕ2 and ϕ2 |=LRA ϕ1.

We frequently use the following formula and term abbreviations, all written in the form “�〈expression〉�”, denoting the 
LRA-encoding of 〈expression〉, the latter being some mathematical concept which is not an LRA formula or term. Let 
t, ti be LRA terms, ϕ, ϕi be LRA formulas, and I = [l, u] be some interval; then we use “�t∈ I �” as a shortcut for the 
formula (t ≥ l) ∧ (t ≤ u), possibly with “>” or “<” if some end of the interval is open1; we use “�OneOf{ϕ1, . . . , ϕn}�” 
as a shortcut for the formula (

∨n
i=1 ϕi) ∧ ∧

1≤i< j≤n ¬(ϕi ∧ ϕ j), i.e., exactly one ϕi holds; we use “�If ϕ Then t1 Else t2 �” 
to represent an if-then-else expression, that is, t = �If ϕ Then t1 Else t2 � is equivalent to (ϕ → (t = t1)) ∧ (¬ϕ → (t =
t2)); we use “�Case ϕ1 : t1; ϕ2 : t2; . . . �” to generalize the if-then-else to the case of multiple mutually-exclusive and 
exhaustive conditions, that is, t = �Case ϕ1 : t1; ϕ2 : t2; . . . � is equivalent to 

∧
i(ϕi → (t = ti)), under the assumption that 

the conditions ϕi are exhaustive –that is, |=LRA
∨

i ϕi – and mutually exclusive – that is, ϕi ∧ ϕ j |=LRA ⊥ for every i, j.2

Given a set of LRA formulas � def= {ψ1, . . . ,ψK }, we call a total [resp. partial] truth assignment μ for � any total [resp. 
partial] map from � to B. With a little abuse of notation, we represent μ either as a set or a conjunction:

1 We often represent strict inequalities “(t1 < t2)” as negated non-strict ones “¬(t1 ≥ t2)”, see [44].
2 Note that the mutual exclusion guarantees that the semantics of �Case ϕ1 : t1; ϕ2 : t2; . . . � is not sequential, and it does not depend on the order of 

the conditions ϕ1, ϕ2, . . ..
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μ
def= {ψ | ψ ∈ �, μ(ψ) =�} ∪ {¬ψ | ψ ∈ �, μ(ψ) =⊥},

μ
def= ∧

ψ∈�,μ(ψ)=� ψ ∧ ∧
ψ∈�,μ(ψ)=⊥¬ψ,

and we write “ψi ∈ μ1” and “μ1 ⊆ μ2” as if μ1, μ2 were represented as sets (i.e. we write “ψ1 ∧ ¬ψ2 ⊆ ψ1 ∧ ¬ψ2 ∧ ψ3” 
meaning “{ψ1,¬ψ2} ⊆ {ψ1,¬ψ2,ψ3}”). In the latter case, we say that μ1 is a sub-assignment of μ2, and that μ2 is a 
super-assignment of μ1. We denote by BK the set of all total truth assignments over �.

Let x def= {x1, . . . , xN } ∈ RN and A def= {A1, . . . , AM} ∈ BM for some N and M . Consider a generic LRA formula ϕ on 
(subsets of3) x and A, and let � def= Atoms(ϕ), i.e. the set of propositional and LRA atoms occurring in ϕ . Given a truth 
assignment μ for Atoms(ϕ), we denote by μA and μLRA its two components on the Boolean atoms in A and on the 
LRA atoms respectively, so that μ = μA ∧ μLRA . (E.g., if μ = A1 ∧ ¬A2 ∧ (x ≥ 1) ∧ ¬(x ≥ 3), then μA = A1 ∧ ¬A2 and 
μLRA = (x ≥ 1) ∧¬(x ≥ 3)). Importantly, and unlike with pure propositional logic, μ can be LRA-unsatisfiable due to its 
μLRA component (e.g. μ def= ¬A1 ∧ (x1 + x2 = 3) ∧¬(x1 + x2 ≥ 2)). A (partial) truth assignment μ propositionally satisfies ϕ
iff μ |=B ϕ . The SMT problem for ϕ in LRA is the problem of checking the existence of a LRA-satisfiable assignment μ
s.t. μ |=B ϕ .

We denote by T T A(ϕ) def= {μ1, . . . ,μ j, . . .} the set of all LRA-satisfiable total truth assignments μ j on Atoms(ϕ)

propositionally satisfying ϕ . T T A(ϕ) is unique. The disjunction of the μ j ’s in T T A(ϕ) is LRA-equivalent to ϕ (see e.g. 
[44]):

ϕ ⇔LRA
∨

μ j∈T T A(ϕ)

μ j. (1)

We denote by T A(ϕ) def= {μ1, . . . ,μ j, . . .} any set of LRA-satisfiable partial truth assignments μ j propositionally satis-
fying ϕ , s.t. (i) every total truth assignment η ∈ T T A(ϕ) is a super-assignment of one μ j in T A(ϕ), and (ii) every pair 
μi , μ j assigns opposite truth values to at least one element, i.e., μi ∧ μ j |=B ⊥ (hence μi ∧ μ j |=LRA ⊥). T A(ϕ) is not 
unique, and T T A(ϕ) is a particular case of T A(ϕ). The disjunction of the μ j ’s in T A(ϕ) is LRA-equivalent to ϕ (see 
e.g. [44]):

ϕ ⇔LRA
∨

μ j∈T A(ϕ)

μ j. (2)

Intuitively, a set T A(ϕ) is a (much) more compact representation of T T A(ϕ), because every partial assignment μi in 
T A(ϕ) implicitly represents up to 2|Atoms(ϕ)|−|μi | of its total super-assignments in T T A(ϕ). (It is “up to” rather than 
“exactly” because not all the super-assignments of μi are necessarily LRA-satisfiable.)

The AllSMT problem for ϕ in LRA, hereafter denoted as AllSMT(ϕ), is the problem of enumerating one set T T A(ϕ)—or 
T A(ϕ) if and only if we allow for partial assignments—matching the above definition.4

Example 1. Consider the LRA-formula ϕ def= (x ≤ 0) ∨ (x ≥ 1). Then T T A(ϕ) def= {(x ≤ 0) ∧¬(x ≥ 1),¬(x ≤ 0) ∧ (x ≥ 1)}. 
Note that (T T A(ϕ) does not contain (x ≤ 0) ∧ (x ≥ 1) because the latter is not LRA-satisfiable.) The other admissi-
ble T A(ϕ)’s are: {(x ≤ 0),¬(x ≤ 0) ∧ (x ≥ 1)} and {(x ≥ 1), (x ≤ 0) ∧¬(x ≥ 1)}. Instead, the set of unary truth assignments 
{(x ≤ 0), (x ≥ 1)} is not an admissible T A(ϕ) because there is no atom to which they assign different truth values, so that 
(x ≤ 0) ∧ (x ≥ 1) �|=B ⊥. �

We recall a notion of predicate abstraction, which is widely used in formal verification for automatically computing 
finite-state abstractions for systems with potentially infinite state spaces [11,26,30].

Definition 1. Let ϕ(x, A) be a LRA-formula on x and A; let � def= {ψ1, . . . ,ψK } be a set of LRA-formulas over x and A, 
and B def= {B1, . . . , B K } be a set of fresh atomic propositions s.t. A ∩ B = ∅. Then we call a Predicate Abstraction of ϕ with 
respect to � on B, namely PredAbs[ϕ,�](B), any propositional formula equivalent to the formula5

∃A∃x.

(
ϕ(x,A) ∧

K∧
k=1

(Bk ↔ ψk(x,A))

)
. (3)

3 Note that it is not necessarily the case that all elements of x and A actually occur in ϕ .
4 We remark that in the SMT literature the word “AllSMT” is used with slightly distinct meanings, as either T T A(ϕ), or as T A(ϕ), or even as predicate 

abstraction as in Definition 1 [16,30,38].
5 In principle we should existentially quantify only the variables xn and Am which actually occur in either ϕ or �. Nevertheless, this is not restrictive 

since ∃An.ϕ ⇔LRA ϕ if An does not occur in ϕ; the same holds for xi .
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We define PredAbs[ϕ](�) def= PredAbs[ϕ,�](B)[B ← �], that is, the LRA-formula obtained from the propositional formula 
PredAbs[ϕ,�](B) by substituting each Bk with its corresponding ψk .

Note that in Definition 1 the formulas ψk are neither necessarily atomic, nor necessarily sub-formulas of ϕ . 
PredAbs[ϕ,�](B) defines an equivalence class of propositional formulas over B, i.e., (3) may represent many syntactically-
different albeit logically-equivalent propositional formulas.

Example 2. Consider A def= {A1}, x def= {x1, x2}, ϕ
def= A1 ∧ (x1 + x2 > 12), ψ1

def= (x1 + x2 = 2), ψ2
def= (x1 − x2 < 10). Then we 

have that:

PredAbs[ϕ,�](B)
def= ∃A1.∃x1x2.

⎛
⎝ A1 ∧ (x1 + x2 > 12)∧

(B1 ↔ (x1 + x2 = 2))∧
(B2 ↔ (x1 − x2 < 10))

⎞
⎠ (4)

= (¬B1 ∧¬B2) ∨ (¬B1 ∧ B2) (5)

= ¬B1. (6)

PredAbs[ϕ](�) = (¬(x1 + x2 = 2)∧¬(x1 − x2 < 10)) ∨
(¬(x1 + x2 = 2)∧ (x1 − x2 < 10))

(7)

= ¬(x1 + x2 = 2). (8)

Note that both the equivalent propositional formulas (5) and (6) match the definition of PredAbs[ϕ,�](B): (5) is built as the 
disjunction of total assignments on B, whereas (6) is built as the disjunction of partial ones s.t.:

T T A(PredAbs[ϕ,�](B)) = {(¬B1 ∧¬B2), (¬B1 ∧ B2)} (9)

T A(PredAbs[ϕ,�](B)) = {(¬B1)} (10)

T T A(PredAbs[ϕ](�)) =
{

(¬(x1 + x2 = 2)∧¬(x1 − x2 < 10)),

(¬(x1 + x2 = 2)∧ (x1 − x2 < 10))

}
(11)

T A(PredAbs[ϕ](�)) = {(¬(x1 + x2 = 2))} (12)

Note also that the other two total assignments, B1 ∧ B2 and B1 ∧¬B2, do not occur in (5) because they would both force 
the formula to be LRA-unsatisfiable because of the contradictory conjuncts (x1 + x2 > 12) ∧ (x1 + x2 = 2). �

Intuitively, given a set of “relevant” formulas �—typically referred to as “predicates”, from which the name “predicate 
abstraction” follows [26]— and a set of Boolean atoms B labeling them, PredAbs[ϕ,�](B) is a Boolean formula whose satis-
fying assignments represent the truth assignments to (the propositional atoms B labeling) the predicates in � which are 
consistent with ϕ , so that PredAbs[ϕ](�) is a LRA-formula characterizing the truth assignments to the predicates in �
which share some solution with ϕ . Thus, PredAbs[ϕ,�](B) “abstracts” (aka “projects”) ϕ onto the Boolean space BK by con-
sidering the truth values of (the propositional atoms B labeling) the predicates in � as the only relevant information to 
consider in the resulting propositional formula, and by existentially-quantifying away all other information.

Note that in the typical usage of predicate abstraction the number of “relevant” predicates |�| is smaller or even much 
smaller than |Atoms(ϕ)|, so that to drastically reduce the size of the search space for the SMT solver, from (up to) 2|Atoms(ϕ)|
to (up to) 2|�| , so that 2|�| � 2|Atoms(ϕ)| .

We highlight a few facts about predicate abstraction.

(a) If � is A, then PredAbs[ϕ](A) reduces to ∃x.ϕ(x, A).6

(b) If � is Atoms(ϕ), then PredAbs[ϕ](Atoms(ϕ)) is equivalent to ϕ .7 Therefore T T A(PredAbs[ϕ](Atoms(ϕ))) [resp. 
T A(PredAbs[ϕ](Atoms(ϕ))) iff we admit partial assignments] is the same as T T A(ϕ) [resp. T A(ϕ) ], that is, 
AllSMT(ϕ).

(c) If � ⊂ Atoms(ϕ) and |�| is significantly smaller than |Atoms(ϕ)|, then typically |T T A(PredAbs[ϕ](�))| � |T T A(ϕ)|.8

Very effective SMT-based techniques for computing T T A(PredAbs[ϕ,�](B)) —and hence for T T A(PredAbs[ϕ](�))— have 
been proposed in the literature (e.g. [11,30]) and are implemented in modern SMT solvers like MathSAT5 [16]. Very impor-
tantly for our purposes, these techniques work by iteratively producing a set of propositional truth assignments on B, which 

6 In fact, PredAbs[ϕ](A) = PredAbs[ϕ,A](B)[B ← A] = {∃A∃x.(ϕ(x, A) ∧ ∧K
k=1(Bk ↔ Ak)} [B ← A]) = {∃x.ϕ(x, B)} [B ← A] = ∃x.ϕ(x, A).

7 In fact, PredAbs[ϕ](Atoms(ϕ)) = PredAbs[ϕ,Atoms(ϕ)](B)[B ← Atoms(ϕ)] = {∃A∃x.(ϕ(x, A) ∧ ∧
ψk∈Atoms(ϕ)(Bk ↔ ψk)} [B ← Atoms(ϕ)]), which is equiva-

lent to ϕ(x, A).
8 In fact, for every assignment μ ∈ T T A(PredAbs[ϕ](�)) there exist from 1 to 2|Atoms(ϕ)|−|�| assignments μ ∧μ′ ∈ T T A(ϕ).
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are then disjoined as in (2). Therefore, MathSAT5 computes PredAbs[ϕ,�](B) directly in the form T T A(PredAbs[ϕ,�](B))

[resp. PredAbs[ϕ](�) in the form T T A(PredAbs[ϕ](�))].
In particular MathSAT5, on demand, can produce either the set of total assignments on B, T T A(PredAbs[ϕ,�](B)), or a 

set of partial ones, T A(PredAbs[ϕ,�](B)), by means of assignment-reduction techniques. To this extent, we recall that Math-

SAT5 does not provide an explicit command for AllSMT(ϕ); rather, the user has to set explicitly the definitions 
∧

k(Bk ↔ ψk)

and specify the (sub)set of B of interest.9

2.2. Weighted model counting and weighted model integration

WMC is the task of computing the weighted sum of all satisfying assignments of a propositional formula, with weights 
typically factorized as a product of weights over literals.

Definition 2 (Weighted Model Count). Let ϕ be a propositional formula on the set of Boolean atoms A def= {A1, . . . , AM} and 
let w be a function associating a non-negative weight to each literal whose atom occurs in ϕ . Then the Weighted Model 
Count of ϕ is defined as:

WMC(ϕ, w) =
∑

μ∈T T A(ϕ)

∏
�∈μ

w(�). (13)

Example 3. Let ϕ def= ((A1 ∧ A2) ↔ B1) ∧ ((A1 ∧ ¬A2) ↔ B2) ∧ ((¬A1 ∧ A2) ↔ B3) ∧ ((¬A1 ∧ ¬A2) ↔ B4). Let the weights 
of all literals be equal to 1 apart from w(A1) = w(¬A1) = 0.5, w(B1) = 0.8, w(B2) = 0.2, w(B3) = 0.4, w(B4) = 0.6. Then 
T T A(ϕ ∧ A2) has two assignments μ1

def= A1 ∧ A2 ∧ B1 ∧¬B2 ∧¬B3 ∧¬B4 and μ2
def= ¬A1 ∧ A2 ∧¬B1 ∧¬B2 ∧ B3 ∧¬B4, 

so that the weighted model count of ϕ ∧ A2 is computed as:

WMC(ϕ ∧ A2, w) =
∑

μ∈T T A(ϕ∧A2)

∏
�∈μ

w(�)

= w( A1) · w( A2) · w( B1) · w(¬B2) · w(¬B3) · w(¬B4)

+ w(¬A1) · w( A2) · w(¬B1) · w(¬B2) · w( B3) · w(¬B4)

= 0.5 · 1 · 0.8 · 1 · 1 · 1 + 0.5 · 1 · 1 · 1 · 0.4 · 1 = 0.6.

Note that the (ϕ, w) pair here models a joint probability distribution P (A1, A2) = P (A2|A1)P (A1) over binary variables 
A1 and A2. P (A1) is encoded in the weights associated to A1 and P (A2|A1) is encoded in the weights associated to 
the auxiliary variables B1, B2, B3 and B4, each labeling one of the four truth value combinations. WMC(ϕ ∧ A2, w) here 
computes the marginal probability of A2 =�, i.e. P (A2 =�) = ∑

A1={⊥,�} P (A2 =�|A1)P (A1). �

Remark 1. Note that the above definition of WMC(ϕ ,w) implicitly assumes that the Boolean domain is specified by means 
of some given background set of atomic propositions (namely A) such that Atoms(ϕ) ⊆ A for every formula ϕ considered, 
and that always truth assignments assign all atoms in A, including those which do not occur in Atoms(ϕ). (If not so, 
and we considered instead assignments only to the atoms occurring in ϕ , we could have situations where the WMC of 
two logically-equivalent formulas ϕ1 and ϕ2 under the same weight function wproduces different values: ϕ1 ⇔ ϕ2 and 
WMC(ϕ1, w) �= WMC(ϕ2, w).10) In our framework we will make domain assumptions explicit (§3 and §5).

WMI generalizes WMC to hybrid domains. Following is the original definition of WMI [7], hereafter denoted with WMIold , 
which serves as a starting point for our revised formulation. The definition assumes LRA formulas, for which efficient 
solvers exist, albeit the concept could in principle accommodate other theories over continuous domains.

Definition 3 (Weighted Model Integral). Let ϕ be a LRA formula on the set of LRA variables x def= {x1, . . . , xN } and Boolean 
atoms A def= {A1, . . . , AM}. Let w be a function associating an expression (possibly constant) over x to each literal whose 
atom occurs in ϕ . The Weighted Model Integral of ϕ is defined as:

WMIold(ϕ, w) =
∑

μ∈T T A(ϕ)

∫
μLRA

∏
�∈μ

w(�) dx. (14)

9 See http://mathsat .fbk.eu /smt2examples .html. See also Footnote 4.
10 E.g., if ϕ1

def= A1, ϕ2
def= (A1 ∨ A2) ∧ (A1 ∨¬A2), and w(l) = 1 for every literal l, then WMC(ϕ1, w) = 1 and WMC(ϕ2, w) = 2.

http://mathsat.fbk.eu/smt2examples.html
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Example 4. Consider the LRA-formula

ϕ
def= (A2 → ((1 ≤ x) ∧ (x ≤ 3))) ∧ (A3 → (¬(x ≤ 3) ∧ (x ≤ 5)))

∧ (A1 ↔ (¬A2 ∧¬A3)) ∧ (1 ≤ x) ∧ (x ≤ 5).

Let the weights of all literals be 1 except for w(A1) = 0.1, w(A2) = 0.25 · x − 0.25 and w(A3) = 1.25 − 0.25 · x. First, it is 
easy to see that

T T A(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

A1 ∧¬A2 ∧¬A3 ∧ (1 ≤ x) ∧ (x ≤ 5)∧ (x ≤ 3),

A1 ∧¬A2 ∧¬A3 ∧ (1 ≤ x) ∧ (x ≤ 5)∧¬(x ≤ 3),

¬A1 ∧ A2 ∧¬A3 ∧ (1 ≤ x) ∧ (x ≤ 5)∧ (x ≤ 3),

¬A1 ∧¬A2 ∧ A3 ∧ (1 ≤ x) ∧ (x ≤ 5)∧¬(x ≤ 3)

⎫⎪⎪⎬
⎪⎪⎭ .

Then we have:11

WMIold(ϕ, w) =
∫

(1≤x)∧(x≤5)∧(x≤3)

w(A1) dx +
∫

(1≤x)∧(x≤5)∧¬(x≤3)

w(A1) dx

+
∫

(1≤x)∧(x≤5)∧(x≤3)

w(A2) dx +
∫

(1≤x)∧(x≤5)∧¬(x≤3)

w(A3) dx

=
∫

[1,3]
0.1 dx +

∫
(3,5]

0.1 dx

+
∫

[1,3]
0.25 · x − 0.25 dx +

∫
(3,5]

1.25 − 0.25 · x dx

= [0.1 · x]3
1 + [0.1 · x]5

3

+
[

0.125 · x2 − 0.25 · x
]3

1
+

[
1.25 · x − 0.125 · x2

]5

3

= 0.3 − 0.1 + 0.5 − 0.3 + 0.375 + 0.125 + 3.125 − 2.625 = 1.4

This example models an unnormalized distribution over x ranging from one to five, which is uniform if A1 is true, and 
is modeled as a triangular distribution with mode at x = 3 otherwise. �
Remark 2. The main motivation behind the introduction of WMI was that of enabling probabilistic inference in hybrid 
domains. In that scenario, it was implicitly assumed that a pair 〈ϕ, w〉 defines the unnormalized distribution, and that any 
additional formula representing evidence or queries does not introduce any additional Boolean or continuous variables with 
respect to those in ϕ , and that the weight of any literal of atoms not in ϕ has a constant weight of 1.

Example 5. Let ϕ and w be as in the previous example. Suppose we are interested in computing the probability that x ≤ 2
(query), given the unnormalized distribution represented by the 〈ϕ, w〉 pair and the information that A1 = ⊥ (evidence). 
This probability can be computed as:

P (ϕ,w)(x ≤ 2|A1 =⊥) = WMIold(ϕ ∧¬A1 ∧ (x ≤ 2), w)

WMIold(ϕ ∧¬A1, w)
= 0.125

1.0
= 0.125

because:

WMIold(ϕ ∧¬A1, w) =
∫

(1≤x)∧(x≤5)∧(x≤3)

w(A2) dx +
∫

(1≤x)∧(x≤5)∧¬(x≤3)

w(A3) dx

=
∫

[1,3]
0.25 · x − 0.25 dx +

∫
(3,5]

1.25 − 0.25 · x dx

=
[

0.125 · x2 − 0.25 · x
]3

1
+

[
1.25 · x − 0.125 · x2

]5

3

= 0.375 + 0.125 + 3.125 − 2.625 = 1.0

11 For better readability, here and henceforth we drop from products the weights w(l) which are equal to 1.
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WMIold(ϕ ∧¬A1 ∧ (x ≤ 2), w) =
∫

(1≤x)∧(x≤5)∧(x≤3)∧(x≤2)

w(A2) dx

=
∫

[1,2]
0.25 · x − 0.25 dx

=
[

0.125 · x2 − 0.25 · x
]2

1

= 0.0 + 0.125 = 0.125 �

3. Weighted model integration, revisited

Definition 3 is a very direct and intuitive generalization of WMC to the hybrid case. However, it is very abstract and 
directly turning it into a computational procedure, as was done in all previous implementations [7–9], can result in major 
inefficiencies, even if using non-naive techniques like AllSMT, as will be shown in our experimental evaluation. In the 
following we present a revised formulation of WMI that:

• easily captures the previous definition;
• decouples the specification of the formula and of the weight function from that of the variables on which WMI is to be 

computed, removing all implicit assumptions of the original formulation (see Remark 2);
• is not restricted to weight functions in the form of products of weights over literals, but allows for much more general 

forms (§3.3). This gives a remarkable flexibility in designing efficient encodings for hybrid domains, as shown with the 
case study on modeling journey times on road networks (§4);

• makes it easier to develop algorithms for WMI computation that fully exploit the potential advantage of advanced SMT 
techniques like predicate abstraction, as will be shown in §5.

We start by introducing a revisited and very general definition of WMI, starting from the Boolean-free case (§3.1) and 
then covering the general case (§3.2), and finally we describe a very general class of weight functions s.t. WMI is computable 
(§3.3).

3.1. Basic case: WMI without atomic propositions

We investigate first the simple case where no atomic proposition comes into play. Let x def= {x1, . . . , xN } ∈RN . We consider 
a generic total weight function w(x) s.t. w :RN �−→R+ , and LRA formulas ϕ(x) s.t. ϕ :RN �−→B.

Definition 4. Assume ϕ does not contain atomic propositions and w : RN �−→ R+ . Then we define the Weighted Model 
Integral of w over ϕ on x as:

WMInb(ϕ, w|x)
def=

∫
ϕ(x)

w(x) dx, (15)

“nb” meaning “no-Booleans”, that is, as the integral of w(x) over the set {x | ϕ(x) is true}.

The following property of WMInb(ϕ, w|x) derives directly from Definition 4.12

Property 1. Given x, w , ϕ , and ϕ′ as above,

a. if ϕ is LRA-unsatisfiable, then WMInb(ϕ, w|x) = 0.
b. if ϕ ⇒LRA ϕ′ , then WMInb(ϕ, w|x) ≤ WMInb(ϕ

′, w|x)

c. if ϕ ⇔LRA ϕ′ , then WMInb(ϕ, w|x) = WMInb(ϕ
′, w|x)

d. for every LRA-formula ψ(x),

WMInb(ϕ, w|x) = WMInb(ϕ ∧ ψ, w|x) + WMInb(ϕ ∧¬ψ, w|x).

12 We understand that Property 1 holds also for WMIold , provided the implicit assumptions of Remark 2.
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Remark 3. We stress the fact that in the definition of WMInb(ϕ, w|x) specifying the domain “|x” is of primary importance. 
In fact, even if some xn does not occur in ϕ ,13 WMInb(ϕ, w|x) = ∫

R WMInb(ϕ, w|x\{xn}) dxn �= WMInb(ϕ, w|x\{xn}). “|x” 
defines the dimensions of the space we are integrating on, which must be stated. (E.g., integrating on volumes differs from 
integrating on surfaces.)

The above definition of WMInb(ϕ, w|x) does not (yet) imply a practical technique for computing it, because “
∫
ϕ(x)

... dx” 
cannot be directly computed by most integration solvers, which typically can handle only conjunctions of LRA-literals, not 
arbitrary Boolean combinations of them. To cope with this fact, we need decomposing ϕ into conjunctions of LRA-literals. 
This is where T T A(), T A() and the SMT-based techniques to compute them come into play, as described in the following.

The following property of WMInb(ϕ, w|x) derives directly from the definition of T T A(ϕ) and T A(ϕ) and from (2), by 
recalling that the domains of the assignments μLRA in T T A(ϕ) and T A(ϕ) are pairwise disjoint.

Proposition 1. Given x, w(x), ϕ(x), T T A(ϕ) and T A(ϕ) as above,

WMInb(ϕ, w|x) =
∑

μLRA∈T T A(ϕ)

WMInb(μ
LRA, w|x) (16)

=
∑

μLRA∈T A(ϕ)

WMInb(μ
LRA, w|x). (17)

Proof. We prove only (17), because T T A(ϕ) is a subcase of T A(ϕ):

WMInb(ϕ, w|x)

{by (2)} = WMInb(
∨

μLRA∈T A(ϕ)

μLRA, w|x)

{disjoint domains of the μLRA’s} =
∑

μLRA∈T A(ϕ)

WMInb(μ
LRA, w|x). �

Importantly, the μLRAs in both (16) and (17) are conjunctions of literals, so that WMInb(μ
LRA, w|x) is computable by 

standard integration solvers under reasonable hypotheses (e.g., w is a polynomial) which will be discussed in §4. Note that 
if (i) w is in the form of products of weights over a set of literals as in Definition 3 and (ii) ϕ is defined only over such 
literals and (iii) ϕ contains no Boolean atom, then (16) corresponds to (14).

3.2. General case: WMI with atomic propositions

We investigate now the general case, where atomic propositions come into play and both wand ϕ depend also on them. 
Let A def= {A1, . . . , AM} ∈BM . We consider thus a generic total weight function w(x, A) s.t. w :RN ×BM �−→R+ , and LRA
formulas ϕ(x, A) s.t. ϕ :RN ×BM �−→B.

In what follows, μA denotes a total truth assignment on A, ϕ[μA](x) denotes (any formula equivalent to) the formula 
obtained from ϕ by substituting every Boolean value Ai with its truth value in μA , and w[μA](x) is w computed on x and 
on the truth values of μA . Thus, ϕ[μA] :RN �−→B and w[μA] :RN �−→R+ .

Definition 5. Given x, A, the Weighted Model Integral of w over ϕ is defined as follows:

WMI(ϕ, w|x,A)
def=

∑
μA∈BM

WMInb(ϕ[μA], w[μA]|x), (18)

where the μA ’s are all total truth assignments on A.

Example 6. Let ϕ def= (A ↔ (x ≥ 0)) ∧ (x ≥−1) ∧ (x ≤ 1), and w(x, A) def= �If A Then x Else − x�. If μA def= {(¬A)}, then ϕ[μA] =
¬(x ≥ 0) ∧ (x ≥ −1) ∧ (x ≤ 1) and w[μA] = −x. Note that ϕ[μA] can be simplified into the equivalent formula ¬(x ≥ 0) ∧
(x ≥−1). Similarly, if μA def= {(A)}, then ϕ[μA] can be simplified into (x ≥ 0) ∧ (x ≤ 1) and w[μA] = x. Thus,

13 It may be the case that xn does not occur in ϕ even though wdepends on xn: e.g., wmay be a Gaussian on xn , so that no restriction on the domain of 
xn is expressed by ϕ .
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WMI(ϕ, w|x,A)
def= WMInb(ϕ[{¬A}], w[{¬A}]|x) + WMInb(ϕ[{A}], w[{A}]|x)

=
∫

[−1,0)

−x dx +
∫

[0,1]
x dx

= 1

2
+ 1

2
= 1. �

Note that in Definition 5 the truth assignments μA of practical interest are only those for which ϕ[μA] is LRA-satisfiable, 
because for the others WMInb(ϕ[μA], w[μA]|x) = 0 by Property 1.a. We address this issue in §5.

The following property of WMI(ϕ, w|x, A) derives directly from Definition 5, by applying Property 1 to w[μA] , ϕ[μA] , 
ϕ′
[μA] , (ϕ ∧ ψ)[μA] , and (ϕ ∧¬ψ)[μA] , for every μA.

Property 2. Given x, A, w , ϕ , and ϕ′ as above,

a. if ϕ is LRA-unsatisfiable, then WMI(ϕ, w|x, A) = 0.
b. if ϕ ⇒LRA ϕ′ , then WMI(ϕ, w|x, A) ≤ WMI(ϕ′, w|x, A)

c. if ϕ ⇔LRA ϕ′ , then WMI(ϕ, w|x, A) = WMI(ϕ′, w|x, A)

d. for every LRA-formula ψ(x, A),

WMI(ϕ, w|x,A) = WMI(ϕ ∧ψ, w|x,A) + WMI(ϕ ∧¬ψ, w|x,A).

Remark 4. As with Remark 3, in WMI(ϕ, w|x, A), specifying not only “|x”, but also “|x, A” is of primary importance. In fact, 
even if some of the Am does not occur in ϕ ,

WMI(ϕ, w|x,A)

= WMI(ϕ, w[{Am}]|x,A\{Am})+ WMI(ϕ, w[{¬Am}]|x,A\{¬Am})
�= WMI(ϕ, w|x,A\{Am}).

To this extent, hereafter and if not explicitly specified otherwise, we implicitly assume w.l.o.g. that A and ϕ are such 
that each Boolean atom in A occurs in ϕ . (If this were not the case, we could rewrite ϕ into the equivalent formula 
ϕ ∧ ∨

k(Ak ∨ ¬Ak), s.t. the Ak ’s are the atoms in A not occurring in ϕ .) Consequently, each truth assignment in T T A(ϕ)

assigns every atom in A. We make the same assumption w.l.o.g. for the formula ∃x.ϕ .

The following properties of WMI(ϕ, w|x, A) derive from the definition of T T A(...).

Proposition 2. Given x, A, w(x,A), ϕ(x, A) and T T A(ϕ) as above, we have that:

WMI(ϕ, w|x,A) =
∑

μA∧μLRA∈T T A(ϕ)

WMInb(μ
LRA, w[μA]|x) (19)

Proof. By applying (16) to Definition 5 we have that:

WMI(ϕ, w|x,A) =
∑

μA∈BM

∑
μLRA∈T T A(ϕ[μA])

WMInb(μ
LRA, w[μA]|x). (20)

In order to pass from (20) to (19), consider μA ∧ μLRA s.t. μA ∈ BM and μLRA ∈ T T A(ϕ[μA]). By construction μA ∧
μLRA |=B ϕ (otherwise μLRA /∈ T T A(ϕ[μA])).

If μA ∧ μLRA /∈ T T A(ϕ), then μA ∧ μLRA is not LRA-satisfiable by the definition of T T A(ϕ), so that
WMInb(μ

LRA, w[μA]|x) = 0. Hence (20) equals (19). �
Proposition 3. Given x, A, w(x,A), ϕ(x, A) and T T A(ϕ) as above, we have that:

WMI(ϕ, w|x,A) =
∑

μA∈T T A(∃x.ϕ)

WMInb(ϕ[μA], w[μA]|x) (21)
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Fig. 1. Graphical representation of Lemma 1.

Proof. Compare (18) with (21). Let μA ∈BM s.t. μA /∈ T T A(∃x.ϕ). Then ϕ[μA] ⇔LRA ⊥, so that WMInb(ϕ[μA], w[μA]|x) = 0. 
Hence (18) equals (21). �

Predicate abstraction in Definition 1 and other forms of frequently-used formula manipulations require the introduction 
of fresh propositions B “labelling” sub-formulas ψ . The next result shows that this does not affect the value of WMI.

Lemma 1. Let x, A, w, and ϕ be as in Definition 5; let ψ(x, A) be some LRA-formula; let ϕ′ def= ϕ ∧ (B ↔ ψ), where B /∈ A; let w ′
extend w s.t. w ′(x, A ∪ {B}) = w(x, A) for every x, A and B. Then we have that

WMI(ϕ′, w ′|x,A ∪ {B}) = WMI(ϕ, w|x,A). (22)

Proof. We note that ϕ′
[μA∧B] ⇔LRA (ϕ ∧ ψ)[μA] and that ϕ′

[μA∧¬B] ⇔LRA (ϕ ∧¬ψ)[μA] . Also, we have that w ′
[μA∧B](x) =

w ′
[μA∧¬B](x) = w[μA](x). Thus:

WMI(ϕ′, w ′|x,A ∪ {B})
=

∑
μA∈BM

(WMInb(ϕ
′
[μA∧B], w ′

[μA∧B]|x) + WMInb(ϕ
′
[μA∧¬B], w ′

[μA∧¬B]|x))

=
∑

μA∈BM

(WMInb((ϕ ∧ ψ)[μA], w[μA]|x) + WMInb((ϕ ∧¬ψ)[μA], w[μA]|x))

=
∑

μA∈BM

(WMInb(ϕ[μA] ∧ ψ[μA], w[μA]|x) + WMInb(ϕ[μA] ∧ ¬ψ[μA], w[μA]|x))

=
∑

μA∈BM

WMInb(ϕ[μA], w[μA]|x)

= WMI(ϕ, w|x,A). �
The intuitive meaning of Lemma 1 is represented in Fig. 1. (For graphical convenience, we abstract the whole space 

x, A into only one horizontal dimension.) Suppose Fig. 1 (left) represents WMI(ϕ, w|x, A). The formula ψ cuts the space 
x, A, and thus WMI(ϕ, w|x, A), into two parts. In Fig. 1 (right) we add a new Boolean dimension B , and we represent 
WMI(ϕ ∧ (B ↔ ψ), w ′|x, A ∪ {B}), which is split into the sum of two parts, for B =⊥ and B =�, corresponding respectively 
to ψ =⊥ and ψ = �. Thus WMI(ϕ′), w ′|x, A ∪ {B}) is identical to the sum of the two pieces of WMI(ϕ, w|x, A), for ψ =⊥
and ψ =� respectively.

3.3. Conditional weight functions

We call a (non-minimal) support of a weight function w(x, A) any subset of RN × BM out of which w(x, A) = 0.14 In 
many situations it is useful to provide explicitly the representation of a support of w(x, A) as a LRA-formula χ(x, A). 
(When this is not the case, then we implicitly set χ(x, A) def= �.) For instance, it allows to cut part of the domain where a 
polynomial function is negative (see e.g. Example 7 below).

The following property follows trivially.

14 Note that a support is not unique and it is not necessarily minimal with respect to ⊆, that is, it may be the case that w(x, A) = 0 also if 〈x,A〉 is in 
the support. This definition allows to deal with cases in which the minimal support is not known or hard to characterize.
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Fig. 2. Graphical representation of the support χ (x,A) (left) and of the weight w(x,A) (right) in Example 7.

Property 3. Let ϕ and w be as above. If χ(x, A) is a LRA-formula representing a support of w , then:

WMI(ϕ, w|x,A) = WMI(ϕ ∧ χ, w|x,A). (23)

Example 7. Let x def= {x, y}, A def= {A},
χ(x,A)

def= (A → �x∈ [1,2]�) ∧ (¬A → (�x∈ [1,3]� ∧ (x + y ≤ 3))) ∧ � y∈ [1,3]�
w(x,A)

def= �If A Then (−x2 − y2 + 2x + 3y) Else (−2x − 2y + 6)�.

The support χ (x,A) defines two sub-spaces of x × y conditioned on the truth value of A, as depicted in Fig. 2 (left). The 
weight function w(x, A) is an if-then-else on condition A such that its two branches are two polynomials which are forced 
to be zero outside the domain defined by the support formula, as depicted in Fig. 2 (right). Note that outside such domains 
the two polynomials may acquire negative values. �

We introduce a novel kind of weight function, which can be defined also in terms of LRA conditions. (See §4 for an ex-
ample application). We consider first the generic class of functions w(x), which we call feasibly integrable on LRA (FILRA), 
which contain no combinatorial component, and for which there exists some procedure able to compute WMInb(μ

LRA, w|x)

for every set of LRA literals on x. (E.g., polynomials are FILRA [4]). Such background procedure, which we use as a black-
box, is the basic building block of our WMI calculations.

Definition 6. We call a total weight function w(x, A), feasibly integrable under LRA conditions (FIUCLRA) iff it can be 
described in terms of

• a support LRA-formula χ(x, A) (if no support description is provided, then χ def= �),

• a set � def= {ψ1(x,A), . . . ,ψK (x,A)} of LRA-formulas (conditions),

in such a way that, for every total truth assignment μA to A and for every total truth assignment μ� to �, w[μAμ�](x) 
is FILRA in the domain given by the values of 〈x,A〉 which satisfy (χ ∧ μ�)[μA] . We denote such FILRA functions by 
fμAμ� (x), s.t. for every 〈μA,μ�〉,

if μA ∧μ� holds, then w(x) = fμAμ�(x). (24)

(Note that a plain FILRA weight function is a subcase in which χ def= � and � def= ∅.)

A very relevant subcase of FIUCLRA functions, which we denote by PLRA (“Polynomials under LRA conditions”), is 
given by arbitrary combinations of polynomials with LRA conditions, such that each fμAμ� (x) in (24) is a polynomial 
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whose value is non-negative in the domain defined by μ� . PLRA functions are FIUCLRA because polynomials can always 
be integrated on the domains given by a set of LRA literals [4]. The syntax of PLRA weight functions can be defined by 
the following grammar, expressed in standard Backus-Naur form:15

w ::= c | x | (25)

−w | (w + w) | (w − w) | (w · w) |
�If ϕ Then w Else w � |

�Case ϕ : w; ϕ : w; . . . �
χ ::= ϕ (26)

where c denotes a real value, x denotes a real variable, w denotes a PLRA weight function, ϕ denotes an LRA formula. 
We recall from §2.1 that the conditions ϕ in the case-terms must be mutually exclusive and exhaustive. (In practice, it 
suffices that the conditions are exhaustive within the domain described by the support χ , that is, for the term �Case ϕ1 :
w1; ϕ2 : w2; . . . ϕk : wk � we must have that χ |=LRA

∨k
i=1 ϕi .) In short, w can be any arbitrary combination of sums, 

products and LRA-conditions.
Note that all the LRA-formulas ϕ occurring as conditions in the weight function or in the support formula must be 

such to restrict the domains of the polynomials to areas where they are non-negative.

Example 8. Let x def= {x1, x2}, A def= {A}, and

χ(x,A)
def= �x1∈ [−1,1)� ∧ �x2∈ [−1,1)� ∧ (A ↔ (x2 ≥ 0))

w(x,A)
def= �If x1 ≥ 0 Then x3

1 Else − 2x1 � + �If A Then 3x2 Else − x5
2 �.

w is PLRA , and hence FIUCLRA . In fact, its value depends on the combination of the truth values of the conditions 
�

def= {(x1 ≥ 0)} and A def= {A}, so that:

f{A,(x1≥0)} = x3
1 + 3x2 s.t. x1 ∈ [0,1), x2 ∈ [0,1),

f{A,¬(x1≥0)} = −2x1 + 3x2, s.t. x1 ∈ [−1,0), x2 ∈ [0,1),

f{¬A,(x1≥0)} = x3
1 − x5

2, s.t. x1 ∈ [0,1), x2 ∈ [−1,0),

f{¬A,¬(x1≥0)} = −2x1 − x5
2 s.t. x1 ∈ [−1,0), x2 ∈ [−1,0).

All four fμAμ� are positive polynomials in their respective domain and as such they can be integrated. �

Intuitively, Definition 6 captures the class of all the weight functions which can be described by means of arbitrary 
combinations of nested if-then-elses on conditions in A and �, s.t. each branch 〈μA,μ�〉 results into a FILRA weight 
function. Each pair 〈μA,μ�〉 describes a portion of the domain of w , inside which w is the FILRA function fμAμ� .

The expressivity of FIUCLRA weight functions allows for the direct encoding of a number of probabilistic models or 
density estimators into the weighted model integration framework. For instance, it is possible to readily perform WMI 
inference on a trained Mixed Sum-Product Network (MSPN) [35] with piecewise-polynomial leaves, whose internal nodes 
are product or weighted sums. In this case, the circuit is already a FIUCLRA function and the support corresponds to the 
disjunction of the domains of its polynomial leaves. This procedure allows MSPNs to answer complex probability queries that 
couldn’t normally be computed by their inference algorithms, such as those involving hard constraints. Density Estimation 
Trees (DETs) [39] are hybrid non-parametric16 density estimators composed of internal univariate split nodes and constant 
leaves. Also in this case, the tree can be represented by a FIUCLRA function without additional processing and probabilistic 
queries can be performed using the estimator’s bounding box as the support, thus enabling probabilistic queries on DETs.

Theorem 1. Let w(x, A), � and χ be as in Definition 6. Let B def= {B1, . . . , B K } be fresh propositional atoms and let w∗(x, A ∪ B)

be the weight function obtained by substituting in w(x, A) each condition ψk with Bk, for every k ∈ [1..K ]. Let ϕ∗ def= ϕ ∧ χ ∧∧K
k=1(Bk ↔ ψk). Then:

WMI(ϕ ∧ χ, w|x,A) = WMI(ϕ∗, w∗|x,A ∪ B). (27)

15 The obvious standard syntactic simplifications apply, e.g., “((1 · x1) − (4 · x2)) +−(5 · x3)” is rewritten as “(x1 − 4x2 − 5x3)”.
16 In this context, the intended meaning of “non-parametric” is that no distributional assumption is made by the model.
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Proof. To every truth assignment μ� to � we associate the corresponding truth assignment μB to B s.t. μB(Bk) = μ�(ψk), 
for every k ∈ [1..K ]. We note that, for every μA ∈BM and μB ∈BK (with its corresponding μ�):

ϕ∗
[μA∧μB] ⇔LRA (ϕ ∧ χ ∧μ�)[μA∧μB], (28)

because every ψk is forced by μ� to assume the same truth value Bk assumes in μB . Let w ′ extend w s.t. w ′(x, A ∪ B) =
w(x, A) for every x, A and B. Then, since ϕ∗ forces every Bk to hold if and only if �k holds, we have:

WMInb(ϕ
∗
[μA∧μB], w ′

[μA∧μB]|x) (29)

= WMInb((ϕ ∧ χ ∧μ�)[μA∧μB], w ′
[μA∧μB]|x)

= WMInb((ϕ ∧ χ ∧μ�)[μA∧μB], fμAμ� |x)

= WMInb((ϕ ∧ χ ∧μ�)[μA∧μB], w∗
[μA∧μB]|x)

= WMInb(ϕ
∗
[μA∧μB], w∗

[μA∧μB]|x).

Then, by applying K times Lemma 1, and then (29):

WMI(ϕ ∧ χ, w|x,A)

= WMI(ϕ ∧ χ ∧
K∧

k=1

(Bk ↔ ψk), w ′|x,A ∪ B)

=
∑

μA∈BMμB∈BK

WMInb(ϕ
∗
[μA∧μB], w ′

[μA∧μB]|x)

=
∑

μA∈BMμB∈BK

WMInb(ϕ
∗
[μA∧μB], w∗

[μA∧μB]|x)

= WMI(ϕ∗, w∗|x,A ∪ B). �
Example 9. Let A = ∅, χ def= �x ∈ [−1, 1]�, ϕ def= �, ψ def= (x ≥ 0), and the weight w(x) def= �If (x ≥ 0) Then x Else − x�. (I.e., 
w(x) def= |x|.) Then WMI(ϕ, w|x, ∅) = WMInb(ϕ, w|x) = ∫

[−1,1] |x| dx = 1. By Lemma 1, ϕ∗ = �x ∈ [−1, 1]� ∧ (B ↔ (x ≥ 0)) and 
w∗ = �If B Then x Else − x�, which are the same formula and weight function as in Example 6 (modulo some reordering 
and variable renaming), s.t. WMI(ϕ∗, w∗|x, B) = 1. �

Theorem 1 allows to compute the WMI with complicated FIUCLRA weight functions by substituting with a fresh 
Boolean variable Bk each condition ψk in the if-then-else and case constructs and by adding 

∧K
k=1(Bk ↔ ψk) to ϕ ∧ χ . 

Intuitively, during the computation of the WMIs, Theorem 1 allows for extracting out of the integrals the conditional com-
ponent on LRA conditions, which are labeled by Boolean atoms and can be thus handled externally. Note that the pairs of 
truth assignments 〈μA,μ�〉 of practical interest are only those for which (χ ∧μ�)[μA] is LRA-satisfiable. We will address 
this issue in §5.

3.4. From WMI to WMIold and vice versa

We can now compare the original definition of WMI in [7] (Definition of WMIold in §2.2) with our new notion of WMI 
applied to FIUCLRA weight functions. One key difference is that in the former the weight w is defined as a product of 
weights on literals in ϕ , whereas with the latter the weight w is a FIUCLRA function over the LRA domain 〈x,A〉 (and 
hence it does not depend on the LRA-atoms in ϕ).

To this extent, we note that we can easily express and compute WMIold (14) as WMI in the following way, by using an 
equivalent FIUCLRA weight function:

WMI(ϕ,
∏

ψ∈Atoms(ϕ)

�If ψ Then w(ψ) Else w(¬ψ)� |x,A).

The vice versa is tricky, in the sense that, to the best of our knowledge and understanding, there is no obvious general 
way to encode an arbitrary FIUCLRA weight function into a WMIold one while always preventing an explosion in the size 
of its representation. In order to understand the difficulty in finding such a general encoding, consider a generic FIUCLRA

weight function w(x, A). In order to write it as a WMIold weight function, one should find an integer K , a set of conditions 
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{ψk(x,A)}K
k=1 and a set of positive functions { fψk (x), f¬ψk (x)}K

k=1 so that w(x, A) could be written into the WMIold-equivalent 
form:

w(x,A) =
K∏

k=1

�If ψk(x,A) Then fψk (x) Else f¬ψk (x)� (30)

where the conditions ψk can be either (a) Boolean atoms in A, (b) LRA-atoms on x, (c) LRA-formulas on atoms in the 
form (a) and (b) by labeling them with fresh Boolean atoms, so that their truth values derive deterministically from the 
values of x, A, written “ψk(x, A)”.

Since w(x, A), fψk (x) and f¬ψk (x) are positive for every k, and the log function is continuous, strictly increasing and 
invertible, noticing that �If A Then b Else c� = �If A Then b Else 0� + �If A Then 0 Else c�, we see that (30) is equivalent to:

log(w(x,A)) =
K∑

k=1

�If ψk(x,A) Then log( fψk (x)) Else 0� +
�If ψk(x,A) Then 0 Else log( f¬ψk (x))� (31)

for every x, A. Thus, if we fix the value for x and call yk�
def= log( fψk (x)) and yk⊥

def= log( f¬ψk (x)) s.t. yk�, yk⊥ ∈R ∪ {−∞}, 
then (31) can be represented as a system of 2|A| linear equalities, one for each total truth assignment on A, on 2K variables 
{yk�, yk⊥}K

k=1 whose {0,1}-coefficients are given by the truth values of ψk(x, A). Thus, for every value of x, we have 2|A|
linear equations with 2K real-valued variables. This suggests that, in order (30) to hold, the size K of the product may blow 
up in size with |A|.

For instance, a trivial general solution consists in first converting the problem into WMI(ϕ∗, w∗|x, A∗) as in Theorem 1
and then, for every total truth assignment μ in T T A(ϕ∗), introducing a fresh new Boolean atom Bμ adding Bμ ↔ μ to 

the formula, and defining w(Bμ) def= wμ(x), w(¬Bμ) def= 1, w(l) def= 1 for every other literal l. This solution is obviously not 
practical for non-trivial size of A∗ because it generates an exponential growth in the size of the formula.

4. A case study

Consider modeling journey time on a road network for e.g. a delivery agency. In order to safely organize priority de-
liveries, the agency could be interested in knowing well in advance the probability of completing the journey within a 
certain time, given the time of departure. An accurate estimate requires to consider how travel duration between locations 
can change according to the time of the day, and combine these duration distributions over the entire route. A different 
encoding for the same problem was presented in the original WMI work [7].

Suppose that (the part of interest of) the day is partitioned into {I1, . . . , I M} disjoint and consecutive intervals such that, 
for each adjacent location li and l j in the road network and for each Im def= [cm, cm+1), we know the distribution of the 
journey time from location li to location l j given that we move at time t ∈ Im . Let f m

li ,l j
:R �→R+ denote such distribution 

and let the interval Rm
li ,l j

def= [am
li ,l j

, bm
li ,l j

) be its support. (Note that the Ims are intervals in absolute time and are all disjoint 
whereas the Rm

li ,l j
s are intervals in relative time and are typically not disjoint.)

4.1. Modeling a journey with a fixed path

Given a path (l0, ..., lN ) and departure and arrival times tdep and tarr , we are interested in answering queries of the form 
P (tN ≤ tarr | t0 = tdep, {li}N

i=0). We can encode the problem as follows. Let tn be the time at step n and xn the journey time 

between ln−1 and ln . Let x def= {x1, . . . , xN }. (Here A def= ∅.) Then:

χ(x)
def=

N∧
n=0

�tn∈ [c1, cM+1]� ∧
N∧

n=1

�OneOf{�tn−1∈ Im �}M
m=1 �

∧
N∧

n=1

M∧
m=1

(�tn−1∈ Im � → �xn∈ Rm
ln−1,ln

�)

w(x)
def=

N∏
n=1

�
Case �tn−1∈ I1 � : f 1

ln−1,ln
(xn); . . . �tn−1∈ I M � : f M

ln−1,ln
(xn)

�

ϕ(x)
def= �,

where for n > 0, “tn” is a shortcut for the term “
∑n

i=1 xi + t0”, so that “�tn−1∈ Im �” is a shortcut for the formula “(
∑n−1

i=1 xi +
t0 ≥ cm) ∧¬(

∑n−1 xi + t0 ≥ cm+1)”, and “�xn∈ Rm �” is a shortcut for the formula “(xn ≥ am ) ∧¬(xn ≥ bm )”.
i=1 ln−1,ln ln−1,ln ln−1,ln
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Fig. 3. This figure shows the journey time densities for a pair of consecutive time steps, from location li to li+2. Each edge shows the corresponding journey 
time distribution for each of the intervals.

This encoding allows us to answer the up-mentioned queries as follows:

P (tN ≤ tarr | t0 = tdep, {li}N
i=0) =

WMInb(χ(x) ∧ (tN ≤ tarr)∧ (t0 = tdep), w(x)|x)

WMInb(χ(x) ∧ (t0 = tdep), w(x)|x)

where the locations {li}N
i=0 are used to generate a query-specific encoding for χ(x) and w(x).

Under the assumption that each distribution f m
li ,l j

(x) is feasibly integrable if x ∈ Rm
li ,l j

, then w(x) is FIUCLRA with N · M

conditions ψm
n

def= �tn∈ Im �. Thus we can introduce N · M fresh Boolean atoms Bm
n and apply Theorem 1, obtaining:

ϕ∗(x,B)
def=ϕ(x) ∧ χ(x) ∧

N∧
n=1

M∧
m=1

(Bm
n−1 ↔ �tn−1∈ Im �)

w∗(x,B)
def=

N∏
n=1

�
Case B1

n−1 : f 1
ln−1,ln

(xn); ... B M
n−1 : f M

ln−1,ln
(xn)

�
.

Each distribution f m
ln−1,ln

is thus associated to Bm
n . Note that, for each step n, exactly one condition variable Bm

n is true, 
representing the fact that the n-th location is reached during the m-th interval. Intuitively, this allows to select at each step 
the distribution corresponding to the interval in which the location is reached, as shown in Fig. 3.

Example 10. Consider an instance of our case study where A def= ∅, N = 2, M = 3,

χ(x)
def=�t0∈ [7,10)�
∧�t0 + x1∈ [7,10)�
∧�OneOf{�t0∈ [7,8)�, . . . , �t0∈ [9,10)�}�
∧�OneOf{�t0 + x1∈ [7,8)�, . . . , �t0 + x1∈ [9,10)�}�
∧�t0∈ [7,8)� → �x1∈ [0.5,1)�
∧�t0∈ [8,9)� → �x1∈ [1,1.5)�
∧�t0∈ [9,10)� → �x1∈ [1,2)�
∧�t0 + x1∈ [7,8)� → �x2∈ [1,1.5)�
∧�t0 + x1∈ [8,9)� → �x2∈ [1.5,2)�
∧�t0 + x1∈ [9,10)� → �x2∈ [1,2)�
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Fig. 4. The figure shows two alternative (sub)paths from lcurr to ltarget: the successor of lcurr is selected according to the time interval at which the node is 
reached (m in the figure).

w(x)
def=

�
����

Case

�t0∈ [7,8)� : f 1
l0l1

(x1);
�t0∈ [8,9)� : f 2

l0l1
(x1);

�t0∈ [9,10)� : f 3
l0l1

(x1);

	



� ·

�
����

Case

�t0 + x1∈ [7,8)� : f 1
l1l2

(x2);
�t0 + x1∈ [8,9)� : f 2

l1l2
(x2);

�t0 + x1∈ [9,10)� : f 3
l1l2

(x2);

	



�

ϕ(x)
def=�

where the f m
ln−1ln

(xn) are functions which are integrable and positive in their respective domain stated in χ(x) (e.g., f 1
l0l1

(x1)

is integrable and positive in �x1∈ [0.5, 1)�).
Then, by applying Theorem 1, we can introduce 6 Boolean variables Bm

n and reformulate the problem as follows:

ϕ∗(x,B)
def= ϕ(x)∧ χ(x) (32)

∧ (B1
0 ↔ �t0∈ [7,8)�)

∧ ...

∧ (B3
1 ↔ �t0 + x1∈ [9,10)�)

w∗(x,B)
def=

�
����

Case

B1
0 : f 1

l0l1
(x1);

B2
0 : f 2

l0l1
(x1);

B3
0 : f 3

l0l1
(x1);

	



� ·

�
����

Case

B1
1 : f 1

l1l2
(x2);

B2
1 : f 2

l1l2
(x2);

B3
1 : f 3

l1l2
(x2);

	



�

4.2. Modeling a journey under a conditional plan

We generalize the previous scenario to the case in which the path is not given in advance. Rather, they are provided only 
a maximum path length N , a final target location ltarget and a conditional plan, establishing the successor location for every 
location at each time slot. Intuitively, the conditional plan mimics the empirical knowledge of a driver that, given his/her 
current location and time of the day, chooses the next step towards the final destination. (E.g., if one road passes aside a 
school entrance, the driver arriving there from 8 am to 9 am knows it is better to choose an alternative path to avoid the 
queues of cars leaving the children there.)

Let I = {1, . . . , M} be the set of indices of the time intervals. Let L = {1, . . . , L} be the set of indices of each location. 
Given a target destination ltarget ∈L, a conditional plan is a function next :L × I ×L →L such that, for any current location 
l ∈L and time interval index m ∈ I , next(l, m, ltarget) is the next location in the path, as shown in Fig. 4. To handle the special 
case of the final location ltarget , we set next(ltarget, m, ltarget) 

def= ltarget and Rm
ltarget,ltarget

def= [0, 0], so that �x ∈ Rm
ltarget,ltarget

� def= (x = 0). 
The queries we want to address are of the form

P (tN ≤ tarr | t0 = tdep, ldep, ltarget,next).

The encoding generalizes the previous encoding for fixed paths. This time we need to introduce N sets of L mutually-
exclusive Boolean variables An,l which encode the location visited at each time step – with the intended meaning that An,l
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is true iff the location at step n is the one indexed by l – and �OneOf{An,l | l ∈ [1, L]}� is added to the formula for every n.17

Unless otherwise specified, in the following we use the same notation and shortcuts of the case study presented in §4 (in 
particular, we recall that for n > 0, “tn” is a shortcut for the term “

∑n
i=1 xi + t0”):

χ(x,A)
def=

N∧
n=0

�tn∈ [c1, cM+1]� ∧
N∧

n=1

�OneOf{�tn−1∈ Im � |m ∈ [1, M]}�

∧
N∧

n=0

�OneOf{An,l | l ∈ [1, L]}�

∧
N∧

n=1

( L∧
l=1

(
An−1,l →

M∧
m=1

(�tn−1∈ Im � → �xn∈ Rm
l,next(l,m,ltarget)

�)
))

,

ϕ(x,A)
def= A0,l0 ∧

N∧
n=1

( L∧
l=1

(
An−1,l →

M∧
m=1

(�tn−1∈ Im � → An,next(l,m,ltarget))
))

w(x,A)
def=

N∏
n=1

�
������������

Case
(An−1,l1 ∧ An,l2) :�Case �tn−1∈ I1 � : f 1

l1,l2
(xn); . . . ; �tn−1∈ I M � : f M

l1,l2
(xn) �;

(An−1,l1 ∧ An,l3) :�Case �tn−1∈ I1 � : f 1
l1,l3

(xn); . . . ; �tn−1∈ I M � : f M
l1,l3

(xn) �;
. . .

(An−1,lL ∧ An,lL−1) :�Case �tn−1∈ I1 � : f 1
lL ,lL−1

(xn); . . . ; �tn−1∈ I M � : f M
lL ,lL−1

(xn) �;

	











�

Note that in the definition of w(x, A) the pairs of locations of interest in the outer case-expression are only those 
connected by an edge. Moreover, we can safely consider only the edges which appear in the conditional plan for the desired 
ltarget , i.e. pairs in Lreach = {〈li, l j〉 | li �= l j ∈L, ∃m ∈ [1, M] . next(li, m, ltarget) = l j}.

If we compare the description of χ(x), w(x) and ϕ(x) for the fixed-path-setting in §4.1 with these of χ(x, A), w(x, A)

and ϕ(x, A) for the conditional-plan setting described above, we note that the former can be seen as a particular subcase 
of the latter.18

This encoding allows us to answer the queries of interest as follows:

P (tN ≤ tarr | t0 = tdep, ldep, ltarget,next) = WMI(ϕ(x,A) ∧ χ(x,A) ∧ (tN ≤ tarr) ∧ (t0 = tdep), w(x,A)|x,A)

WMI(ϕ(x,A) ∧ χ(x,A) ∧ (t0 = tdep), w(x,A)|x,A)

where ldep, ltarget and next are used to generate a query-specific encoding for ϕ(x, A), χ(x, A) and w(x, A).

4.3. Efficiency of the encodings

Note that, with both encodings in §4.1 and §4.2, in the formula χ the constraints “�OneOf{�tn−1∈ Im �}M
m=1 �” (see 

§2.1) are not strictly necessary from the logical perspective because the Im ’s are mutually exclusive by construction and �tn∈ [c1, cM+1]� for n ∈ [0, N]. Nevertheless, adding such constraints may improve the performances of the SMT solver the 
formula is fed to, because they allow the solver to infer the disjunction and the mutual exclusion directly via Boolean 
constraint propagation instead of using less efficient LRA-deduction steps (see e.g. static learning in [44]).

For the same reason, adding the following logically-redundant constraints to χ may improve the performances of the 
SMT solver:

(

n−1∑
i=1

xi + t0 ≥ cm+1) → (

n−1∑
i=1

xi + t0 ≥ cm) ∀n ∈ [1, N], m ∈ [1, M − 1]

(xn ≥ vi) → (xn ≥ v j) i f vi ≥ v j, ∀n ∈ [1, N],
where the vi, v j are among the upper- and lower-bound values of the intervals Rm

ln−1,ln
.19

17 Alternatively, this can be encoded by a distinct truth assignment to  log2(L)! Boolean variables representing the binary encoding of the index l, using 
overall N ·  log2(L)! Boolean variables. However, since L is quite small, this is not worth doing in our case.
18 In fact, if we impose a given path l0, l1, . . . , lN by substituting the part “A0,l0 ∧ ∧N

n=1(...)” in ϕ(x, A) with “
∧N

n=0 An,ln ”, then it is easy to see that 
χ(x, A) ∧ ϕ(x, A) simplifies by unit-propagation into μA ∧ χ(x) ∧ ϕ(x), where μA def= ∧N

n=0(An,ln ∧ ∧
l �=ln ¬An,l), and that w[μA](x) simplifies into w(x)

because only one condition (An−1,ln−1 ∧ An,ln ) holds for the n-th external Case.
19 In practice, we do not need adding such constraints for every pair 〈vi, v j〉; rather and more efficiently, it suffices to sort all such values for each xn , 

and to add one constraint only for pairs of consecutive values, because the others are obtained implicitly by transitivity.



18 P. Morettin et al. / Artificial Intelligence 275 (2019) 1–27
5. Efficient WMI computation

We address the problem of computing efficiently the WMI of a FIUCLRA weight function w(x, A), with support formula 
χ and set of conditions �, over a formula ϕ(x, A).

The first step (if needed) is a preprocessing step in which the problem is transformed by labeling all conditions � with 
fresh Boolean atoms B, as in Theorem 1. Let ϕ∗, w∗, x, A∗ be the result of such process, where ϕ∗ def= ϕ∧χ ∧∧K

k=1(Bk ↔ ψk), 
w∗ def= w[B ← �], and A∗ def= A ∪ B. Consequently, for every μA∗

, w∗
[μA∗ ] is feasibly integrable on ϕ∗

[μA∗ ] .

Remark 5. Following up with Remark 4, hereafter we assume w.l.o.g. that each Boolean atom in A occurs in ϕ ∧ χ or in �, 
so that every atom in A∗ occurs in ϕ∗ . Consequently, each truth assignment in T T A(ϕ∗) assigns every atom in A∗ . The 
same assumption applies to ∃x.ϕ∗ .20

5.1. The procedure WMI-AllSMT

Consider μ = μA∗ ∧μLRA ∈ T T A(ϕ∗). Then μLRA ∈ T T A(ϕ∗
[μA∗ ]), so that we can compute WMInb(μ

LRA, w∗
[μA∗ ]|x). 

Combining Theorem 1 with Proposition 2 allows us to compute the WMI as follows:

WMI(ϕ, w|x,A) (33)

= WMI(ϕ∗, w∗|x,A∗).
=

∑
μA∗∧μLRA∈T T A(ϕ∗)

WMInb(μ
LRA, w∗

[μA∗ ]|x).

The set T T A(ϕ∗) is computed by an AllSMT procedure implemented on top of an SMT solver like MathSAT5—
i.e., as T T A(PredAbs[ϕ∗](Atoms(ϕ∗))), without the assignment-reduction technique (see fact (b) in §2.1). Each
WMInb(μ

LRA, w∗
[μA∗ ]|x) is computed by invoking our background integration procedure for FILRA functions of §3.3. We 

call this algorithm WMI-AllSMT.

5.2. The procedure WMI-PA

A much more efficient technique, which we call WMI-PA because it exploits SMT-based predicate abstraction in its full 
pruning power rather than simply as AllSMT,21 can be implemented by noticing that, combining Theorem 1 with Proposi-
tion 3, we have that:

WMI(ϕ, w|x,A) (34)

= WMI(ϕ∗, w∗|x,A∗).
=

∑
μA∗∈T T A(∃x.ϕ∗)

WMInb(ϕ
∗
[μA∗ ], w∗

[μA∗ ]|x)

and that, due to Proposition 1, each WMInb(ϕ
∗
[μA∗ ], w

∗
[μA∗ ]|x) can be computed as:

∑
μLRA∈T A(ϕ∗

[μA∗ ])
WMInb(μ

LRA, w∗
[μA∗ ]|x). (35)

Note that in (34) we must use T T A(...) instead of T A(...) because by construction w∗
[μA∗ ] requires each μA∗

to be total, 

whereas in (35) we can use T A(...) because there is no need for the μLRAs to be total (Proposition 1).
The pseudocode of WMI-PA is reported in Algorithm 1. First, the problem is transformed (if needed) by labeling con-

ditions � with fresh Boolean variables B, as in Theorem 1. After this preprocessing stage, the set MA∗ def= T T A(∃x.ϕ∗)
is computed by invoking T T A(PredAbs[ϕ∗](A∗)) (see §2.1). Then, the algorithm iterates over each Boolean assignment 
μA∗

in MA∗
. ϕ∗

[μA∗ ] can be simplified by the Simplify procedure, by propagating truth values (e.g., ϕ1 ∧ (� ∨ ϕ2) ∧ (⊥ ∨
ϕ3) ∧ (¬ϕ3 ∨ ϕ4) ⇒ ϕ1 ∧ ϕ3 ∧ ϕ4) and by applying arithmetical simplifications like LRA theory propagation [5] (e.g., 

20 We note that this assumption is necessary for our basic procedure WMI-AllSMT (see §5.1) but it is not necessary with our much more efficient 
procedure WMI-PA (see §5.2) because the SMT-based procedure we use for computing predicate abstraction, T T A(PredAbs[ϕ](A)) (see §2.1), allows for 
forcing the branches even on atoms Ai which do not actually occur in the input formula ϕ . Nevertheless, this assumption makes the explanation simpler.
21 To this extent, compare facts (c) and (b) in §2.1.
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Algorithm 1 WMI-PA(ϕ , w , x, A).
〈ϕ∗, w∗,A∗〉 ← LabelConditions(ϕ, w, x, A)

MA∗ ← T T A(PredAbs[ϕ∗](A∗))
vol ← 0
for μA∗ ∈MA∗

do
Simplify(ϕ∗

[μA∗ ])
if LiteralConjunction(ϕ∗

[μA∗ ]) then

vol ← vol + WMInb(ϕ
∗
[μA∗ ], w

∗
[μA∗ ]|x)

else
MLRA ← T A(PredAbs[ϕ∗

[μA∗ ]](Atoms(ϕ∗
[μA∗ ])))

for μLRA ∈MLRA do
vol ← vol + WMInb(μ

LRA, w∗
[μA∗ ]|x)

end for
end if

end for
return vol

(x ≥ 1) ∧ (¬(x ≥ 0) ∨ ϕ1) ∧ ((x ≥ 0) ∨ ϕ2) ⇒ (x ≥ 1) ∧ ϕ1). This improves the chances of reducing ϕ∗
[μA∗ ] to a conjunction of 

literals, and allows for reducing the size of Atoms(ϕ∗
[μA∗ ]) to feed to PredAbs (see below). Then, if ϕ∗

[μA∗ ] is already a con-

junction of literals, then the algorithm directly computes its contribution to the volume by calling WMInb(ϕ
∗
[μA∗ ], w

∗
[μA∗ ]|x). 

Otherwise, T A(ϕ∗
[μA∗ ]) is computed as T A(PredAbs[ϕ∗

[μA∗ ]](Atoms(ϕ∗
[μA∗ ]))), using the assignment-reduction technique to 

produce partial assignments (see §2.1), and the algorithm iteratively computes the contributions to the volume for each 
μLRA .

Example 11. Consider the problem described by ϕ∗ and w∗ in Example 10. Since A = ∅, then A∗ = B.
Suppose first we generically want to leave l0 no earlier than 7 and no later than 10, and arrive to l2 strictly before 11. 

These constraints correspond to conjoining

�t0∈ [7,10)� ∧ (t0 + x1 + x2 < 11)

to ϕ∗ . In such case, PredAbs[ϕ∗](A∗) is the following formula:

( B1
0 ∧¬B2

0 ∧¬B3
0 ∧ B1

1 ∧¬B2
1 ∧¬B3

1) (36)

∨( B1
0 ∧¬B2

0 ∧¬B3
0 ∧¬B1

1 ∧ B2
1 ∧¬B3

1) (37)

∨(¬B1
0 ∧ B2

0 ∧¬B3
0 ∧¬B1

1 ∧¬B2
1 ∧ B3

1) (38)

so that MA∗ def= T T A(PredAbs[ϕ∗](A∗)) is the set of the three disjuncts (36)-(38). Importantly, note that the other 6 assign-
ments, which would make ϕ∗ LRA-unsatisfiable causing WMInb to return 0, are not generated by T T A(PredAbs[ϕ∗](A∗)). 
(E.g., if B1

0 =� then l1 is necessarily reached strictly before 9, which forces B3
1 =⊥, s.t. the assignment (B1

0 ∧¬B2
0 ∧¬B3

0 ∧
¬B1

1 ∧¬B2
1 ∧ B3

1) is not generated.)
Now suppose instead that we fix t0 to some value tdep ∈ [7, 10) by conjoining (t0 = tdep) to ϕ∗ (see §7). Depending on 

the value tdep , we distinguish four cases:

tdep ∈ [7,7.5): forces B1
0 =� and T T A(PredAbs[ϕ∗](A∗)) reduces to (36) and (37);

tdep ∈ [7.5,8): forces B1
0 = � and T T A(PredAbs[ϕ∗](A∗)) reduces to (37) because (36) cannot be extended with any 

LRA-satisfiable μLRA;
tdep ∈ [8,9): forces B2

0 =� and T T A(PredAbs[ϕ∗](A∗)) reduces to (38);
tdep ∈ [9,10): makes the whole formula LRA-unsatisfiable, s.t. T T A(PredAbs[ϕ∗](A∗)) is empty.

E.g., in the first case, if we set tdep to 7.4 by conjoining (t0 = 7.4) to ϕ∗ , then T T A(PredAbs[ϕ∗](A∗)) contains only (36)

and (37). Let (36) be the first assignment selected in the “for” loop, that is, μA∗ def= (B1
0 ∧ ¬B2

0 ∧ ¬B3
0 ∧ B1

1 ∧ ¬B2
1 ∧ ¬B3

1). 
Propagating its truth values inside ϕ∗ and w∗ in (32) and simplifying the truth values by means of Simplify(), we get rid of 
most LRA-literals in ϕ∗ , obtaining thus22:

ϕ∗
[μA∗ ] = (t0 = 7.4)∧ �t0∈ [7,10)�

∧ (t0 + x1 + x2 < 11)

22 Note that �t0∈ [7, 10)� and �t0∈ [7, 8)� are made redundant by (t0 = 7.4); however, they do not affect the result.
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∧ �t0∈ [7,8)� ∧ �x1∈ [0.5,1)�
∧ �t0 + x1∈ [7,8)� ∧ �x2∈ [1,1.5)�

w∗
[μA∗ ] = f 1

l0l1
(x1) · f 1

l1l2
(x2)

ϕ∗
[μA∗ ] is a conjunction of LRA-literals, so that the condition of the “if” is verified, then WMInb can be invoked on it directly 

at the cost of one integration only, without further invoking another predicate abstraction and hence without running the 
internal “for”, which would cost one integration for every internal loop. �

5.3. WMI-PA vs. WMI-AllSMT

As a general remark, comparing (34) with (18)—even if ϕ∗, w∗, x, A∗ were respectively ϕ, w, x, A—we note that in WMI-

PA the restriction of the sum to T T A(∃x.ϕ∗) in (34) removes a priori all the assignments μA∗
which cannot be expanded 

by any assignment μLRA s.t. μA∗ ∧ μLRA propositionally satisfies ϕ∗ and μLRA is LRA-satisfiable, whose integrals 
would be 0-valued.

We argue that WMI-PA produces much less calls to the background integration procedure WMInb(μ
LRA, w∗

[μA∗ ]|x) than

WMI-AllSMT for two main reasons.
First, the size of Atoms(ϕ∗

[μA∗ ]) which is fed to PredAbs in (35) can be made much smaller than the number of 

LRA-atoms in Atoms(ϕ∗) fed to PredAbs in (33), since many LRA-atoms are simplified out by μA∗
. (E.g., (x ≤ 1) ∧

(A2 ∨ (x ≥ 0)))[A2] is simplified into (x ≤ 1), so that (x ≥ 0) is eliminated.) Thus, for each μA∗
, the number of assignments 

in the form μA∗ ∧ μLRA which are enumerated in (34)-(35) can be drastically reduced with respect to those enumerated 
in (33).

Second, with (35) it is possible to search for a set T A(...) of partial assignments, each of which substitutes 2i total 
ones, i being the number of unassigned LRA-atoms. Note that, unlike with Boolean atoms, we can safely produce partial 
assignments on LRA-atoms because w(x, A) does not depend directly on them, since the integrals can be computed 
also on a partial assignment of the LRA-atoms. (E.g., if ϕ∗

[μA∗ ]
def= (x ≥ 0) ∧ ((x ≤ 2) ∨ (x ≤ 1)), the partial assignment 

μLRA def= (x ≥ 0) ∧ (x ≤ 2) prevents enumerating the two total ones μLRA ∧ (x ≤ 1) and μLRA ∧¬(x ≤ 1), computing one 
integral rather than two.

6. Related work

Most works on probabilistic inference in hybrid graphical models are either limited to joint Gaussian distributions [31], or 
perform approximate inference [1,24]. A recent line of research focused on developing exact inference algorithms for graph-
ical models with mixtures of polynomials [42,45,49], using techniques like generalized joint-tree algorithms or symbolic 
variable elimination. The WMI formalism extends these approaches allowing to represent constraints in terms of arbitrary 
combinations of Boolean connectives.

The first solver for exact WMI [7], which is based on the original definition WMIold in §2.2, was a proof-of-concept 
relying on a simple block-clause strategy (WMI-BC in the following), which iteratively generates new models by adding the 
negation of the latest model to the formula for the following iteration. In the propositional (WMC) case, substantial efficiency 
gains can be obtained by leveraging component caching techniques [3,40], in which the weighted model counts of disjoint 
components of a formula are cached once and reused whenever the formula is encountered again in the computation. 
Unfortunately, these strategies are difficult to apply in the WMI case, because of the additional coupling induced by algebraic 
constraints. A recent work [9] did show substantial computational savings in adapting #DPLL with component caching from 
the WMC to the WMI case. The approach however works with purely piecewise polynomial densities, with no additional 
constraints between theory variables. In this setting, the reasoning part boils down to plain SAT, and an eager encoding of 
the piecewise structure allows to apply component caching at the propositional level and leave the integration of densities 
to the final steps of the decomposition procedure. Albeit effective, this solution cannot be applied whenever algebraic 
constraints exist between variables, e.g. their sum being within a certain range, a rather common situation in many practical 
cases (see §4). In the same paper, an approach equivalent to WMI-AllSMT applied to the original WMI formulation was 
shown to improve over the WMI-BC baseline. Nevertheless, further improvements are not possible without revising the 
formulation as we do in this work.

Closest to WMI are the work by Sanner and Abbasnejad [42] and the probabilistic inference modulo theories [19]
framework. The former is the first approach for closed-form exact inference on hybrid graphical models with piecewise 
polynomial functions. It relies on a symbolic extension of the variable elimination algorithm implemented using extended 
algebraic decision diagrams (XADD) [43]. We will refer to this approach as SVE-XADD in the rest of the paper. A major 
limitation of SVE-XADD is that it requires to enumerate all paths from the root to the leaves in the XADD during com-
putation, thus producing a blow-up both in memory requirements and number of alternatives to be evaluated. Although 
variable-elimination-based algorithms can cache intermediate results in principle, this is apparently not the case for the
SVE-XADD algorithm. Indeed, our experimental evaluation (§7) shows that SVE-XADD has the worst performance among 
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all competing approaches in terms of query execution times, and quickly exhausts available memory for increasing problem 
size. Probabilistic inference modulo theories [19] is a general framework where a combination of DPLL and symbolic variable 
elimination allows to perform probabilistic inference on a variety of theories. While initially focused on integer arithmetic, 
the system developed by the authors (called PRAiSE) was recently provided with support for arithmetic over the reals and 
polynomial densities. Our experimental evaluation (§7) shows that PRAiSE is always more efficient than SVE-XADD, and 
substantially outperforms WMI-BC and WMI-AllSMT when the relations between the continuous variables allow to effi-
ciently decompose the integral by means of variable elimination steps, but it is largely inferior to our novel formulation in 
all tested scenarios.

7. Experiments

We have evaluated the performance of WMI-PA on both synthetic (§7.1) and real-world (§7.2 and §7.3) problems, com-
paring it with WMIold techniques and alternative symbolic approaches. These problems have been chosen also because they 
can be suitably encoded to be fed to all tools under test; in particular, they are very naturally encoded into WMIold without 
the exponential blowup described in §3.4.

In our empirical evaluation we compared the following tools:

• WMI-BC is our re-implementation of the WMIold procedure in [7];
• WMI-AllSMT and WMI-PA are our implementations of the procedures described in §5.1 and §5.2 respectively;
• SVE-XADD is the implementation of the algorithm in [43] provided by the authors, adapted in order to parse our input 

format;
• PRAiSE

23 is the implementation of Probabilistic Inference Modulo Theories [19] provided by the authors.

The implementations of WMI-BC, WMI-AllSMT and WMI-PA use MathSAT5
24 [16] to perform SMT reasoning and LattE 

Integrale
25 [33] to compute integrals of polynomials. To perform internal manipulations of the weight components, we 

used SymPy,26 a Python library for symbolic mathematics. The software implementation of all algorithms, as well as all data 
and scripts for replicating the experiments in this paper are publicly available online.27

All experiments were run on a Virtual Machine with 7 cores running at a frequency of 2.2 GHz and 94 GB of RAM. The 
timeout was set at 10,000 seconds for each 〈query, tool〉 job pair. Importantly, comparing the numerical results of the tests 
it turned out that, when terminating, all tools returned the same values on the same queries (modulo roundings).

7.1. Synthetic setting

The synthetic setting is conceived in order to test the performance of the different tools on generic WMI problems. The 
setting we use here is more elaborate than the one we employed in [36], with the aim of making it more challenging 
for WMI-PA, in particular to force WMI-PA to enter more frequently its inner loop (the loop in the “else” case in Algo-
rithm 1). Note however that the results in the simpler setting reported in [36] are qualitatively similar to the ones we 
report here, with an even more pronounced advantage of the WMI-based approaches over the symbolic alternatives (see 
the supplementary material for the results on that setting).

In what follows, let AB denote a random Boolean atom drawn from A, let AR denote a random LRA-atom over 
variables in x, let AB/R denote a random Boolean or LRA-atom. In this experiment, we used two recursive procedures to 
generate random formulas and nested weight functions with a given depth d:

randϕ(d) =
{⊕Q

q=1 randϕ(d − 1) if d > 0

[¬]AB/R otherwise

randw(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�If randϕ(d) Then randw(d − 1) Else randw(d − 1)�
or

randw(d − 1)⊗ randw(d − 1) if d > 0

P random(x,maxdeg) otherwise

where 
⊕ ∈ {∨, 

∧
, ¬ 

∨
, ¬ 

∧}, ⊗ ∈ {+, ·} are randomly-picked Boolean and arithmetical operators respectively, “[¬]” means 
that a negation is added at random, “w1 or w2” means that one of the two alternative functions w1 and w2 is chosen 
randomly, and P random(x, maxdeg) are random polynomials over x with maximum degree maxdeg .

23 http://aic -sri -international .github .io /aic -praise/.
24 http://mathsat .fbk.eu/.
25 https://www.math .ucdavis .edu /~latte/.
26 http://www.sympy.org/.
27 https://github .com /unitn -sml /wmi -pa.

http://aic-sri-international.github.io/aic-praise/
http://mathsat.fbk.eu/
https://www.math.ucdavis.edu/~latte/
http://www.sympy.org/
https://github.com/unitn-sml/wmi-pa
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Fig. 5. Query execution times in seconds for all methods on the synthetic experiment (left); number of integrals (right) for WMI-BC, WMI-AllSMT and
WMI-PA on the same instances.

Using the procedures above, we generated the problem instances as follows:

χ(x,A) = randϕ(D) ∧
∧
x∈x

�x∈ [lx, ux]�
w(x,A) = randw(D)

ϕquery(x,A) = randϕ(D)

where D is a parameter that control the depth of χ , w and ϕquery , and [lx, ux] are random lower and upper bounds for each 
variable x ∈ x.

Fig. 5 (left) shows the query execution times on the randomly generated problem instances for all the methods. Instances 
are ordered by increasing hardness, measured as the running time of the slowest method. For instances in which the slowest 
method reaches the timeout, the second slowest method is used to order instances, and so on. (Here and in next figures, a 
value of 10,000 s denotes the fact that the procedure under test reached the timeout without producing a solution.)

In this experimental setting, the WMI methods achieve better performance with respect to the symbolic approaches, 
suggesting that the latter struggle with combinatorial reasoning, in contrast with the WMI approaches which rely on the 
full reasoning power of a state-of-the-art SMT solver.

Whereas WMI-AllSMT performs better than the baseline WMI-BC for the most difficult cases, WMI-PA achieves dras-
tic speedups with respect to both the alternatives. Fig. 5 (right) reports the number of integrals computed by the three 
WMI methods. The curves for WMI-BC and WMI-AllSMT are indistinguishable, an expected result as the two formulations 
enumerate the same set of total truth assignments, with WMI-AllSMT doing it more efficiently. Conversely, the predicate 
abstraction steps of WMI-PA allow it to drastically reduce the number of assignments, and thus integrals to be computed. 
Note that a comparison with the symbolic approaches in terms of number of integrals is not possible because of their 
complex combination of variable elimination and integration steps.

7.2. Strategic road network with fixed path

In order to show the applicability of our method to real world tasks, we implemented the case study described in §4.1. 
The data was taken from the Strategic Road Network Dataset,28 which provides a record of journey times on all the mo-
torways managed by the English Highways Agency. From this dataset we extracted a graph between junctions whose edges 
were labeled with distributions of average journey times for each time interval (15 minutes long). For our experiments, we 
considered the largest strongly connected component of this graph, shown in Fig. 6. In this setting, the task is to perform 
queries of the form:

P ((tN ≤ tarr) | t0 = tdep, {li}N
i=0),

that is, computing the probability of completing a fixed path l1, . . . , lN within tarr , given the departure time tdep . We encoded 
an equivalent formulation for PRAiSE and compared it with the WMI approaches. SVE-XADD was not considered in this 
setting because its execution times are prohibitive for all but the smallest path lengths. Another issue we encountered with
SVE-XADD is that it often runs out of memory due to the size of the underlying XADDs.

The results in Fig. 7 show median, first and third quartiles of the query execution times, computed over 10 randomly 
generated queries for each path length. Whereas WMI-BC and WMI-AllSMT cannot scale to the path lengths handled by

28 https://data .gov.uk /dataset /dft -eng -srn -routes -journey-times.

https://data.gov.uk/dataset/dft-eng-srn-routes-journey-times
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Fig. 6. The subgraph of the Strategic Road Network used in our experiments. Locations are colored according to their out degree. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. Query execution times in seconds (1st quartile, median and 3rd quartile) in the Strategic Road Network setting with fixed path (left). Table showing 
the medians for each length (right).

PRAiSE, our approach is much faster than all alternatives, being able to compute queries up to two steps longer than PRAiSE

without reaching the timeout.29

In contrast with the synthetic experiment, in this setting PRAiSE performs much better than WMI-BC and WMI-AllSMT. 
On the one hand, PRAiSE seems to benefit from the deterministic relationships between the journey time variables, being 
able to symbolically decompose the integration much more efficiently with relation to the synthetic experiment, in which 
the continuous variables can relate to each other in diverse and entangled ways. On the other hand, the number of overlap-
ping intervals in this encoding makes the enumeration of total truth assignments performed by WMI-BC and WMI-AllSMT

prohibitive (see §7.4).
Fig. 8 shows the number of integrals computed by the three WMI techniques. (As before, this data cannot be provided 

with PRAiSE.) Note that the plots for WMI-BC and WMI-AllSMT coincide, whereas that for WMI-PA cannot be distinguished 
from the x axis. From this, we observe that predicate abstraction techniques used in WMI-PA allow to drastically reduce the 
number of integrations.

7.3. Strategic road network with conditional plans

In order to further investigate the impact of combinatorial reasoning on the performance of WMI-PA and PRAiSE, we 
generalized the previous experiment to the case in which the path is not given in advance, using the encoding described 
in §4.2. In this experiment, we precomputed the conditional plan for each triple 〈li, m, l j〉 using a greedy procedure based 
on expected journey time between adjacent locations. WMI-BC and WMI-AllSMT were not considered in this experiment, 

29 Note that the complexity of the query is due to the combination of the path length and the number of time intervals in which the time horizon is 
divided (M = 12 in these experiments). For paths of length 8, the total number of potential cases is 128 = 429, 981, 696. Clearly, most of these cases are 
unfeasible and are thus ruled out by the SMT solver before the integration.
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Fig. 8. Number of integrations (1st quartile, median and 3rd quartile) computed by the WMI methods in the Strategic Road Network setting with fixed path 
(left). Table showing the medians for each method and path length (right).

Fig. 9. Query execution times in seconds (1st quartile, median and 3rd quartile) in the Strategic Road Network setting with conditional plan (left). Table 
showing the medians for each maximum length (right).

given their inability to scale on the simpler fixed path experiment. Recall that in this setting, the task is answering queries 
of the form:

P (tN ≤ tarr | t0 = tdep, ldep, ltarget,next),

that is, computing the probability of reaching ltarget within tarr , leaving from ldep at time tdep and using the conditional plan 
encoded in next to make local decisions on the route to follow.

The results displayed in Fig. 9 show that with the conditional-plan setting WMI-PA drastically outperforms PRAiSE, 
the performance gaps being even superior than that with the fixed-plan setting in Fig. 7.30 These results suggest that
PRAiSE struggles with the heavier combinatorial aspect of this generalization. On the other hand, WMI-PA can prune the 
combinatorial space much more efficiently.

7.4. Discussion

The remarkable performance gaps of WMI-PA with respect to its competitors, in particular with respect to WMI-AllSMT

and WMI-BC, can be explained in terms of what discussed in §5.3. In particular, we analyze the Strategic Road Network 
with Fixed Path setting of §7.2 by generalizing the scenario of Example 11. (In what follows we have omitted the literals 
from the query, which can simply be conjoined to each truth assignment.)

Consider ϕ∗(x, B) as in §4.1, and consider some μA∗ ∈MA∗
as in Algorithm 1. Then, for every n, only one Bm

n−1 is true 
(say, Bmn

n−1) and all others are false in μA∗
, so that 

∧M
m=1(Bm

n−1 ↔ �tn∈ Im �) forces �tn∈ Imn � to be true and all the others 

30 Comparing Fig. 9 with Fig. 7 one may get the (false) impression that the fixed plan problem is comparable or even harder for WMI-PA than the 
conditional-plan one. We note, however, that the two plots cannot be compared because in Fig. 7 the x axis represents the length of the (fixed) plan 
whereas in Fig. 9 it represents the maximum plan length, which can be bigger than the length of the actual plans.
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to be false, so that 
∧M

m=1(�tn−1 ∈ Im � → �xn ∈ Rm
ln−1,ln

�) forces �xn ∈ Rmn
ln−1,ln

� to be true and satisfies all other constraints 
(�tn−1∈ Im � → �xn∈ Rm

ln−1,ln
�) for m �= mn , with no need to assign truth values to the other constraints �xn∈ Rm

ln−1,ln
�.

With WMI-AllSMT (and WMI-BC) only total truth assignments μA∗ ∧ μLRA are generated from T T A(ϕ∗). We note 
that there can be up to (2M − 1)N such assignments sharing the same μA∗

with different μLRA part, each of which 
must be integrated separately. In fact, consider one μA∗

as above. WMI-AllSMT is forced to enumerate all total assignments 
μA∗ ∧ μLRA

1 , μA∗ ∧ μLRA
2 , . . . extending μA∗

which cover all possible truth value combinations of the atoms in �xn ∈
Rm

ln−1,ln
� with m �= mn which are LRA-consistent with �xn ∈ Rmn

ln−1,ln
�, although a truth value assignment to these atoms is 

not necessary to satisfy the formula, as pointed out above. (Recall that the intervals {Rm
ln−1,ln

}m are not disjoint.) Depending 
on the possible overlappings of Rmn

ln−1,ln
with the other intervals Rm

ln−1,ln
with m �= mn , there are up to (2M − 1)N such 

potential combinations: the extreme case is where, for every n, the bounds of the intervals Rm
ln−1,ln

are all different and for 
every m �= mn Rm

ln−1,ln
⊂ Rmn

ln−1,ln
, so that Rmn

ln−1,ln
is partitioned into 2M − 1 sub-intervals, totaling (2M − 1)N combinations. 

We stress the fact that this partitioning is unnecessary because inside Rmn
ln−1,ln

the weight function is not partitioned.
With WMI-PA, instead, the constraints (�tn−1∈ Im � → �xn∈ Rm

ln−1,ln
�) for m �= mn are removed from ϕ∗

[μA∗ ] by Simplify(), 

so that ϕ∗
[μA∗ ] is simplified into31

N∧
n=1

⎛
⎝�tn−1∈ Imn � ∧

mn−1∧
m=1

(tn−1 ≥ cm)∧
M∧

m=mn+1

¬(tn−1 ≥ cm−1)∧ �xn∈ Rmn
ln−1,ln

�
⎞
⎠

which is a conjunction of LRA-literals (namely μLRA). Thus, with the fixed-path setting, WMI-PA generates only one 
μLRA to integrate for every μA∗ ∈MA∗

.
A direct theoretical comparison of the WMI techniques with respect to the symbolic techniques in SVE-XADD [42] and

PRAiSE [19] is not possible, because of the very different nature of such procedures—and of the fact that the code of PRAiSE

is much more complex and sophisticated than the general algorithm described in [19]—so that we limit to express a few 
conjectures.

Concerning the performance of SVE-XADD, as mentioned in §6, we conjecture that its major limitation is that it requires 
to enumerate all paths from the root to the leaves in the XADD during computation, thus producing a blow-up both in 
memory requirements and number of alternatives to be evaluated.

An analysis of the performance difference between PRAiSE and WMI-BC/WMI-AllSMT is more difficult. On the one 
hand, to the best of our understanding of the algorithm in [19], PRAiSE supports some form of reasoning on partial 
LRA-subassignments, which we conjecture to provide a good advantage with respect to WMI-BC and WMI-AllSMT on 
the road-network setting, where this feature is critical. On the other hand, where the above issue is less critical as with the 
synthetic setting, we conjecture that the usage of variable-elimination techniques might be less efficient than the Boolean 
decomposition plus numerical integrations, as done by WMI-BC and WMI-AllSMT.

Finally, when comparing PRAiSE and WMI-PA—in addition to what mentioned in the last paragraph—we conjecture that 
the superiority in performance might be due mostly to the two-step usage of predicate abstraction interleaved with formula 
simplification, which allows both for getting rid of most LRA-atoms from ϕ∗

[μA∗ ] and for enumerating partial assignments 

on them, so that to drastically prune the number of LRA-assignments μLRA produced and thus the number of integrals 
performed.

8. Conclusion and future work

In this paper we proposed a revised definition of WMI which addresses some theoretical and practical limitations of 
the original formulation. Building on the properties of the novel formulation, we developed an efficient WMI algorithm 
combining a substantial reduction in the number of integrations with their efficient enumeration. Experimental comparisons 
over synthetic and real-world data confirm the drastic efficiency improvement over existing alternatives.

A number of relevant research directions can be foreseen to improve the current framework. From a computational 
perspective, further efficiency improvements could be obtained by developing decomposition techniques combined with 
appropriate caching strategies. This is a highly non-trivial task, as component caching approaches from the WMC litera-
ture [3,40] cannot be easily adapted to the WMI case because of the coupling induced by algebraic constraints. Another 
direction to scale up WMI to larger domains is that of working on approximate strategies. Space decomposition strategies 
based on random parity constraints [46] have been successfully employed for approximate model counting [6,25] and its 
weighted alternative [12,21,22]. A first step in this direction has been recently made by Belle et al. [8], but further work 
is needed in order to fully combine the efficiency of sampling by parity constraints with that of reasoning with theory 

31 Recall from §4.1 that �tn−1∈ Imn � def= (tn−1 ≥ cm−1) ∧¬(tn−1 ≥ cm); consequently, we have that ¬�tn−1∈ Imn � =¬(tn−1 ≥ cm−1) ∨ (tn−1 ≥ cm), which is 
simplified into (tn−1 ≥ cm) if m < mn and into ¬(tn−1 ≥ cm−1) if m > mn .
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solvers while retaining approximation guarantees in the weighted setting. From an expressivity viewpoint, an obvious di-
rection is that of generalizing WMI to deal with combinations of theories, like linear arithmetic over reals and integers. 
This is a rather straightforward extension as it only affects the base step of our algorithm (alternative approaches like
PRAiSE already provide this functionality). A promising but more challenging direction for further enhancement is that of 
incorporating function symbols, something which has been recently investigated in both WMC [10] and probabilistic in-
ference modulo theories [18]. A complementary direction in terms of enhanced expressivity is that of extending the class 
of weight functions supported by the method. WMI currently works for FILRA functions, i.e. functions which are feasibly 
integrable on every set of LRA atoms. Polynomials are FILRA [4], and they are the weight functions currently supported 
by our WMI implementation. Arbitrary weight functions could in principle be tackled using hyper-rectangle decomposition 
approaches [14]. Here the weight function is approximated as the sum of weight functions over hyper-rectangles, which 
are easy to compute. The problem is that depending on the LRA atoms, a very large or even infinite number of hyper-
rectangles can be needed. A recent work by Merrell et al. [34] showed that in the special case of independent Gaussian 
densities, appropriate orthogonal transformations can be used to align one of the faces of the boundary of the formula to 
one of the axes without affecting the value of the integral, thus reducing the number of hyper-rectangles needed for an 
accurate approximation.

Finally, WMI has a number of intriguing application scenarios. Probabilistic inference in hybrid graphical models is the 
original motivation for research on WMI. Probabilistic planning [20,29] on hybrid domains is also a natural application 
domain. Program analysis is another promising direction, as exemplified by the recent works on quantifying bias in proba-
bilistic programs [2] and probabilistic program abstraction [28].
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