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Roberto Sebastiani

DISI, University of Trento, Italy

Abstract. The satisfiability problem for conjunctions of quantifier-free literals in
first-order theories T of interest –“T -solving” for short– has been deeply inves-
tigated for more than three decades from both theoretical and practical perspec-
tives, and it is currently a core issue of state-of-the-art SMT solving. Given some
theory T of interest, a key theoretical problem is to establish the computational
(in)tractability of T -solving, or to identify intractable fragments of T .
In this paper we investigate this problem from a general perspective, and we
present a simple and general criterion for establishing the NP-hardness of T -
solving, which is based on the novel concept of “colorer” for a theory T .
As a proof of concept, we show the effectiveness and simplicity of this novel
criterion by easily producing very simple proofs of the NP-hardness for many
theories of interest for SMT, or of some of their fragments.

1 Introduction

Since the pioneering works of the late 70’s and early 80’s by Nelson, Oppen, Shostak
and others [23, 27, 28, 18, 21, 22, 19], the satisfiability problem for conjunctions of
quantifier-free literals in first-order theories T of interest –hereafter “T -solving” for
short– has been deeply investigated from both theoretical and practical perspectives,
and it is currently a core issue of state-of-the-art SMT solving. Efficient T -solvers have
been proposed and implemented for a large variety of theories of interest, including
those of Equality and Uninterpreted Functions (EUF), Linear Arithmetic over the re-
als (LRA) and the integers (LIA), Non-Linear Arithmetic (NLA(R)), the theories of
bit-vectors (BV) and floating-point arithmetic (FPA), of arrays (AR), of sets (S), of
lists (L) and more generally of recursive datatypes, and of their combinations.

Given some theory T of interest, or some fragment thereof, a key theoretical prob-
lem is that of detecting and proving the computational (in)tractability of T -solving, or
to identify (in)tractable fragments of T . Although in the pool of theories of interest T -
solving presents many levels of intractability, the main divide is between polynomiality
and NP-hardness. (We recall that the latter can be verified by finding a polynomial re-
duction of some known NP-complete problem into T -solving for the given theory T .)
Despite a wide literature studying the complexity of single theories or of families of

theories (e.g. [23, 22, 21, 19, 11, 8, 17, 16, 13, 9, 15, 6]) and some more general work on
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complexity of T -solving [4, 23, 22], we are not aware of any previous work explicitly
addressing the general issue of NP-hardness of T -solving for a generic theory T .

In this paper we try to fill this gap, and we present a simple and general criterion for
detecting and proving the NP-hardness of T -solving for theories with equality –and in
some cases also for theories without equality– which is based on the novel concept of
“colorer” for a theory T , inducing the notion of “colorable” theory.

Our work started from the heuristic observation that the graph k-colorability prob-
lem, which is NP-complete for k ≥ 3 [12], fits very naturally as a candidate problem to
be polynomially encoded into T -solving for theories with equality. (We believe, more
naturally than the very frequently-used 3-SAT problem.) In fact, we notice that the set
of the arcs in a graph and the coloring of the vertexes can be encoded respectively into a
conjunction of disequalities between “vertex” variables and into a conjunction of equal-
ities between “vertex” and “color” variables, both of which are theory-independent.
Therefore, in designing a reduction from k-colorability to T -solving, the only facts one
needs formalizing by T -specific literals is a coherent definition of k distinct “colors”
and the fact that a generic vertex can be “colored” with and only with k colors.

Following this line of thought, in this paper we present a general framework for
producing reductions from graph k-colorability with k ≥ 3 to T -solving for generic
theories T with equality. This framework decouples the T -specific part of a reduc-
tion from its T -independent part: the former is formalized into the definition of a T -
specific object, called “k-colorer”, the latter is formalized and proven once forall in
this paper. Thus, the task of proving the NP-hardness of a theory T via reduction from
k-colorability reduces to that of finding a k-colorer for T .

To this extent, we also provide some general criteria for producing k-colorers, with
hints and tips to achieve this simplified task. As a proof of concept, we show the ef-
fectiveness and simplicity of this novel approach by easily producing k-colorers with
k ≥ 3 for many theories of interest for SMT, or even for some of their fragments

We notice that this technique can be used not only to investigate the intractability
of major theories, but also to investigate that of fragments of such theories, so that to
pinpoint the subsets of constructs (i.e. functions and predicates in the signature) which
cause a theory to be intractable. We stress the fact that the problem of identifying such
intractable fragments is not only of theoretical interest, but also of practical importance
in the development of SMT solvers, in order to drive the activation of ad-hoc tech-
niques –including e.g. weakened early pruning, layering, splitting-on-demand [5, 2]–
which partition the search load among distinct specialized T -solvers and between the
T -solvers and the underlining SAT solver [25, 3].

Content. The rest of the paper is organized as follows: §2 provides the necessary back-
ground knowledge and terminology for logic and graph coloring; §3 introduces our
main definitions of k-colorer and k-colorability and presents our main results; §4 ex-
plains how to produce k-colorers for given theories, providing a list of examples; §5
provides some discussion about k-colorability vs. non-convexity; §6 extends the frame-
work to theories without equality; §7 discusses ongoing and future developments.
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2 Background and Terminology

2.1 Logic.

We consider an infinite set X of variable symbols. A signature Σ is a set of predicate
and function symbols, called Σ-predicates and Σ-functions respectively, each with an
associated arity. We call Σ-constants the 0-arity function symbols and Σ-propositions
the the 0-arity predicate symbols in Σ.

A Σ-term is either a variable symbol in X , or a Σ-constant, or an expression in the
form f(t1, ..., tn), f being a Σ-function of arity n ≥ 1 and t1, ..., tn being Σ-terms. A
Σ-atom is a formula in the form ⊥, Ai, P (t1, . . . , tn), or (t1 = t2), where ⊥, Ai, P , =
and t1, ..., tn are respectively the false constant symbol, a Σ-proposition, a Σ-predicate
of arity n ≥ 1 and n Σ-terms. A Σ-literal is either a Σ-atom or its negation. A Σ-cube
and a Σ-clause are respectively a (finite) conjunction and a disjunction of Σ-literals. A
Σ-formula is either a Σ-atom or an expression in the form ¬ϕ1, (ϕ1 ∧ ϕ2), or ∃x.ϕ1,
where ϕ1 and ϕ2 are Σ-formulas and x ∈ X . The other propositional connectives
∨,→,↔ and the > and ∀ symbols are defined in the usual way: >, (ϕ1 ∨ ϕ2), (ϕ1 →
ϕ2), (ϕ1 ↔ ϕ2), and ∀x.ϕ1 are shorthands for ¬⊥, ¬(¬ϕ1 ∧ ¬ϕ2), (¬ϕ1 ∨ ϕ2),
(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) and ¬∃x.¬ϕ1 respectively.

A variable x occurs free in a Σ-formula ϕ if it occurs in ϕ under the scope of no
quantifier ∃,∀. A Σ-term is closed if contains no variable. A Σ-formula ϕ is a Σ-
sentence if no variable occurs free in ϕ, and is quantifier-free if it has no quantifiers.

Semantics. Given X and a signature Σ, a Σ-interpretation I is given by a pair
〈D, 〈.〉I〉, where D is a non-empty set (the domain) and 〈.〉I is a map from X ∪ Σ,
mapping

– any variable in X and Σ-constant into an element of D,
– any n-ary Σ-function f into a total function 〈f〉I : Dn 7−→ D,
– any Σ-proposition Ai into either true or false,
– any n-ary Σ-predicate P into a total relation 〈P 〉I ⊆ Dn.

A Σ-interpretation determines a unique mapping over Σ-terms: 〈f(t1, ..., tn)〉I
def
=

〈f〉I(〈t1〉I , ..., 〈t1〉I). The satisfiability relation |= between Σ-interpretations and Σ-
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formulas is defined as follows.1

I 6|= ⊥
I |= Ai iff 〈Ai〉I = true
I |= P (t1, ..., tn) iff (〈t1〉I , ..., 〈tn〉I) ∈ 〈P 〉I
I |= (t1 = t2) iff 〈t1〉I = 〈t2〉I
I |= ¬ϕ1 iff I 6|= ϕ1

I |= (ϕ1 ∧ ϕ2) iff I |= ϕ1 and I |= ϕ2

I |= ∃x.ϕ1 iff I |= ϕ1[x|d] for some d ∈ S.

A Σ-modelM is a Σ-interpretation over an empty set of variables.
Given a signatureΣ, we callΣ-theory T a class ofΣ-models. Given a theory T , we

call T -interpretation an extension of someΣ-modelM in T which maps free variables
into elements of the domain ofM. A Σ-formula ϕ –possibly with free variables– is
T -satisfiable if I |= ϕ for some T -interpretation I. (Hereafter we will use the symbol
“|=T ” to denote the T -satisfiability relation; we will also drop the prefix “Σ-” when the
signature is implicit by context.) We say that a set/conjunction of formulas Ψ T -entails
another formula ϕ, written Ψ |=T ϕ, if every T -interpretation T -satisfying Ψ also T -
satisfies ϕ. We say that ϕ is T -valid, written |=T ϕ, if ∅ |=T ϕ. We have that |=T ϕ
iff ¬ϕ is not T -satisfiable. For short, we call “T -solving” the problem of deciding the
T -satisfiability of a cube.

Finally, a theory T is convex if for all cubes µ and all sets E of equalities between
variables, µ |=T

∨
e∈E e iff µ |=T e for some e ∈ E.

Remark 1. In SMT it is often convenient to use formulas with uninterpreted symbols,
including 0-arity functions/constants –which for satisfiability purposes are analogous
to free variables– 0-arity predicates/propositions, functions and predicates of arity > 0,
which are respectively used as abstractions of terms, formulas, and of operators which
are not part of the signature. When so, a T -interpretation is extended to map also these
symbols within its domain. (As with free variables, we assume that when T admits
uninterpreted function [resp. predicate] symbols of some arity n ≥ 0, then it admits
infinitely many of them.) This is the case, e.g., of EUF [19] and its extensions.

Notice, however, that the presence of uninterpreted function or predicate symbols
of arity > 0 may cause the complexity of T -solving scale up (see e.g. the example in
[23]). Thus, when not explicitly specified otherwise, we implicitly assume that a theory
T does not admit such symbols. �

We are often interested in fragments of a theory obtained by restricting its signature.
Let Σ, Σ′ be two signatures s.t. Σ′ ⊆ Σ; we say that a Σ′-modelM′ is a restriction to
Σ′ of aΣ-modelM iffM′ andM agree on all the symbols inΣ′, and that aΣ′-theory
T ′ is the signature-restriction fragment of a Σ-theory T wrt. Σ′ iff T ′ is the set of the
restrictions to Σ′ of the Σ-models in T .

1 Notice that we are using the symbol = both as a symbol of the logic and as the usual meta-
symbol for equality. Also, we will use symbols like 0, 1, 2, ... both as constant symbols and as
meta-symbols for their domain values. The difference, however, is always clear from context.
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G1 : G2 :
V1

V2

V3

V4C2

C1 C3

C3

V1

V2

V3

V4C2

C1 C3

??

Enc[G1⇒LIA]
def
=

(
(c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧

∧4
i=1((vi ≥ 1) ∧ (vi ≤ 3))∧

¬(v1 = v2) ∧ ¬(v1 = v3) ∧ ¬(v1 = v4) ∧ ¬(v2 = v3) ∧ ¬(v2 = v4)

)
Enc[G2⇒LIA]

def
= Enc[G1⇒LIA] ∧ ¬(v3 = v4)

Fig. 1. Top Left: a small 3-colorable graph (G1), with C1 = blue, C2 = red, C3 = green.
Top Right: the same graph augmented with the vertex 〈V3, V4〉 (G2) is no more 3-colorable.
Bottom: example of encodings of the 3-colorability of G1 and G2 into LIA-solving.

2.2 Graph coloring.

We recall a few notions from [10]. The symbols V , E and C, possibly with sub-
scripts, denote respectively vertexes, edges and vertex colors in a graph.
Definition 1 (k-Colorability of a graph (see [12, 10])). Let G def

= 〈V, E〉 be an un-
directed graph, where V def

= {V1, ..., Vn} is the set of vertexes and E def
= {E1, ..., Em}

is the set of edges in the form 〈Vi, Vi′〉 for some i, i′. Let C def
= {C1, ..., Ck} be a set of

distinct values, namely “colors”, for k > 0. Then G is k-Colorable if and only if there
exists a total map color : V 7−→ C s.t. color(Vi) 6= color(Vi′) for every 〈Vi, Vi′〉 ∈ E .
The problem of deciding if G is k-colorable is called the k-colorability problem for G.

Lemma 1 (see [12, 10]). The k-colorability problem for un-directed graphs is NP-
complete for k ≥ 3, it is in P for k < 3.

Figure 1 (top) shows two small graph 3-colorability problems.

3 k-colorers and k-Colorable Theories with Equality

Hereafter we focus w.l.o.g. on theories T of domain size ≥ 2, i.e., s.t. ¬(v1 = v2)
is T -consistent. In fact, if not so, then trivially T -solving is in P, because (t1 = s1)
and Pj(t1, ..., tn) ↔ Pj(s1, ..., sn) are T -valid for all terms t1, ..., tn, s1, ..., sn and
predicate Pj , so that one can rewrite positive and negative equalities into > and ⊥
respectively and atoms like Pj(s1, ..., sn) into fresh Boolean variables Pj , so that T -
solving reduces to checking the satisfiability of a conjunction of Boolean literals, which
is in P.

We frequently use the following shortcut expression: AllDifferentk[c]
def
=∧k

j=1

∧k
j′=j+1 ¬(cj = cj′). (Here and elsewhere, we include within square brackets

“[]” the variables occurring free in the formula denoted by the shortcut expression, or
some superset of them.)
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Definition 2 (k-Colorer, k-Colorable Theory). Let T be some theory with equality
and k be some integer value s.t. k ≥ 2. Let vi be a variable, called vertex variable,
(implicitly) denoting the i-th vertex in an un-directed graph; let c def

= {c1, .., ck} be a set
of variables, called color variables, denoting the set of colors; let yi

def
= {yi1, ..., yil}

denote a possibly-empty set of variables, which is indexed with the same index i of the
vertex variable vi.

We call k-colorer for T , namely Colorerk[vi, c,yi], a finite conjunction of
quantifier-free T -literals (cube) over vi, c and yi which verify the following proper-
ties:

Colorerk[vi, c,yi] |=T AllDifferentk[c], (1)

Colorerk[vi, c,yi] |=T
∨k

j=1(vi = cj), (2)
there exist k T -interpretations {Ii,1, ..., Ii,k} s.t. (3)

for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and
for every j ∈ [1..k], Ii,j |=T Colorerk[vi, c,yi] ∧ (vi = cj).

We say that T is k-colorable if and only if it has a k-colorer.

yi is a (possibly-empty) set of auxiliary variables, one distinct set for each vertex vari-
able vi, which sometimes may be needed to express (1), (2) and (3) (see Examples 7
and 9), or to make Colorerk[vi, c,yi] more readable by renaming internal terms (see
Example 9). If yi = ∅, we may write “Colorerk[vi, c]” instead of “Colorerk[vi, c|∅]”.
{Ii,1, ..., Ii,k} denotes a set of T -interpretations each satisfying Colorerk[vi, c,yi]

s.t. all the T -interpretations in {Ii,1, ..., Ii,k} agree on the values assigned to the color
variables in {c1, ..., ck} and s.t. each Ii,j assigns to the vertex variable vi the same
value assigned to the jth color variable cj . The condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k of
(3) expresses the fact that, when passing from the scenario Ii,j in which vi is assigned
the color cj –expressed by the equality (vi = cj) in (3)– to the scenario Ii,j′ in which
vi is assigned the color cj′ –expressed by the equality (vi = cj′)– it is the value of the
vertex variable vi who must change, not those of the color variables c1, ..., ck.

Intuitively, Colorerk[vi, c,yi] expresses the following facts: (1) that c1, ..., ck repre-
sent the names of distinct “color” values, (2) that each vertex represented by the variable
vi can be tagged (“colored”) only with one of such color names cj , (3) that the values
associated to the color names are not affected by the choice of the color name cj tagged
to vi –represented by the index j in Ii,j– and that each tagging choice is admissible.

There may be many distinct k-colorers for a theory T , as shown in Example 1.

Example 1 (LIA). We consider the theory of linear arithmetic over the integers (LIA),
assuming the standard model of integers, so that the symbols +,−,≤,≥ and the inter-
preted constants 0, 1, ... are interpreted in the standard way by all LIA-interpretations.
LIA is 3-colorable, since we can define, e.g., k def

= 3, yi
def
= ∅, and

Colorer3[vi, c1, c2, c3]
def
= (c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ (v ≥ 1) ∧ (v ≤ 3). (4)

It is straightforward to see that Colorer3[vi, c1, c2, c3] verifies (1), (2) and (3), with
Ii,j

def
= {c1 → 1, c2 → 2, c3 → 3, vi → j} for every j ∈ [1..3]. Notice that in this
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case yi = ∅, i.e. Colorerk[vi, c,yi] requires no auxiliary variables. Notice also that
AllDifferentk[c] is implied by the usage of the interpreted constants 1, 2, 3.

An alternative 3-colorer which does not explicitly assign fixed values to the cj’s is:

Colorer3[vi, c1, c2, c3]
def
=

(
AllDifferent3[c] ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(v ≥ 1) ∧ (v ≤ 3)

)
, (5)

which verifies (1), (2) and (3), e.g., with the same Ii,j’s as above. Consider instead:

Colorer3[vi, c1, c2, c3]
def
=

(
AllDifferent3[c] ∧

∧3
j=1((cj ≥ 1) ∧ (cj ≤ 3)) ∧

(vi = 1)

)
. (6)

This is not a 3-colorer, because it does not verify (3): there is no pair of LIA-
interpretations Ii,1 and Ii,2 s.t. Ii,1 |=LIA Colorer3[vi, c1, c2, c3] ∧ (vi = c1) and
Ii,2 |=LIA Colorer3[vi, c1, c2, c3] ∧ (vi = c2) which agree on the values of c1, c2, c3.�

Remark 2. The choice of using variables c1, ..., ck to represent colors is due to the
fact that some theories do not provide k distinct interpreted constant symbols in their
signature (see Example 9). If this is not the case, then Colorerk[vi, c,yi] can be built to
force c1, ..., ck to assume fixed values expressed by interpreted constant symbols, like
1, 2, 3 in (4), so that the condition 〈cj〉Ii,1 = ... = 〈cj〉Ii,k of (3) is verified a priori.
This point will be addressed explicitly in §4.

3.1 Properties of k-colorable theories

The following properties of k-colorers and k-colorable theories follow straightfor-
wardly from their definition.

Property 1. Let k, T , and Colorerk[vi, c,yi] as in Definition 2.

(a) Colorerk[v, c,y] is T -satisfiable;
(b) for every permutation σc of c, Colorerk[v, σc,y] verifies (1), (2), and (3).

Proof. Straightforward from Definition 2.

Property 2. Let T be a k-colorable theory for some k ≥ 2. Then we have that:

(a) AllDifferentk[c] is T -satisfiable;
(b) T is non-convex.

Proof. Consider the definition of Colorerk[vi, c,yi] in Definition 2.

(a) By (3) Colorerk[vi, c,yi] is T -satisfiable; thus by (1) AllDifferentk[c] is T -
satisfiable;
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(b) By (2), Colorerk[vi, c,yi] |=T
∨k

j=1(vi = cj). By (3), for every j1 ∈ [1..k] there
exists an interpretation Ii,j1 s.t. Ii,j1 |=T Colorerk[vi, c,yi]∧(vi = cj1). Then, by
(1), for every j2 ∈ [1..k] s.t. j2 6= j1 we have that Ii,j1 |=T Colorerk[vi, c,yi] ∧
¬(vi = cj2). Thus for every j ∈ [1..k] Colorerk[vi, c,yi] 6|= (vi = cj). Therefore
T is non-convex. ut

Therefore, by Property 2, a k-colorable theory must have at least k distinct elements in
its domain, and must be non-convex.

Property 3. If T ′ is a k-colorable theory with equality for some k ≥ 2, and T ′ is a
signature-restriction fragment of another theory T , then T is k-colorable.

Proof. If Colorerk[vi, c,yi] is a k-colorer for T ′, then by definition of signature-
restriction fragment it is also a k-colorer for T . ut

Property 4. If T and T ′ are two signature-disjoint theories with equality and T is k-
colorable for some k ≥ 2, then the combined theory T ∪ T ′ is k-colorable.

Proof. By construction T is a signature-restriction fragment of T ∪ T ′ and T is k-
colorable, so that T ∪ T ′ is k-colorable by Property 3. ut

Properties 3 and 4 show that, to make a theory k-colorable, it suffices that one of
its (signature-restriction) fragments –or one of its components in a signature-disjoint
combination– is k-colorable.

3.2 Main result

Lemma 2. Let k be an integer value s.t. k ≥ 3. Let G and C be respectively an un-
directed graph with n vertexes V1, ..., Vn and a set of k distinct colors C1, ..., Ck, like
in Definition 1. Let T be a k-colorable theory with equality. We consider the following
conjunctions of T -literals:

Colorable[v1, ..., vn, c,y1, ...,yn]
def
=
∧

Vi∈V Colorerk[vi, c,yi] (7)

Graph[G](v1, ..., vn)
def
=
∧
〈Vi1

,Vi2
〉∈E ¬(vi1 = vi2) (8)

Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn]
def
= Colorable[v1, ..., vn, c,y1, ...,yn] ∧ (9)

Graph[G](v1, ..., vn),

where v1, ..., vn, c1, ..., ck and y11, ..., y1l, ...yi1, ..., yil, ..., yn1, ..., ynl are free vari-
ables, 2 and all the k-colorers Colorerk[vi, c,yi] in (7) are identical modulo the re-
naming of the variables vi and yi, but not of the color variables c.

Then G is k-colorable iff Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn] is T -satisfiable.

2 Notice that each cj is implicitly associated with the color Cj ∈ C for every j ∈ [1..k] and
each vi and yi is implicitly associated to the vertex Vi ∈ V for every i ∈ [1..n].
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Proof.

If: Suppose Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn] is T -satisfiable, that is, there exist an
interpretation I in T s.t. I |=T Colorable[v1, ..., vn, c,y1, ...,yn] and I |=T
Graph[G](v1, ..., vn). Thus:

(i) By (7) and (1), 〈cj1〉I 6= 〈cj2〉I for every j1, j2 ∈ [1, ..., k] s.t. j1 6= j2.
(ii) By (7), (2) and (1), for every i ∈ [1...n] there exists some j ∈ [1...k] s.t.
〈vi〉I = 〈cj〉I and s.t. 〈vi〉I 6= 〈cj′〉I for every j′ 6= j.

(iii) By (8), 〈vi1〉I 6= 〈vi2〉I for every 〈Vi1 , Vi2〉 ∈ E .
Then by (i) and (ii) we can build a map color : V 7−→ C s.t., for every Vi ∈ V ,
color(Vi) = Cj iff 〈vi〉I = 〈cj〉I . By (iii) we have that color(Vi1) 6= color(Vi2)
for every 〈Vi1 , Vi2〉 ∈ E . Thus G is k-colorable.

Only if: Suppose G is k-colorable, that is, there exist a map color : V 7−→ C s.t.
color(Vi1) 6= color(Vi2) for every 〈Vi1 , Vi2〉 ∈ E .
Consider i = 1, and let {I1,1, ..., I1,k} be the set of T -interpretations for
Colorerk[v1, c,y1] as in (3), so that:
(a) for every j ∈ [1..k], I1,j |=T Colorerk[v1, c,y1] ∧ (v1 = cj),

(b) for every j ∈ [1..k], 〈cj〉I1,1 = ... = 〈cj〉I1,k .
For every i ∈ [1..n] we consider Colorerk[vi, c,yi] and we build a replica
{Ii,1, ..., Ii,k} of the set of T -interpretations {I1,1, ..., I1,k} in such a way that:

(i) 〈vi〉Ii,j
def
= 〈v1〉I1,j = 〈cj〉I1,j (each Ii,j maps its vertex variable vi into the

same color as I1,j maps its vertex variable v1);

(ii) 〈cj〉Ii,1
def
= 〈cj〉I1,1 , ..., 〈cj〉Ii,k

def
= 〈cj〉I1,k , so that, by (a), 〈cj〉Ii,1 = ... =

〈cj〉Ii,k = 〈cj〉I1,1 = ... = 〈cj〉I1,k (all Ii,j agree on the values of the color
variables, for every i ∈ [1..n] and j ∈ [1..k]);

(iii) 〈yi1〉Ii,j
def
= 〈y11〉I1,j , ..., 〈yil〉Ii,j

def
= 〈y1l〉I1,j (each Ii,j maps its auxiliary

variables yi into the same domain values as I1,j maps y1).
Consequently, by (3), for every vi ∈ {v1, ..., vn}, {Ii,1, ..., Ii,k} are s.t.
(a) for every j ∈ [1..k], Ii,j |=T Colorerk[vi, c,yi] ∧ (vi = cj),

(b) for every j ∈ [1..k], 〈cj〉Ii,1 = ... = 〈cj〉Ii,k .
For every i ∈ [1...n], let ji ∈ [1..k] be the index s.t. Cji = color(Vi), and we pick
the T -interpretation Ii,ji . Thus, since all the Ii,jis agree on the common variables
c, we can merge them and create a global T -interpretation I as follows:

(i) 〈vi〉I
def
= 〈vi〉Ii,ji = 〈cji〉Ii,ji = 〈cji〉I , for every i ∈ [1..n];

(ii) 〈cj〉I
def
= 〈cj〉Ii,ji , for every j ∈ [1..k];

(iii) 〈yir〉I
def
= 〈yir〉Ii,ji , for every i ∈ [1..n] and for every r ∈ [1..l].

By construction, for every i ∈ 1..n, I agrees with Ii,ji on c, vi, and yi, so that, by
point (a), I |=T (Colorerk[vi, c,yi] ∧ (vi = cji)).
Thus I |=T Colorable[v1, ..., vn, c,y1, ...,yn].
Since the values 〈c1〉I , ..., 〈ck〉I are all distinct, we can build a bijection linking
each domain value 〈cj〉I to the colorCj , for every j ∈ [1..k]. Hence 〈cj〉I = 〈cj′〉I
iff Cj = Cj′ . For every 〈Vi, Vi′〉 ∈ E , color(Vi) 6= color(Vi′), that is, Cji 6= Cji′ .
Therefore 〈cji〉I 6= 〈cji′ 〉

I , and 〈vi〉I = 〈cji〉I 6= 〈cji′ 〉
I = 〈vi′〉I . Consequently

I |=T Graph[G](v1, ..., vn).
Thus Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn] is T -satisfiable. ut
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Example 2. Figure 1 shows a simple example of encoding a graph 3-colorability prob-
lem into LIA-solving, using the k-colorer (4) of Example 1. (Notice that the literals
which do not contain vi and yi can be moved out of the conjunction

∧
Vi∈V ... in (7).)

The first formula is LIA-satisfied, e.g., by an interpretation I s.t. 〈cj〉I
def
= j for every

j ∈ [1..3], 〈v1〉I
def
= 1, 〈v2〉I

def
= 2, 〈v3〉I

def
= 3 and 〈v4〉I

def
= 3, which mimics the coloring

in Figure 1 (left). The second formula is LIA-unsatisfiable, as expected. �

Lemma 3. Let k, n, G, C, T and Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn] be as in Lemma 2.

Then ||Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn]|| is polynomial in ||G|| def
= ||V||+ ||E||.

Proof. By Definition 2 we have that ||Colorerk[vi, c,yi]|| is constant wrt. ||V|| or ||E||.
From (7), (8) and (9), ||Enc[G⇒T ][v1, ..., vn, c,y1, ...,yn]|| is O(||V||+ ||E||). ut

Notice that k is fixed a priori and as such it is a constant value for the input graph
k-colorability problem: e.g., given a theory T , we are speaking of reducing graph 3-
colorability –or 4-colorability, or even 264-colorability– to T -solving.

Combining Lemmas 1, 2 and 3 we have directly the following main result.

Theorem 1. If a theory with equality T is k-colorable for some k ≥ 3, then the problem
of deciding the T -satisfiability of a conjunction of quantifier-free T -literals is NP-hard.

Notice that the key source of hardness is condition (2) in Definition 2: intuitively,
a k-colorable theory is expressive enough to represent with a conjunction of quantifier-
free T -literals –without disjunctions!– the fact that one variable must assume a value
among a choice of k ≥ 3 possible candidates –in addition to the fact that a list of pairs
of variables cannot pairwise assume the same value. This source of non-deterministic
choices has a high computational cost, as stated in Theorem 1.

4 Proving k-Colorabilty

Theorem 1 suggests a general technique for detecting and proving the NP-hardness
of a theory T : pick some k ≥ 3 and then try to build a k-colorer Colorerk[vi, c,yi].
Also, when T is known to be NP-hard, one may want to identify smaller –and possibly
minimal– signature-restriction fragments T ′ which are k-colorable for some k, by iden-
tifying increasingly-smaller subsets of the signature of T which are needed to define a
k-colorer.

We introduce some sufficient criteria for a theory to be k-colorable with some k ≥ 3.
As a proof of concept, we use these criteria to prove the k-colorability with some k ≥ 3,
and hence the NP-hardness, of some theories T of practical interest, and of some of their
signature-restriction fragments.

We remark that the ultimate goal here is not to provide fully-detailed proofs of NP-
hardness –all the main theories presented here are already well-known to be NP-hard,
although to the best of our knowledge the complexity of not all of their fragments has
been investigated explicitly– rather to present proof of concept of the convenience and
effectiveness of our proposed colorability-based technique, using various theories/frag-
ments as examples. To this extent, for the sake of simplicity and space needs, and when
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this does not affect comprehension, sometimes we skip some formal details of the syn-
tax and semantics of the theories under analysis, referring the reader to the proper liter-
ature. Rather, we dedicate a few lines to give some hints and tips on how to apply our
colorability-based technique in potentially-typical scenarios.

4.1 Exploiting finite domains of fixed size
The first sufficient condition deals with theories with finite domains of fixed size.

Proposition 1. Let T be some theory with finite domain of fixed size k ≥ 3. Then
Colorerk[vi, c]

def
= AllDifferentk[c] is a k-colorer for T .

Proof. Let c def
= {c1, ..., ck}. Since the domain of T has fixed size k ≥ 3, we have:

AllDifferentk[c] 6|=T ⊥ (10)
AllDifferentk+1[c ∪ {vi}] |=T ⊥. (11)

AllDifferentk[c] entails itself, so that (1) holds. AllDifferentk[c] ∧
∧k

j=1 ¬(vi = cj)
is the same as AllDifferentk+1[c ∪ {vi}] which is T -unsatisfiable by (11), so that
AllDifferentk[c] |=T

∨k
j=1(vi = cj). Hence (2) holds. By (10) there exists some

T -interpretation I s.t. I |=T AllDifferentk[c]. For every j ∈ [1..k] we build an ex-
tension Ii,j of I with the same domain s.t. 〈c1〉Ii,j

def
= 〈c1〉I , ..., 〈ck〉Ii,j

def
= 〈ck〉I , and

〈vi〉Ii,j
def
= 〈cj〉I . Hence (3) holds. ut

Theories of Fixed-Width Bit-vectors and Floating-point Arithmetic. We prove the
k-colorability of (the signature-restriction fragments of) the theories of Fixed-width
Bit-vectors and Floating-point Arithmetic by instantiating Proposition 1.

Example 3. (BVw, w > 1) Let w be some integer value s.t. w > 1 and let BV{=}w be
the simplest possible signature-restriction fragment of the fixed-width bit-vectors theory
with equality = and widthw, with no interpreted constant, function or predicate symbol
in its signature. Then by Proposition 1, BV{=}w is k-colorable, where k = 2w. Hence,
by Property 3 all theories BV∗w obtained by augmenting the signature of BV{=}w with
various combinations of interpreted constants (e.g. bvw 0...00, bvw 0...01,...), functions
(e.g. bvw and, bvw or,...) and predicates (e.g. bvw ≥,...)– are k-colorable with k = 2w.
Hence, when w > 1, by Theorem 1, T -solving is NP-hard for all such theories. �

[8] shows that the T -satisfiability of quantifier-free conjunctions of atoms for the
fragment of BV involving only concatenation and partition of words is in P. Notice
however that neither Example 3 contradicts the results in [8], nor Example 3 plus [8]
build a proof of P = NP , because the polynomial procedure in [8] does not admit
negative equalities ¬(vi = v′i) in the conjunction.

Example 4. (FPAe,s) Let FPAe,s be the theory of floating-point arithmetic s.t. e ≥ 1
and s ≥ 1 are the number of available bits for the exponent and the significant respec-
tively [24]. (E.g., FPA11,53 represents the binary64 format of IEEE 754-2008 [24].)
As with Example 3, let FPA=

e,s be the simplest possible signature-restriction fragment
of FPA=

e,s with equality =,3 with no interpreted constant, function and predicate sym-
3 Here “=” is the equality symbol and it is not the FPAe,s-specific symbol “==”, see [24].
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bol in its signature. Then by Proposition 1, FPA=
e,s is k-colorable, where k = 2e+s.

Hence, by Property 3, all theories FPA∗e,s obtained by augmenting the signature of
FPA=

e,s with various combinations of interpreted constants, functions or predicates are
k-colorable with k ≥ 4, so that T -solving is NP-hard. �

4.2 Exploiting interpreted constants, closed terms or provably-distinct terms

A very general schema for building a k-colorer is that of identifying k ≥ 3 terms
t1, ..., tk and then splitting a k-colorer in two components, namely Φ and Ψ , which
entail respectively the fact that t1, ..., tk all represent different domain values and the
fact that vi can assume consistently each of such values. The following fact follows
straightforwardly from definition 2.

Proposition 2. Let T be a theory which admits at least k ≥ 3 terms t1[xi], ..., tk[xi]
on the free variables xi (if any), let yi be a possibly-empty set of variables, and let

Colorerk[vi, c,xi,yi]
def
=
∧k

j=1(cj = tj [xi]) ∧ Φ[xi,yi] ∧ Ψ [vi,xi,yi] (12)

be a quantifier-free conjunction of literals s.t.

Φ[xi,yi] |=T AllDifferentk[{t1[xi], ..., tk[xi]}] (13)

Ψ [vi,xi,yi] |=T
∨k

j=1(vi = tj [xi]) (14)
Colorerk[vi, c,xi,yi] verifies (3). (15)

Then Colorerk[vi, c,xi,yi] is a k-colorer for T , xi, yi being the auxiliary variables.

Proof. (1) holds by combining (12) and (13). (2) holds by combining (12) and (14).
Also, (3) holds by construction (15). ut

A very important subcase is when t1, .., tk are closed terms –e.g., interpreted con-
stants or functions applied to interpreted constants– representing provably distinct do-
main values. In such case Proposition 2 reduces to the following.

Proposition 3. Let T be a theory which admits at least k ≥ 3 closed terms t1, ..., tk,
and let Colorerk[vi, c,yi]

def
=
∧k

j=1(cj = tj)∧Ψ(vi,yi) be a quantifier-free conjunction
of literals s.t.

|=T AllDifferentk[{t1, ..., tk}] (16)

Ψ(vi,yi) |=T
∨k

j=1(vi = tj) (17)
Ψ(vi,yi) ∧ (vi = tj) is T -satisfiable for each j ∈ [1..k], (18)

yi being a possibly-empty set of auxiliary variables.
Then Colorerk[vi, c,yi] is a k-colorer for T .
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Proof. By (16),
∧k

j=1(cj = tj) |=T AllDifferentk[c], so that by construction (1) holds.
By construction and (17), Colorerk[vi, c,yi] verifies (2).
By (18), for every j ∈ [1..k] there exists a T -interpretation Ii,j which satisfies the

formula in (18), which we can consistently extend to c by setting 〈cj′〉Ii,i
def
= 〈tj′〉Ii,i for

every j′ ∈ [1..k], so that Ii,j |= Colorerk[vi, c,yi]∧(vi = cj). Since t1, ..., tk are closed
terms, for every j ∈ [1..k], 〈tj〉Ii,1 = ... = 〈tj〉Ii,k so that 〈cj〉Ii,1 = ... = 〈cj〉Ii,k .
Moreover, by (18), 〈vi〉Ii,j

def
= 〈cj〉Ii,j for every j ∈ [1..k]. Therefore (3) holds. ut

Theories of Arithmetic. We use Proposition 3 –where t1, ..., tk are numerical
constants– to prove the k-colorability of (various signature-restriction fragments of)
the theories of arithmetic.

Example 5 (A{≥,=}(Z), LIA, NLA(Z)). Let A{≥,=}(Z) be the basic theory of in-
tegers under successor [23, 22], that is, whose atoms are in the form (s1 � s2), where
� ∈ {≥,=} and s1, s2 are variables or positive numerical constants. 4 ThenA{≥,=}(Z)
is 3-colorable, because we can define a 3-colorer like that of (4) in Example 1:

Colorer3[vi, c1, c2, c3]
def
= (c1 = 1) ∧ (c2 = 2) ∧ (c3 = 3) ∧ (vi ≥ 1) ∧ (vi ≤ 3).

Notice that this is an instance of Proposition 3, with y
def
= ∅, t1

def
= 1, t2

def
= 2, t3

def
= 3, and

Ψ(vi)
def
= (vi ≥ 1) ∧ (vi ≤ 3). It is straightforward to see that Colorer3[vi, c1, c2, c3]

verifies (16), (17) and (18), with 〈c1〉Ii,j
def
= 1, 〈c2〉Ii,j

def
= 2, 〈c3〉Ii,j

def
= 2, and 〈vi〉Ii,j

def
=

〈cj〉Ii,j for every j ∈ [1..3].
A{≥,=}(Z) is a signature-restriction fragment ofLIA andNLA(Z) (see e.g. [26]),

which are then 3-colorable by Proposition 3. Therefore, T -solving for all these theories
is NP-hard by Theorem 1.5 �

Notice that conjunctions of only positive equalities and inequalities in the form (s1�
s2), without negated literals, are instead well-known to be solvable in polynomial time
(see e.g. [20, 3]). Notice also that, on the rational domain, the corresponding theories
A{≥,=}(Q) and LRA are convex and hence they are not colorable by Property 2. In
fact, T -solving for such theories is notoriously in P [11].

Example 6 (NLA(R)\{≥,>},NLA(R)). We considerNLA(R)\{≥,>}, the signature-
restriction fragment of the non-linear arithmetic over the reals (NLA(R)) with-
out inequality symbols {≥,≤}. As an instance of Proposition 3, we show that

4 Formally,A{≥,=}(Z) can be seen, e.g., as the theory built on the signatureΣ def
= {0, succ(.)}∪

{≥}, s.t. a positive integer n is a shorthand for succ(...(succ(0)...). The symbols≤, <,> are
also abbreviations: (s1 > s2)

def
= (s1 ≥ s2) ∧ ¬(s1 = s2), (s1 ≤ s2)

def
= (s2 ≥ s1) and (s1 <

s2)
def
= (s2 > s1). LIA is built by extending Σ with the function symbols {.+ .),−(.)},

so that −n, t1 − t2 and n ∗ x are respectively shorthands for −(n), (t1 + (−(t2))) and
(...(x + x) + ...) + x). NLA(Z) is built by further extending Σ with the function symbol
{(· ∗ ·)}. These signatures are paired with the standard model of the integers, that interprets
the above constants, functions and predicates on the integer domain in the standard way.

5 Notice thatNLA(Z)-solving is undecidable.

13



NLA(R)\{≥,>} is 3-colorable, because we can define, e.g., k def
= 3, y def

= ∅, and

Colorer3[vi, c1, c2, c3]
def
=

(
(c1 = −1) ∧ (c2 = 0) ∧ (c3 = 1)∧
(vi · (vi − 1) · (vi + 1) = 0)

)
.

By Proposition 3, it is straightforward to see that Colorer3[vi, c1, c2, c3] verifies (16),
(17) and (18), with with 〈c1〉Ii,j

def
= −1, 〈c2〉Ii,j

def
= 0, 〈c3〉Ii,j

def
= 1, and 〈vi〉Ii,j

def
=

〈cj〉Ii,j s.t. j ∈ [1..3]. Then by Proposition 3 the full NLA(R) is 3-colorable, so that
T -solving for both theories is NP-hard by Theorem 1. �

4.3 Dealing with collection datatypes

A class of theories of big interest in SMT-based formal verification are these describ-
ing collection datatypes (see e.g. [14, 7]) –e.g., lists, arrays, sets, etc. In general these
are “families” of theories, each being a combination of a “basic” theory (e.g., the ba-
sic theory of lists) with one or more theories describing the elements or the indexes
of the datatype. In what follows we consider the basic theories, where elements are
represented by generic variables representing values in some infinite domain.

One potential problem if finding k-colorers for most of these “basic” theories is that
neither we have interpreted constants in the domain of the elements, so that we cannot
apply Proposition 3 as we did with arithmetical theories, nor we have any information
on the size of the domain of the elements, so that we cannot apply Proposition 1.

We analyze different potential scenarios. One first scenario is where we have at least
one “structural” interpreted constant –e.g., that representing the empty collection– plus
some function symbols, which we can use to build k ≥ 3 closed terms t1, ..., tk and
then use the schema of Proposition 3 to build a k-colorer.

Theories of Lists. The above scenario is illustrated in the next example.

Example 7 (L+). Let L be the simplest theory of lists of generic elements, with the
signature Σ def

= {nil, car(·), cdr(·), cons(·, ·)} and described by the axioms:

∀xy.(car(cons(x, y) = x)), ∀xy.(cdr(cons(x, y) = y)), (19)
∀xy.(¬(cons(x, y) = nil)), ∀x.(¬(x = nil)→ (cons(car(x), cdr(x)) = x)), (20)

and let L+ be L enriched by the axioms

(car(nil) = nil), (cdr(nil) = nil). (21)

L+-solving is NP-complete whilst L-solving is in P [19]. 6 A more general theory of
lists, which hasL+ as a signature-restriction fragment, is described in [14, 7]. Following
Proposition 3, we prove that L+ is 4-colorable, by setting k def

= 4, y def
= {x1, x2, y1, y2},

6 In [19] this was proved by means of a reduction from 3SAT.
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and

Colorer4[vi, c11, c21, c12, c22, x1, x2, y1, y2]
def
= (22)

(c11 = cons(nil, nil)) ∧ (c21 = cons(cons(nil, nil), nil))∧
(c12 = cons(nil, cons(nil, nil))) ∧ (c22 = cons(cons(nil, nil), cons(nil, nil)))∧∧2

i=1 ((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi))∧
(vi = cons(x1, x2)).


To prove (16) we notice that we can deduce ¬(cons(nil, nil) = nil) from (20), so

that, by construction, all the ci’s are pairwise different. Let Ψ(viyi) be the formula given
by the last two rows in (22), so that (22) matches the definition in Proposition 3. Then
we derive (17) from the following well-known property of L+ [19], with i ∈ {1, 2}:

((car(xi) = car(yi)) ∧ (cdr(xi) = cdr(yi)) ∧ ¬(xi = yi)) (23)
|=L+ (xi = nil) ∨ (xi = cons(nil, nil)),

which derives from the fact that (20) and (21) imply that either (xi = nil) or (yi = nil)

must hold. Therefore vi
def
= cons(x1, x2) can consistently assume one and only one of

the values c11, ..., c22 in the first two rows in (22).
To prove (18), since the cis are closed, we deterministically define each Ii,j’s using

the standard interpretation of nil, cons, car, and cdr: 〈c11〉Ii,j
def
= (NIL.NIL), 〈c21〉Ii,j

def
=

((NIL.NIL).NIL), ... 〈vi〉Ii,j
def
= 〈cj〉Ii,j , checking that, for every j ∈ [1..k],

Ii,j |=L+ Colorer4[vi, c11, c21, c12, c22, x1, x2, y1, y2] ∧ (vi = cj).

Thus L+-solving is NP-hard by theorem 1, so that also the more general theory de-
scribed in [14, 7] is NP-hard. �

Remark 3. The k-colorer (22) was produced along the following heuristic process.

1. Look for an entailment in the form:

µ1[x1,y1] |=T (x1 = t1) ∨ (x1 = t2), (24)

s.t. t1, t2 are closed terms representing distinct values in the domain (23).
2. Define (vi = cons(x1, x2)) and (cr1r2 = cons(tr1 , tr2)), s.t. r1, r2 ∈ {1, 2}
3. Define the k-colorer as∧

i∈{1,2} µi[xi,yi] ∧
∧

r1,r2∈{1,2}(cr1r2 = cons(tr1 , tr2)) ∧ (vi = cons(x1, x2)).

4. Check (16), (17), (18).

Notice that the only non-obvious step is 1, the other come out nearly deterministically.

Theories of Finite Sets. Another scenario is where we cannot apply Proposition 3 be-
cause we cannot use interpreted constants to build closed terms; rather, we can build k
non-closed terms t1[xi], ..., tk[xi] which match the requirements of Proposition 2 any-
way, which allows to build a k-colorer. This scenario is illustrated in the next example.
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Example 8. Let S be the theory of finite sets as defined, e.g., in [14, 7, 1]. S includes the
operators {{...}), (· ⊆ ·), (· ∪ ·), (· ∩ ·), (· \ ·), (·P·), | · |, (· ∈ ·)}, following their stan-
dard semantics. (We refer the reader to [14, 7, 1] for a precise description of the theory.)
Let S{⊆,{}} be the signature-restriction fragment of the S which considers only the
subset and the enumerator operators {⊆, {}}.We show that S{⊆,{}} is 4-colorable by
Proposition 2, with Φ def

= ¬(y1 = y2) and Ψ def
= (vi ⊆ {y1, y2}).

In fact, consider the following set of literals:

Colorer4[vi, c, y1, y2]
def
=

 (c1 = {y1, y2}) ∧(c2 = {y1}) ∧
(c3 = {y2}) ∧(c4 = {}) ∧
¬(y1 = y2) ∧(vi ⊆ {y1, y2})

 . (25)

(25) is a 4-colorer. It is easy to see from the semantics of {⊆, {}} that (13) and (14)
hold. Let Y1, Y2 s.t. Y1 6= Y2 be two domain elements so that we can set 〈yr〉Ii,j

def
= Yr

for every r ∈ [1..2] and j ∈ [1..k]. Then, for every j ∈ [1..k], we define Ii,j s.t.
〈c1〉Ii,j

def
= {Y1, Y2}, 〈c2〉Ii,j

def
= {Y1}, 〈c3〉Ii,j

def
= {Y2}, 〈c4〉Ii,j

def
= {}, 〈vi〉Ii,j

def
=

〈cj〉Ii,j . Then Ii,1, ..., Ii,k verify (15). �

In this case the k-colorer (25) was really immediate to build, upon the observation
that the operator ⊆ can produce 4 distinct subsets of a 2-element set.

Theories of Arrays. Also in the following case we cannot apply Proposition 3 because
we do no not have interpreted constants, so that we apply Proposition 2 directly.

Example 9 (AR). Let AR be the theory of arrays of generic elements and indexes,
with the signature Σ def

= {·[·], ·〈· ← ·〉} 7 and described by the axioms:

∀Aijv. ((i = j)→ (A〈i← v〉[j] = v), (26)
∀Aijv. (¬(i = j)→ (A〈i← v〉[j] = A[j]), (27)
∀AB. ((∀i. A[i] = B[i])→ (A = B)). (28)

AR is 3-colorable, because we can define, e.g., k def
= 3, y def

= {A1, ..., A4, i1, ..., i3} and

Colorer3[vi, c1, c2, c3, A1, ..., A4, i1, ..., i3]
def
=


AllDifferent3[c] ∧
(A2 = A1〈i1 ← c1〉) ∧
(A3 = A2〈i2 ← c2〉) ∧
(A4 = A3〈i3 ← c3〉) ∧
(vi = A4[i1])

 , (29)

7 We use the following notation: “A[i]” (aka “read(A, i)” or “retrieve(A, i)”) is the value re-
turned by reading the i-th element of the array A, and “A〈i← v〉” (aka “write(A, i, v)” or
“store(A, i, v)”) is the array resulting from assigning the value v to the i-th element of A.
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which is an instantiation of Proposition 2, where tj
def
= cj for every j ∈

[1..3], Φ
def
= AllDifferent3[c] and Ψ is given by the remaining rows of

Colorer3[vi, c1, c2, c3, A1, ..., A4, i1, ..., i3]. 8

Then obviously (13) holds, and also (14) holds, because Colorer3[vi, c,y]:

– entails (vi = c3) when 〈i1〉I = 〈i3〉I ,
– entails (vi = c2) when 〈i1〉I 6= 〈i3〉I and 〈i1〉I = 〈i2〉I , and
– entails (vi = c1) when 〈i1〉I 6= 〈i3〉I and 〈i1〉I 6= 〈i2〉I .

Also (15) holds: given three distinct domain values C1, C2, C3, the T -
interpretations Ii,j can be built straightforwardly as follows:

c1 c2 c3 vi i1 i2 i3 A4 ...
Ii,1 C1 C2 C3 C1 1 2 3 [C1, C2, C3, ...]
Ii,2 C1 C2 C3 C2 2 2 3 [∗∗, C2, C3, ...]
Ii,3 C1 C2 C3 C3 3 2 3 [∗∗, C2, C3, ...]

�

Notice that in Example 9, Colorerk[vi, c,yi] uses the auxiliary variablesA1, ..., A4 rep-
resenting arrays and i1, ..., i3 representing indexes. The A2, A3, A4, however, are not
strictly necessary and can be eliminated by inlining. Notice also that Colorerk[vi, c,yi]
includes explicitly AllDifferent3[c] because no interpreted constants come into play.

The k-colorer (29) was produced straightforwardly by noticing that the combination
of (26) and (27) produces a case-split in the form ”if i = j then (A〈i← v〉[j] = v) else
(A〈i← v〉[j] = A[j])”, which could be reiterated so that to produce a 3-branch deci-
sion tree, producing 3 different expressions for the term A[i1]. This could be rewritten
into k-colorer by means of some term renaming.

5 k-Colorability vs. Non-Convexity

We discuss some examples relating k-colorability, NP-hardness and (non-
)convexity.

We recall first that non-convexity does not imply NP-hardness, thus it does not
imply k-colorability for k ≥ 3, as illustrated by the following example.

Example 10 (E01). Let E01 be E —that is, the plain theory of equality with no other
predicate, function and constant symbols— augmented with two distinct interpreted
symbols, namely {0, 1}, described by the following axioms:

¬(0 = 1) (30)
∀x.((x = 0) ∨ (x = 1)). (31)

8 To be very precise, in order to match the format of (12), we should write the k-colorer (29) as∧3
j=1(cj = xj) ∧

AllDifferent3[x] ∧
(A2 = A1〈i1 ← x1〉) ∧ (A3 = A2〈i2 ← x2〉) ∧ (A4 = A3〈i3 ← x3〉) ∧ (vi = A4[i1]).

However, we have simplified it into (29) by inlining the xj’s and removing
∧3

j=1(cj = xj).
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E01 is not convex. In fact, e.g., (x1 = 1) ∧ (x0 = 0) |=E01 (x = x1) ∨ (x = x0) but
(x1 = 1) ∧ (x0 = 0) 6|=E01 (x = x1) and (x1 = 1) ∧ (x0 = 0) 6|=E01 (x = x0).

However, E01 is 2-colorable but it is not k-colorable with k ≥ 3, because for k ≥ 3 it
violates Property 2. We notice that E01-solving is in P, since there is a simple polynomial
algorithm deciding a conjunction of E01-literals

∧
i ψi:

(i) Inline all equalities. If a contradiction is found, then return UNSAT.
(ii) Invoke a (polynomial) 2-coloring algorithm on the resulting set of disequalities. If

colorable, then return SAT, otherwise return UNSAT. �

So far Property 2 (a) and Theorem 1 have implicitly suggested us to reason only
on theories who have models of domain size ≥ 3. We discuss the other case, where all
models have domain size ≤ 2.

Example 11 (BV1). Let BV1 be any signature-restriction fragment of BV s.t. width =
1, admitting at least the standard interpreted constants bv1 0 and bv1 1 and the stan-
dard interpreted functions bv1 not and bv1 and (or alternatively bv1 not and bv1 or).
Obviously BV1-solving is NP-complete, since you can polynomially reduce SAT to it
and you can always have a polynomial-size witness for every T -satisfied formula. Also,
BV1 is non-convex, because we can have:

(x0 = bv1 0) ∧ (bv1 and(x1, x2) = bv1 0) |=BV1
(((x0 = x1) ∨ (x0 = x2)) (32)

(x0 = bv1 0) ∧ (bv1 and(x1, x2) = bv1 0) 6|=BV1
(x0 = xi) i ∈ {1, 2}. (33)

However, BV1 does not match the hypothesis of Theorem 1, because for k ≥ 3 it
violates Property 2 (a). �

In general, for theories T admitting models of domain size ≥ 3, proving that T is
not k-colorable for k ≥ 3 is difficult, because one has to prove that no k-colorer exists.
We show an example when this is feasible.

Example 12. As a variant of Example 11, consider the theory T with equality whose
signature consists in the interpreted constant symbols {0, 1, 2, ...} with the standard
meaning plus the function symbols {and(·, ·), not(·)} which are interpreted as follows:

〈and(x, y)〉I def
=

{
1 if 〈x〉I > 0 and 〈y〉I > 0
0 otherwise (34)

〈not(x)〉I def
=

{
0 if 〈x〉I > 0
1 otherwise. (35)

(Importantly, the ≥, >,≤, < predicates are not part of the signature.) T -satisfiability is
NP-complete since you can polynomially reduce SAT to it and you can always have a
polynomial-size witness for every T -satisfied formula.

Also, as with BV1, T is non-convex, because we can have:

(x0 = 0) ∧ (and(x1, x2) = 0) |=T (((x0 = x1) ∨ (x0 = x2)) (36)
(x0 = 0) ∧ (and(x1, x2) = 0) 6|=T (x0 = xi) i ∈ {1, 2}. (37)
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We show that T is not k-colorable for any k ≥ 3. We notice that every literal l
including vi must be in one of the following forms (modulo the symmetry of = and
and): (vi = t), (vi = not(t)), (vi = and(t1, t2)), (t = t∗(vi, ...)), and their negations,
where t, t1, t2 are generic terms in T and t∗(vi, ...) is any term in T containing vi.
Looking at the above literal forms, we notice that the presence of the subterms not(vi)
and and(vi, t2) in a term entails either 〈vi〉I > 〈0〉I , or 〈vi〉I = 〈0〉I or 〈vi〉I ≥ 〈0〉I ,
so that one single literal l can express only the following facts about one variable vi: 9

(i) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

(ii) for every T -interpretation I s.t. I |=T l, 〈vi〉I 6= 〈n〉I for some n ∈
{0, 1, 2, 3, ...};

(iii) for every T -interpretation I s.t. I |=T l, 〈vi〉I ≥ 〈0〉I (equivalent to true);
(iv) for every T -interpretation I s.t. I |=T l, 〈vi〉I > 〈0〉I (equivalent to 〈vi〉I 6= 0);
(v) for every T -interpretation I s.t. I |=T l, 〈vi〉I = 〈vi〉I (equivalent to true);

(vi) for every T -interpretation I s.t. I |=T l, 〈vi〉I 6= 〈vi〉I (equivalent to false).

Thus, for k ≥ 3, no finite conjunction of T -literals Colorerk[vi, c,yi] complying
with (1) and (3) can also comply with (2). �

Remarkably, this is a theory with domain size ≥ 3 whose T -solving is NP-hard,
which is non-convex and which is not k-colorable for any k ≥ 3. This shows that k-
colorability is strictly stronger than non-convexity, even when the theory has domain
size ≥ 3.

6 Colorable Theories Without Equality

In previous sections we have restricted our interest to theories with equality. In this
section we extend the technique by dropping this restriction. The following definition
extends Definition 2 to the case of general theories.

Definition 3 (k-Colorer, k-Colorable Theory). Let T be some theory and k be some
integer value s.t. k ≥ 2. Let vi be a variable, called vertex variable, (implicitly) de-
noting the i-th vertex in an un-directed graph; let c def

= {c1, .., ck} be a set of vari-
ables, called color variables, denoting the set of colors; let yi

def
= {yi1, ..., yil} denote

a possibly-empty set of variables, which is indexed with the same index i of the vertex
variable vi. We call k-colorer for T , namely Colorerk[vi, c,yi], a finite conjunction of
quantifier-free T -literals (cube) over vi, c and yi which verify the following properties:

– For every T -interpretation I, if I |=T Colorerk[vi, c,yi], then:

for every j, j′ ∈ [1..k] s.t. j 6= j′, 〈cj〉I 6= 〈cj′〉I , (38)
for some j ∈ [1..k], 〈v〉I = 〈cj〉I , (39)

9 Whereas (i) and (ii) can be also written as l |=T (vi = n) and l |=T (vi 6= n), (iii) and (iv)
cannot be rewritten as l |=T (vi ≥ 0) and l |=T (vi > 0) because≥ and > are not part of the
signature.
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– There exist k T -interpretations {Ii,1, ..., Ii,k} s.t.

for every j ∈ [1..k], 〈cj〉Ii,1 = 〈cj〉Ii,2 = ... = 〈cj〉Ii,k , and (40)

for every j ∈ [1..k],

{
〈v〉Ii,j = 〈cj〉Ii,j and
Ii,j |=T Colorerk[vi, c,yi].

We say that T is k-colorable iff it has a k-colorer.

Notice that if T is a theory with equality, then Definitions 2 and 3 are equivalent.

Definition 4. We say that a theory T emulates equality if and only if there exists
a finite conjunction of quantifier-free T -literals Eq[x1, x2] such that, for every T -
interpretation I, I |=T Eq[x1, x2] if and only if 〈x1〉I = 〈x2〉I .
We say that a theory T emulates disequality if and only if there exists a finite conjunc-
tion of quantifier-free T -literals Neq[x1, x2] such that, for every T -interpretation I,
I |=T Neq[x1, x2] if and only if 〈x1〉I 6= 〈x2〉I .

Obviously every theory T with equality emulates both equality and disequality, with
Eq[x1, x2]

def
= (x1 = x2) and Neq[x1, x2]

def
= ¬(x1 = x2).

Theorem 2. Let T be a k-colorable theory as in Definition 3 with k-colorer
Colorerk[vi, c,yi]. Let T emulate disequality; if Colorerk[vi, c,yi] contains equalities,
let T emulate also equality. Then the problem of deciding the T -satisfiability of a finite
conjunction of quantifier-free T -literals is T -satisfiable is NP-hard.

Proof. Identical to that of Theorem 1, referring to Definition 3 instead of Definition 2
and substituting every positive equality in the form (x1 = x2), if any, with Eq[x1, x2]
and every negative equality in the form ¬(x1 = x2) with Neq[x1, x2]. ut

Notice that, in Theorem 2, the fact that T emulates also positive equality is required
only if Colorerk[vi, c,yi] contains equalities, since the rest of the encoding (7)-(9) does
not contain positive equalities. However, with few exceptions (e.g., Examples 3 and 4)
most often k-colorers include positive equalities.

Example 13. Let NLA(R)\{=} be the signature-restriction fragment of NLA(R)
without equality. We notice that NLA(R)\{=} emulates both equality and disequal-
ity:

Eq[x1, x2]
def
= (x1 ≥ x2) ∧ (x2 ≥ x1) (41)

Neq[x1, x2]
def
= ((x1 − x2) ∗ (x1 − x2) > 0). (42)

T is 3-colorable because, like in Example 6, we can define, e.g., k def
= 3, y def

= ∅, and

Colorer3[vi, c1, c2, c3]
def
= Eq[c1,−1]∧Eq[c2, 0]∧Eq[c3, 1]∧Eq[v1∗(v2−1)∗(v1+1), 0].

Like in Example 6, it is straightforward to see that Colorer3[v, c1, c2, c3] verifies (38),
(39) and (40), with 〈c1〉Ii,j

def
= −1, 〈c2〉Ii,j

def
= 0, 〈c3〉Ii,j

def
= 1, and 〈vi〉Ii,j

def
= 〈cj〉Ii,j

for every j ∈ [1..3]. Thus NLA(R)\{=}-solving is NP-hard by Theorem 2. �
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7 Open Issues, Ongoing and Future Work

We believe that our framework can be generalized along the following directions, which
we are currently working on: (i) adopt some more general notion of fragment, so that to
extend the range of applicability of Property 3; (ii) extend the applicability of our tech-
nique for the case of theories without equality by providing a more general definition of
Eq[., .] and Neq[., .] enriched with auxiliary variables –or uninterpreted function/pred-
icate symbols– adapting Theorem 2 accordingly; (iii) extend Colorerk[vi, c,yi] so that
to use also uninterpreted function/predicate symbols as auxiliary symbols yi; (iv) to
overcome the restriction of domain size ≥ 3, extend Colorerk[vi, c,yi] to use pairs of
variables vi c1, .., ck instead of single variables to encode vertexes and colors, includ-
ing ad hoc Neq[., .] functions.

The above work should be run in parallel and interleaved with an extensive explo-
ration of the pool of available NP-hard theories, proving the k-colorability of as many
theories/fragments as possible. To this extent, we would like to investigate the boundary
of k-colorability, looking for theories of domain size ≥ 3 which are not k-colorable.
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