Course "Formal Methods" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

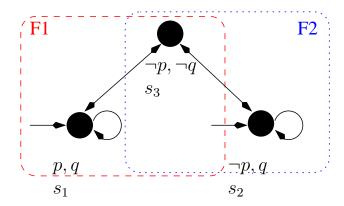
June 7^{th} , 2018

769857918

[COPY WITH SOLUTIONS]

1

Consider the following fair Kripke Model M:

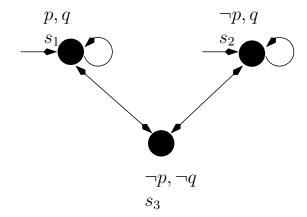


For each of the following facts, say if it is true or false in LTL.

- (a) $M \models \mathbf{GF} \neg p$ [Solution: true]
- (b) $M \models \mathbf{FG}p$ [Solution: false]
- (c) $M \models q$ [Solution: true]
- (d) $M \models (p\mathbf{U}\neg q)$ [Solution: false]

2

Consider the following Kripke Model M:

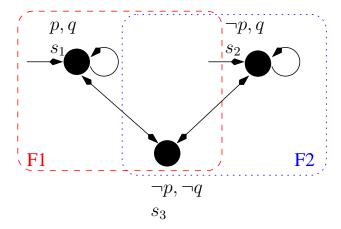


For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AGAF} \neg p$ [Solution: false]
- (b) $M \models \mathbf{EFEG}p$ [Solution: true]
- (c) $M \models (\mathbf{AGAF}p \land \mathbf{AGAF} \neg p \land \mathbf{AGAF} \neg q) \rightarrow q$ [Solution: true]
- (d) $M \models \mathbf{E}(p\mathbf{U}\neg q)$ [Solution: false]

3

Consider the following fair Kripke Model M:



For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{AGAF} \neg p$ [Solution: true]
- (b) $M \models \mathbf{EFEG}p$ [Solution: false]
- (c) $M \models q$ [Solution: true]
- (d) $M \models \mathbf{E}(p\mathbf{U}\neg q)$ [Solution: false]

4

Let φ be a generic Boolean formula. Let:

• φ_{tree} be the result of converting φ into Negative Normal Form, using a tree representation.

• φ_{dag} be the result of converting φ into Negative Normal Form, using a DAG representation.

Let $|\varphi|$, $|\varphi_{tree}|$, and $|\varphi_{dag}|$ denote the size of φ , φ_{tree} , and φ_{dag} respectively.

For each of the following sentences, say if it is true or false.

- (a) $|\varphi_{tree}|$ is in worst-case exponential in size wrt. $|\varphi|$ [Solution: True. (Its size may blow exponentially on the number of " \leftrightarrow "s in φ .)]
- (b) $|\varphi_{dag}|$ is in worst-case exponential in size wrt. $|\varphi|$ [Solution: False. (The sharing of the nodes avoids the exponential blowup in size, so that $|\varphi_{dag}|$ is at most twice as big as $|\varphi|$.)
- (c) If φ is in the form

$$\neg \bigvee_{j=1}^{N} \bigwedge_{i=1}^{K} l_{ij}$$

s.t. l_{ij} 's are Boolean literals, then $|\varphi_{tree}|$ is exponential in size wrt. $|\varphi|$ [Solution: False. In fact there are no \leftrightarrow 's in φ .]

(d) If φ is in the form

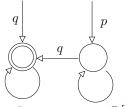
$$(\bigwedge_{i=1}^{N} (l_{j1} \leftrightarrow l_{j2})) \leftrightarrow (\bigwedge_{i=1}^{K} (l_{i1} \leftrightarrow l_{i2}))$$

s.t. l_{ij} 's are Boolean literals, then $|\varphi_{dag}|$ is linear in size wrt. $|\varphi|$ [Solution: True. Due to node sharing, $|\varphi_{dag}|$ is always linear, regardless the occurrences of \leftrightarrow 's.]

5

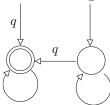
For each of the following facts about Buchi automata, say if it true or false.

(a) The following BA represents the LTL formula $p\mathbf{U}q$.



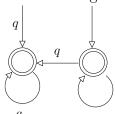
p [Solution: No]

(b) The following BA represents the LTL formula $\mathbf{FG}q$.



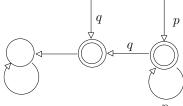
[Solution: Yes]

(c) The following BA represents the LTL formula $\mathbf{FG}q$.



[Solution: No]

(d) The following BA represents the LTL formula $p\mathbf{U}q.$



[Solution: No]

6

In a counter-example-guided-abstraction-refinement model checking process using localization reduction, variables $x_3, x_4, x_5, x_6, x_7, x_8$ are made invisible.

Suppose the process has identified a spurious counterexample with an abstract failure state [00], two ground deadend states d_1, d_2 and two ground bad states b_1, b_2 as described in the following table:

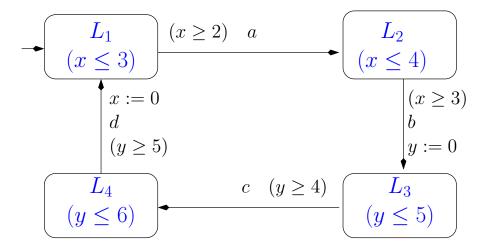
	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	
d_1	0	0	0	0	0	1	1	1	
d_2	0	0	0	1	1	1	1	0	
b_1	0	0	1	1	1	1	0	1	
b_2	0	0	0	1	0	0	0	0	

Identify a minimum-size subset of invisible variables which must be made visible in the next abstraction to avoid the above failure. Briefly explain why.

[Solution: The minimum-size subset is $\{x_7\}$. In fact, if x_7 is made visible, then both d_1, d_2 are made different from both b_1, b_2 .]

7

Consider the following timed automaton.



- (a) What is the maximum amount of time units which can pass from two consecutive events b? Briefly explain why.
 - [Solution: 6+4=10. You need at most 6 from b to d and at most 4 to pass from d to b.]
- (b) What is the minimum amount of time units which can pass from two consecutive events b? Briefly explain why.
 - [Solution: 5+3=8. You need at least 5 from b to d and at least 3 to pass from d to b.]
- (c) What is the maximum amount of time which can pass from event c and the subsequent event d? Briefly explain why.
 - [Solution: 6-4=2. c can happen when $y \ge 4$ and d can happen when $y \le 6$.]
- (d) What is the minimum amount of time which can pass from event a and the subsequent event b? Briefly explain why.
 - [Solution: 3-3=0. a can happen when $x \leq 3$ and b can happen when $x \geq 3$.]

8

Consider the following LTL formula:

$$\varphi \stackrel{\text{\tiny def}}{=} (p\mathbf{U}q) \wedge (\mathbf{F}r)$$

and the following three states of the construction of the tableau T_{φ} of φ :

$$S_1: \langle q, p, \neg \mathbf{X}(p\mathbf{U}q), r, \mathbf{XF}r \rangle$$

$$S_2: \langle \neg q, p, \mathbf{X}(p\mathbf{U}q), r, \neg \mathbf{XF}r \rangle$$

$$S_3: \langle q, \neg p, \neg \mathbf{X}(p\mathbf{U}q), \neg r, \neg \mathbf{XF}r \rangle$$

For each of the following statements, say if it is true or false.

Solution: recall that

- $sat(p\mathbf{U}q) \stackrel{\text{def}}{=} sat(q) \cup (sat(p) \cap sat(\mathbf{X}(p\mathbf{U}q)))$
- $sat(\mathbf{F}r) \stackrel{\text{def}}{=} sat(r) \cup sat(\mathbf{X}\mathbf{F}r)$

Thus

$$S_1 \in sat(p\mathbf{U}q), S_1 \in sat(\mathbf{F}r),$$

 $S_2 \in sat(p\mathbf{U}q), S_2 \in sat(\mathbf{F}r),$
 $S_3 \in sat(p\mathbf{U}q), S_3 \not\in sat(\mathbf{F}r).$

(a) S_2 is a successor of S_1 in T_{φ} .

Solution: No. In fact, every successor of S_1 should <u>not</u> belong to sat(pUq).

- (b) S_3 is a successor of S_2 in T_{φ} .
 - [Solution: Yes. In fact, every successor of S_2 should belong to $sat(p\mathbf{U}q)$ and should <u>not</u> belong to $sat(\mathbf{F}r)$ as defined above, which is the case of S_3 .]
- (c) S_3 is an initial state of T_{φ} .
 - [Solution: No. In fact, every initial state T_{φ} should belong to $(sat(p\mathbf{U}q) \cap sat(\mathbf{F}r))$ as defined above, which is not the case of S_3 .]
- (d) S_1 verifies all accepting conditions of T_{φ} .
 - [Solution: Yes. In fact, since there are two positive until-subformulas $p\mathbf{U}q$ and $\mathbf{F}r$, so that to verify the first accepting condition it should belong to $sat(\neg(p\mathbf{U}q)) \cup sat(q)$, for the second it should belong to $sat(\neg(\mathbf{F}r)) \cup sat(r)$, which is the case of S_1 .]

9

Let

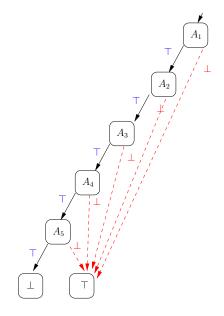
$$\varphi \stackrel{\text{def}}{=} \neg \left(\begin{array}{ccc} (A_1) & \wedge \\ (A_1 \rightarrow A_2) & \wedge \\ (A_2 \rightarrow A_3) & \wedge \\ (A_3 \rightarrow A_4) & \wedge \\ (A_4 \rightarrow A_5) & \wedge \end{array} \right)$$

Using the variable ordering:

"
$$A_1$$
 A_2 , A_3 , A_4 , A_5 ",

draw the OBDD corresponding to the formula φ

Solution: It corresponds to the following OBDD:



(Notice also that the formula is equivalent to $\neg (A_1 \land A_2 \land A_3 \land A_4 \land A_5)$)

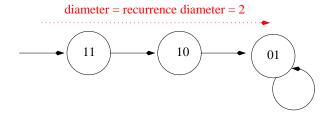
10

Given a symbolic representation of a finite state machine M, expressed in terms of the following two Boolean formulas: $I(x,y) \stackrel{\text{def}}{=} (x \wedge y), T(x,y,x',y') \stackrel{\text{def}}{=} ((x' \leftrightarrow (x \leftrightarrow y) \wedge (y' \leftrightarrow (\neg x \leftrightarrow y)),$ and given the LTL property: $\varphi \stackrel{\text{def}}{=} \neg \mathbf{G}(x \vee y),$

(a) Write a Boolean formula whose models (if any) represent length-2 executions of M violating φ . [Solution: The question corresponds to the Bounded Model Checking problem $M \models_2 \mathbf{E} \mathbf{G} f$ s.t. $f(x,y) \stackrel{\text{def}}{=} (x \vee y)$. Thus we have:

```
(x_0 \wedge y_0)
                                                                                                         //I(x_0,y_0) \wedge
                                                                                                        // T(x_0, y_0, x_1, y_1) \wedge
((x_1 \leftrightarrow (x_0 \leftrightarrow y_0) \land (y_1 \leftrightarrow (\neg x_0 \leftrightarrow y_0)))
                                                                                                 // T(x_0, y_0, x_1, y_1) \land // T(x_1, y_1, x_2, y_2) \land
((x_2 \leftrightarrow (x_1 \leftrightarrow y_1) \land (y_2 \leftrightarrow (\neg x_1 \leftrightarrow y_1)))
((x_0 \vee y_0)
                                                                                                         //(f(x_0,y_0)\wedge
 (x_1 \vee y_1)
                                                                                                         // f(x_1,y_1) \wedge
 (x_2 \vee y_2)
                                                                                                         // f(x_2,y_2) \wedge
(((x_0 \leftrightarrow (x_2 \leftrightarrow y_2) \land (y_0 \leftrightarrow (\neg x_2 \leftrightarrow y_2)))
                                                                                                        //(T(x_2,y_2,x_0,y_0)\vee
 ((x_1 \leftrightarrow (x_2 \leftrightarrow y_2) \land (y_1 \leftrightarrow (\neg x_2 \leftrightarrow y_2)))
                                                                                                         // T(x_2, y_2, x_1, y_1) \vee
 ((x_2 \leftrightarrow (x_2 \leftrightarrow y_2) \land (y_2 \leftrightarrow (\neg x_2 \leftrightarrow y_2))))
                                                                                                         // T(x_2, y_2, x_2, y_2))
```

- (b) Is there a solution? If yes, find the corresponding execution. If not, explain why. [The answer must be based on the Boolean formula, not on the graphical representation of the FSM.] [Solution: yes, because the formula is satisfiable. In fact, the first two rows force the assignment $\{x_0, y_0, x_1, \neg y_1, \neg x_2, y_2\}$ which satisfies the whiole formula, –in particular, it satisfies the third loopback— corresponding to the cyclic execution path: $\underbrace{(1,1)}_{0} \rightarrow \underbrace{(0,1)}_{0} \leftrightarrow \underbrace{(0,1)}_{0}$.]
- (c) What are the diameter and the recurrence diameter of this system? [Solution:



- (d) From your answers to questions (b) and (c) you can conclude that:
 - (i) $M \models \neg \mathbf{G}(x \vee y)$
 - (ii) $M \not\models \neg \mathbf{G}(x \vee y)$
 - (iii) you can conclude nothing.

Solution: (ii) $M \not\models \neg \mathbf{G}(x \vee y)$, since we have found a counter-example.