
Introduction to Formal Methods
Chapter 09: SAT-Based Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/

Teaching assistant: Enrico Magnago – enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 18th May, 2020, 14:49

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the
authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 1 / 85

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

Outline

1 Background on SAT Solving

2 SAT-based Model Checking: Generalities

3 Bounded Model Checking: Intuitions

4 Bounded Model Checking: General Encoding

5 Bounded Model Checking: Relevant Subcases

6 Bounded Model Checking: An Example

7 Computing upper bounds for k

8 Inductive reasoning on invariants (aka “K-Induction”)

9 K-Induction: An Example

10 Exercises

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 2 / 85

Background on SAT Solving

Resolution

Search for a refutation of ϕ
ϕ is represented as a set of clauses
Applies iteratively the resolution rule to pairs of clauses containing
a conflicting literal, until a false clause is generated or the
resolution rule is no more applicable
Many different strategies

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 4 / 85

Background on SAT Solving

Resolution Rule

Resolution of two clauses with exactly one incompatible literal:

(

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
l ∨

C′︷ ︸︸ ︷
l ′k+1 ∨ ... ∨ l ′m) (

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
¬l ∨

C′′︷ ︸︸ ︷
l ′′k+1 ∨ ... ∨ l ′′n)

(l1 ∨ ... ∨ lk︸ ︷︷ ︸
common

∨ l ′k+1 ∨ ... ∨ l ′m︸ ︷︷ ︸
C′

∨ l ′′k+1 ∨ ... ∨ l ′′n︸ ︷︷ ︸
C′′

)

EXAMPLE:
(A ∨ B ∨ C ∨ D ∨ E) (A ∨ B ∨ ¬C ∨ F)

(A ∨ B ∨ D ∨ E ∨ F)

NOTE: many standard inference rules subcases of resolution:

A → B B → C
A → C

(Transit .) A A → B
B

(M. Ponens) ¬B A → B
¬A

(M. Tollens)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 5 / 85

Background on SAT Solving

Resolution Rules: unit propagation

Unit resolution:
Γ′ ∧ (l) ∧ (¬l ∨

∨
i li)

Γ′ ∧ (l) ∧ (
∨

i li)

Unit subsumption:
Γ′ ∧ (l) ∧ (l ∨

∨
i li)

Γ′ ∧ (l)

Unit propagation = unit resolution + unit subsumption

“Deterministic” rule: applied before other “non-deterministic” rules!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 6 / 85

Background on SAT Solving

DPLL

Davis-Putnam-Longeman-Loveland procedure (DPLL)
Tries to build recursively an assignment µ satisfying ϕ;
At each recursive step assigns a truth value to (all instances of)
one atom.
Performs deterministic choices first.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 7 / 85

Background on SAT Solving

The DPLL Algorithm

function DPLL(ϕ, µ)
if ϕ = > /* base */

then return True;
if ϕ = ⊥ /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit propagation */

then return DPLL(assign(l , ϕ), µ ∧ l);
(...)
l := choose-literal(ϕ); /* split */
return DPLL(assign(l , ϕ), µ ∧ l) or

DPLL(assign(¬l , ϕ), µ ∧ ¬l);

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 8 / 85

Background on SAT Solving

“Classic” chronological backtracking

Non-recursive versions of DPLL:
variable assignments (literals) stored in a stack
each variable assignments labeled as “unit”, “open”, “closed”
when a conflict is encountered, the stack is popped up to the most
recent open assignment l
l is toggled, is labeled as “closed”, and the search proceeds.

Perform “classic” chronological backtracking:
jump back to the most-recent open branching point
=⇒ source of large inefficiencies

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 9 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
... ¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
(initial assignment)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 10 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1}
... (branch on A1)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 11 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1,A2,A3}
(unit A2,A3)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 12 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1,A2,A3,A4}
(unit A4)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 13 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41,A12,A13, ...,A1,A2,A3,A4,A5,A6}
(unit A5,A6)=⇒ conflict

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 14 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ backtrack up to A1

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 15 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,¬A1}
(unit ¬A1)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 16 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,¬A1,A7,A8}
(unit A7, A8) =⇒ conflict

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 17 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ backtrack to the most recent open branching point

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 18 / 85

Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ lots of useless search before backtracking up to A13!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 19 / 85

Background on SAT Solving

Classic chronological backtracking: drawbacks

often the branch heuristic delays the “right” choice
chronological backtracking always backtracks to the most recent
branching point, even though a higher backtrack could be possible
=⇒ lots of useless search!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 20 / 85

Background on SAT Solving

Modern DPLL implementations
[Silva & Sakallah ’96, Moskewicz et al. ’01]

Conflict-Driven Clause-Learning (CDCL) DPLL solvers:

Non-recursive: stack-based representation of data structures
Efficient data structures for doing and undoing assignments
Perform conflict-driven backtracking (backjumping) and learning
May perform search restarts
Reason on total assignments

Dramatically efficient: solve industrial-derived problems with ≈ 107

Boolean variables and ≈ 107 − 108 clauses

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 21 / 85

Background on SAT Solving

Conflict-directed backtracking (backjumping) and
learning

Idea: when a branch µ fails,
(i) conflict analysis: reveal the sub-assignment η ⊆ µ causing the

failure (conflict set η):

find η ⊆ µ by generating the conflict clause C def
= ¬η via

resolution from the falsified clause
by construction ϕ ∧ η |= ⊥, hence ϕ |= C, so that (ϕ ∧ C)⇔ ϕ

(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the highest branching point s.t. the

stack contains all-but-one literals in η, and then unit-propagate
the unassigned literal on C

may jump back up much more than one decision level in the stack
=⇒ may avoid lots of redundant search!!.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 22 / 85

Background on SAT Solving

State-of-the-art backjumping and learning: intuitions

Conflict analysis: find η ⊂ µ (typically much smaller than µ!) s.t.
assigning only the literals in η would have falsified the same
clause after a chain of unit propagations

intuition: “η contains only the relevant assignments which caused
the failure”

Backjumping: climb up to many decision levels in the stack
intuition: “go back to the oldest decision where you’d have done
something different if only you had known η”

=⇒ may avoid lots of redundant search
=⇒ choose η s.t. all but one literals in η are as “old” as possible

Learning: in future branches, when all-but-one literals in η are
assigned, the remaining literal is assigned to false by
unit-propagation:

intuition: “when you’re about to repeat the mistake, do the opposite
of the last step”

=⇒ avoid finding the same conflict again

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 23 / 85

Background on SAT Solving

Stack-based representation of a truth assignment µ

stack partitioned into decision levels:

one decision literal
its implied literals
each implied literal tagged with the
clause causing its unit-propagation
(antecedent clause)

equivalent to an implication graph:
a node without incoming edges
represent a decision literal
the graph contains l1

c7−→ l ,...,ln
c7−→ l iff

c def
=
∨n

j=1 ¬li ∨ l is the antecedent clause
of l

representation of the dependencies
between literals in µ

implied literals

dec. level N

dec. level 1

dec. level 0

decision literal

. . .

. . .

.

. . .

. . .

l01

l02

l11

l12

l1

lN2

lN1

lN
CN1

C12

C11

C02

C01

CN2

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 24 / 85

Background on SAT Solving

Implication graph - example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 25 / 85

Background on SAT Solving

Building a conflict set/clause by resolution

1. C := conflicting clause
2. repeat

(i) resolve current clause C with the antecedent clause of the last
unit-propagated literal l in C

until C verifies some given termination criteria

Idea: “Undo” unit-propagations.

Decision strategy: repeat until C contains only decision literals

¬A1 ∨ A2

¬A1 ∨ A3 ∨ A9

¬A2 ∨ ¬A3 ∨ A4

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4 ∨ A10 ∨ A11
(A5)

¬A2 ∨ ¬A3 ∨ A10 ∨ A11
(A4)

¬A2 ∨ ¬A1 ∨ A9 ∨ A10 ∨ A11
(A3)

¬A1 ∨ A9 ∨ A10 ∨ A11
(A2)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 26 / 85

Background on SAT Solving

State-of-the-art in backjumping & learning

First Unique Implication Point (1st UIP) strategy:

corresponds to consider the first clause encountered containing
one literal of the current decision level (1st UIP).

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4︸︷︷︸
1st UIP

∨A10 ∨ A11
(A5)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 27 / 85

Background on SAT Solving

1st UIP strategy – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

1st UIP

Decision

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ Conflict set: {¬A10,¬A11,A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 28 / 85

Background on SAT Solving

1st UIP strategy and backjumping

The added conflict clause states the reason for the conflict
The procedure backtracks to the most recent decision level of the
variables in the conflict clause which are not the UIP.
then the conflict clause forces the negation of the UIP by unit
propagation.

E.g.: c10 := A10 ∨ A11 ∨ ¬A4
=⇒ backtrack to A11, then assign ¬A4

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 29 / 85

Background on SAT Solving

1st UIP strategy – example (7)

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

1st UIP

Decision

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ Conflict set: {¬A10,¬A11,A4}, learn c10 := A10 ∨ A11 ∨ ¬A4

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 30 / 85

Background on SAT Solving

1st UIP strategy – example (8)

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
c10 : A10 ∨ A11 ∨ ¬A4
...

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ backtrack up to A11 =⇒ {...,¬A9,¬A10,¬A11}

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 31 / 85

Background on SAT Solving

1st UIP strategy – example (9)

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10

√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
c10 : A10 ∨ A11 ∨ ¬A4

√

...

c9

c9

¬A4

¬A4

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ unit propagate ¬A4 =⇒ {...,¬A9,¬A10,¬A11,A4}...

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 32 / 85

Background on SAT Solving

Learning – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

√

c10 : A9 ∨ A10 ∨ A11 ∨ ¬A1
√

c11 : A9 ∨ A10 ∨ A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A9

¬A11

¬A10

¬A1
¬A13

A12

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒ Unit: {¬A1,¬A13}

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 33 / 85

Background on SAT Solving

Remark: the “quality” of conflict sets

Different ideas of “good” conflict set
Backjumping: if causes the highest backjump (“local” role)
Learning: if causes the maximum pruning (“global” role)

Many different strategies implemented

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 34 / 85

Background on SAT Solving

Drawbacks of Learning

Prunes drastically the search.
Problem: may cause a blowup in space
=⇒ techniques to drop learned clauses when necessary

according to their size
according to their activity.

Definition
A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).

Property
In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.
=⇒ CDCL solvers require polynomial space

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 35 / 85

Background on SAT Solving

Incremental SAT solving [Een & Sorenson’03]

Many CDCL solvers provide a stack-based incremental interface
it is possible to push/pop φi into a stack of formulas Φ

def
= {φ1, ..., φk}

check incrementally the satisfiability of
∧k

i=1 φi .
Maintains the status of the search from one call to the other

in particular it records the learned clauses (plus other information)
keeping track efficiently of their dependencies on the φi ’s

=⇒ reuses search from one call to another

Essential in many applications (in particular in FV)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 36 / 85

Background on SAT Solving

Many applications of SAT Solvers

Many successful applications of SAT:
Boolean circuits
(Bounded) Planning
(Bounded) Model Checking
Cryptography
Scheduling
...

All NP-complete problem can be (polynomially) converted to SAT.
Key issue: find an efficient encoding.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 37 / 85

SAT-based Model Checking: Generalities

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space
an expert user can make the difference (e.g. reordering, algorithms)

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based techniques

Various techniques: Bounded Model Checking, K-induction,
Interpolant-based, IC3/PDR,...

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 39 / 85

SAT-based Model Checking: Generalities

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked using a SAT
solver

can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 40 / 85

Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 0:

1

p

No counter-example found.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 42 / 85

Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 1:

1 2

p q

No counter-example found.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 43 / 85

Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 2:

1 2 3

p pq

No counter-example found.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 44 / 85

Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 3:

1 2 3 4

p pq

1 2 3 4

p pq

The 2nd trace is a counter-example!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 45 / 85

Bounded Model Checking: General Encoding

The problem [Biere et al, 1999]

Ingredients:

A system written as a Kripke structure M := 〈S, I,T ,L〉
A property f written as a LTL formula:
an integer k ≥ 0 (bound)

Problem
Is there a (possibly-partial) execution path π of M of length k satisfying
the temporal property f?

the check is repeated for increasing values of k = 1,2,3, ...

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 47 / 85

Bounded Model Checking: General Encoding

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]]k
defined as follows:

[[M, f]]k := [[M]]k ∧ [[f]]k (1)

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1), (2)

[[f]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f]]0k) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f]]0k), (3)

the vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f]]k encodes the fact that the k -path satisfies f
Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 48 / 85

Bounded Model Checking: General Encoding

The Encoding [cont.]

The encoding for a formula f with k steps, [[f]]k is the disjunction of

the constraints needed to express a model without loopback:

(¬(
∨k

l=0 R(sk , sl)) ∧ [[f]]0k)

S SS S S
10 k−1 kl

[[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a no-loopback path

the constraints needed to express a given loopback, for all
possible points of loopback:

∨k
l=0(R(sk , sl) ∧ l [[f]]0k)

S SS S S
10 k−1 kl

l [[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a path with a loopback from sk to sl

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 49 / 85

Bounded Model Checking: General Encoding

The encoding of [[f]]ik and l [[f]]ik
f [[f]]ik l [[f]]ik
p pi pi

¬p ¬pi ¬pi

h ∧ g [[h]]ik ∧ [[g]]ik l [[h]]ik ∧ l [[g]]ik
h ∨ g [[h]]ik ∨ [[g]]ik l [[h]]ik ∨ l [[g]]ik

Xg [[g]]i+1
k if i < k

⊥ otherwise.
l [[g]]i+1

k if i < k
l [[g]]lk otherwise.

Gg ⊥
∧k

j=min(i,l) l [[g]]jk
Fg

∨k
j=i [[g]]jk

∨k
j=min(i,l) l [[g]]jk

hUg
∨k

j=i

(
[[g]]jk ∧

∧j−1
n=i [[h]]nk

) ∨k
j=i

(
l [[g]]jk ∧

∧j−1
n=i l [[h]]nk

)
∨∨i−1

j=l

(
l [[g]]jk ∧

∧k
n=i l [[h]]nk ∧

∧j−1
n=l l [[h]]nk

)
hRg

∨k
j=i

(
[[h]]jk ∧

∧j
n=i [[g]]nk

) ∧k
j=min(i,l) l [[g]]jk ∨∨k
j=i

(
l [[h]]jk ∧

∧j
n=i l [[g]]nk

)
∨∨i−1

j=l

(
l [[h]]jk ∧

∧k
n=i l [[g]]nk ∧

∧j
n=l l [[g]]nk

)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 50 / 85

Bounded Model Checking: Relevant Subcases

Example: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

 −p −p −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 52 / 85

Bounded Model Checking: Relevant Subcases

Example: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 53 / 85

Bounded Model Checking: Relevant Subcases

Example: GFq (fair states)

f := GFq, s.t. q Boolean: does q hold infinitely often?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 54 / 85

Bounded Model Checking: Relevant Subcases

Example: GFq ∧ Fp (fair reachability)

f := GFq ∧ Fp, s.t. p,q Boolean: provided that q holds infinitely
often, is there a reachable state in which p holds?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 55 / 85

Bounded Model Checking: An Example

Example: a bugged 3-bit shift register

System M:
I(x) := > (arbitrary initial state)
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 1)

Property: AF(¬x [0] ∧ ¬x [1] ∧ ¬x [2])

BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 57 / 85

Bounded Model Checking: An Example

Example: a bugged 3-bit shift register [cont.]

k = 2:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

[[M]]2 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1) ∧
(x2[0] ↔ x1[1]) ∧ (x2[1] ↔ x1[2]) ∧ (x2[2] ↔ 1)

)
∧

∨2
l=0 Ll :

 ((x0[0] ↔ x2[1]) ∧ (x0[1] ↔ x2[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x2[1]) ∧ (x1[1] ↔ x2[2]) ∧ (x1[2] ↔ 1))∨
((x2[0] ↔ x2[1]) ∧ (x2[1] ↔ x2[2]) ∧ (x2[2] ↔ 1))

 ∧

∧2
i=0(x 6= 0) :

 (x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2]) ∧
(x2[0] ∨ x2[1] ∨ x2[2])


=⇒ SAT: xi [j] := 1 ∀i , j

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 58 / 85

Bounded Model Checking: An Example

Bounded Model Checking: summary

incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

very efficient for some problems (typically debugging)
lots of enhancements
current symbolic model checkers embed a SAT based BMC tool

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 59 / 85

Bounded Model Checking: An Example

Efficiency Issues in Bounded Model Checking

Caching different problems:
can we exploit the similarities between problems at k and k + 1?

Simplification of encodings
Reduced Boolean Circuits (RBC)
Boolean Expression Diagrams (BED)
And-Inverter Graphs (AIG)
Simplification based on Binary-Clauses Reasoning

When can we stop increasing the bound k if we don’t find
violations?

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 60 / 85

Computing upper bounds for k

Basic bounds for k

Theorem [Biere et al. TACAS 1999]

Let f be a LTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M| · 2|f |.

|M| · 2|f | is always a bound of k .

|M| huge!
=⇒ not so easy to compute in a symbolic setting.

=⇒ need to find better bounds!

Note: [Biere et al. TACAS 1999] use “M |= Ef ” as “there exists a path of M verifying f”,
so that M 6|= A¬f ⇐⇒ M |= Ef

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 62 / 85

Computing upper bounds for k

Other bounds for k

ACTL & ECTL
ACTL is a subset of CTL in which “A...” (resp. “E...”) sub-formulas
occur only positively (resp. negatively) in each formula.
e.g. AG(p → AGAFq)

ECTL is a subset of CTL in which “E...” (resp. “A...”) sub-formulas
occur only positively (resp. negatively) in each formula.
e.g. EF(p ∧ EFEG¬q)

ECTL is the dual subset of ACTL: φ ∈ ECTL⇐⇒ ¬φ ∈ ACTL.
Many frequently-used LTL properties ¬f have equivalent ACTL
representations A¬f ′ (e.g. G(p → GFq) wrt. AG(p → AGAFq))

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M|.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 63 / 85

Computing upper bounds for k

Other bounds for k (cont)

Theorem [Biere et al. TACAS 1999]
Let p be a Boolean formula and d be the diameter of M. Then
M |= EFp ⇐⇒ M |=k EFp for some k ≤ d .

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula and d be the recurrence diameter of M.
Then M |= Ef ⇐⇒ M |=k Ef for some k ≤ d .

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 64 / 85

Computing upper bounds for k

The diameter

Definition: diameter
Given M, the diameter of M is the smallest integer d s.t. for every path
s0, ..., sd+1 there exist a path t0, ..., tl s.t. l ≤ d , t0 = s0 and tl = sd+1.

Intuition: if u is reachable from v , then there is a path from v to u
of length d or less.

=⇒ it is the maximum distance between two states in M.

uv
d=4

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 65 / 85

Computing upper bounds for k

The diameter: computation

d is the smallest integer d which makes the following formula true:

∀s0, ..., sd+1.∃t0, ..., td .
d∧

i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→

(
t0 = s0 ∧

d−1∧
i=0

T (ti , ti+1) ∧
d∨

i=0

ti = sd+1

)
︸ ︷︷ ︸

t0,...,ti is another path from s0 to sd+1 for some i

Quantified Boolean formula (QBF): much harder than
NP-complete!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 66 / 85

Computing upper bounds for k

The recurrence diameter

Definition: recurrence diameter
Given M, the recurrence diameter of M is the smallest integer d s.t. for
every path s0, ..., sd+1 there exist j ≤ d s.t. sd+1 = sj .

.

s0 si = sd+1 sd

Intuition: the maximum length of a non-loop path

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 67 / 85

Computing upper bounds for k

The recurrence diameter: computation

d is the smallest integer d which makes the following formula true:

∀s0, ..., sd+1.

d∧
i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→
d∨

i=0

si = sd+1︸ ︷︷ ︸
s0,...,sd+1 contains a cicle

Validity problem: coNP-complete (solvable by SAT).
Possibly much longer than the diameter!

Diameter = 1 Recurrence Diameter = 3

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 68 / 85

Inductive reasoning on invariants (aka “K-Induction”)

Inductive Reasoning on Invariants

Invariant: “AGGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then we can conclude that the system is correct for all reachable
states.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 70 / 85

Inductive reasoning on invariants (aka “K-Induction”)

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then we can conclude that the system is correct for all reachable
states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

(iii) N.B: “(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 71 / 85

Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants

Problem: Induction may fail because of unreachable states:
if (Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is not valid, this does
not mean that the property does not hold
both sk−1 and sk might be unreachable

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 72 / 85

Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants [cont.]

Solution (once you know you cannot reach ¬Good in up to 1 step):
increase the depth of induction
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧
R(sk−1, sk)∧¬(sk−2 = sk−1))→ Good(sk)

...

force loop freedom with ¬(si = sj) for every i 6= j s.t. i , j ≤ k
performed after step-1 BMC step returns “unsat”:
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 73 / 85

Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk)
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk) and
R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps
K-Induction steps can be shifted (k def

= 0) to share the subformulas:∧k−1
i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 74 / 85

Inductive reasoning on invariants (aka “K-Induction”)

Mixed BMC & K-Induction [Sheeran et al. 2000]
Basen := I(s0) ∧

∧n−1
i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn)

Stepn :=
∧n

i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn+1)
Uniquen :=

∧
0≤i≤j≤n ¬(si = sj+1)

Algorithm

1. function CHECK_PROPERTY (I,R, ϕ)
2. for n := 0,1,2,3, do
3. if (DPLL(Basen) == SAT)
4. then return PROPERTY_VIOLATED;
5. else if (DPLL(Stepn ∧ Uniquen) == UNSAT)
6. then return PROPERTY_VERIFIED;
7. end for;

=⇒ reuses previous search if DPLL is incremental!!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 75 / 85

K-Induction: An Example

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: AG¬x [0]

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 77 / 85

K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 78 / 85

K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

BMC Step 1: (...)=⇒ unsat
K-Induction Step 2: (¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧

¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))
) ∧ x2[0]


∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))

=⇒ sat:


¬x0[0], ¬x0[1], x0[2]
¬x1[0], x1[1], ¬x1[2]

x2[0], ¬x2[1], ¬x2[2]

 =⇒ not proved

Remark

{¬x0[0],¬x0[1], x0[2]}, {¬x1[0], x1[1],¬x1[2]}, and
{ x2[0],¬x2[1],¬x2[2]} are non-reachable.

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 79 / 85

K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:

(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))

) ∧ x3[0]


∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 80 / 85

K-Induction: An Example

Other Successful SAT-based (UNbounded) MC
Techniques

Counter-example guided abstraction refinement (CEGAR)
[Clarke et al. CAV 2002]
Interpolant-based MC
[Mc Millan, TACAS 2005]
IC3/PDR
[Bradley, VMCAI 2011]
...

For a survey see e.g.
[Amla et al., CHARME 2005, Prasad et al. STTT 2005].

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 81 / 85

Exercises

Ex: CDCL SAT Solving

Which of the following figures may correspond to a modern DPLL 1st-UIP
backjumping step?

(a) (b) (c)

¬A3

A2

¬A1

Conflict Clause:
(¬A4 ∨ A1 ∨ ¬A3)

A4

A3

¬A2A2

¬A1

Conflict Clause:

A4

A3

A1

A2

¬A1

Conflict Clause:
(¬A4 ∨ A1 ∨ ¬A3)

A4

A3

[Solution: The correct answer is (a). (b) represents standard chronological
backtracking, whilst (c) is nonsense.]

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 83 / 85

Exercises

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two Boolean
formulas: I(x , y) def

= ¬x ∧ y , T (x , y , x ′, y ′) def
= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the

LTL property: ϕ def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.
[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]
2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 84 / 85

Exercises

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]
4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

Roberto Sebastiani Ch. 09: SAT-Based Model Checking Monday 18th May, 2020 85 / 85

	Background on SAT Solving
	SAT-based Model Checking: Generalities
	Bounded Model Checking: Intuitions
	Bounded Model Checking: General Encoding
	Bounded Model Checking: Relevant Subcases
	Bounded Model Checking: An Example
	Computing upper bounds for k
	Inductive reasoning on invariants (aka ``K-Induction'')
	K-Induction: An Example
	Exercises

