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Background on SAT Solving

Resolution

Search for a refutation of ϕ
ϕ is represented as a set of clauses
Applies iteratively the resolution rule to pairs of clauses containing
a conflicting literal, until a false clause is generated or the
resolution rule is no more applicable
Many different strategies
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Background on SAT Solving

Resolution Rule

Resolution of two clauses with exactly one incompatible literal:

(

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
l ∨

C′︷ ︸︸ ︷
l ′k+1 ∨ ... ∨ l ′m ) (

common︷ ︸︸ ︷
l1 ∨ ... ∨ lk ∨

resolvent︷︸︸︷
¬l ∨

C′′︷ ︸︸ ︷
l ′′k+1 ∨ ... ∨ l ′′n )

( l1 ∨ ... ∨ lk︸ ︷︷ ︸
common

∨ l ′k+1 ∨ ... ∨ l ′m︸ ︷︷ ︸
C′

∨ l ′′k+1 ∨ ... ∨ l ′′n︸ ︷︷ ︸
C′′

)

EXAMPLE:
( A ∨ B ∨ C ∨ D ∨ E ) ( A ∨ B ∨ ¬C ∨ F )

( A ∨ B ∨ D ∨ E ∨ F )

NOTE: many standard inference rules subcases of resolution:

A → B B → C
A → C

(Transit .) A A → B
B

(M. Ponens) ¬B A → B
¬A

(M. Tollens)
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Background on SAT Solving

Resolution Rules: unit propagation

Unit resolution:
Γ′ ∧ (l) ∧ (¬l ∨

∨
i li)

Γ′ ∧ (l) ∧ (
∨

i li)

Unit subsumption:
Γ′ ∧ (l) ∧ (l ∨

∨
i li)

Γ′ ∧ (l)

Unit propagation = unit resolution + unit subsumption

“Deterministic” rule: applied before other “non-deterministic” rules!
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Background on SAT Solving

DPLL

Davis-Putnam-Longeman-Loveland procedure (DPLL)
Tries to build recursively an assignment µ satisfying ϕ;
At each recursive step assigns a truth value to (all instances of)
one atom.
Performs deterministic choices first.
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Background on SAT Solving

The DPLL Algorithm

function DPLL(ϕ, µ)
if ϕ = > /* base */

then return True;
if ϕ = ⊥ /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit propagation */

then return DPLL(assign(l , ϕ), µ ∧ l );
(...)
l := choose-literal(ϕ); /* split */
return DPLL(assign(l , ϕ), µ ∧ l ) or

DPLL(assign(¬l , ϕ), µ ∧ ¬l );
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Background on SAT Solving

“Classic” chronological backtracking

Non-recursive versions of DPLL:
variable assignments (literals) stored in a stack
each variable assignments labeled as “unit”, “open”, “closed”
when a conflict is encountered, the stack is popped up to the most
recent open assignment l
l is toggled, is labeled as “closed”, and the search proceeds.

Perform “classic” chronological backtracking:
jump back to the most-recent open branching point
=⇒ source of large inefficiencies
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
... ¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
(initial assignment)
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1}
... (branch on A1)
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1,A2,A3}
(unit A2,A3)
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,A1,A2,A3,A4}
(unit A4)
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A1¬A41,A12,A13, ...,A1,A2,A3,A4,A5,A6}
(unit A5,A6)=⇒ conflict
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ backtrack up to A1
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,¬A1}
(unit ¬A1)
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13 ×
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...,¬A1,A7,A8}
(unit A7, A8) =⇒ conflict
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ backtrack to the most recent open branching point
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Background on SAT Solving

Classic chronological backtracking – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

A7
A8

¬A1

A5
A6

A4

A2
A3

A1

¬A11

A12

A13

¬A10

¬A9

{...,¬A9,¬A10,¬A11,A12,A13, ...}
=⇒ lots of useless search before backtracking up to A13!
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Background on SAT Solving

Classic chronological backtracking: drawbacks

often the branch heuristic delays the “right” choice
chronological backtracking always backtracks to the most recent
branching point, even though a higher backtrack could be possible
=⇒ lots of useless search!
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Background on SAT Solving

Modern DPLL implementations
[Silva & Sakallah ’96, Moskewicz et al. ’01]

Conflict-Driven Clause-Learning (CDCL) DPLL solvers:

Non-recursive: stack-based representation of data structures
Efficient data structures for doing and undoing assignments
Perform conflict-driven backtracking (backjumping) and learning
May perform search restarts
Reason on total assignments

Dramatically efficient: solve industrial-derived problems with ≈ 107

Boolean variables and ≈ 107 − 108 clauses
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Background on SAT Solving

Conflict-directed backtracking (backjumping) and
learning

Idea: when a branch µ fails,
(i) conflict analysis: reveal the sub-assignment η ⊆ µ causing the

failure (conflict set η):

find η ⊆ µ by generating the conflict clause C def
= ¬η via

resolution from the falsified clause
by construction ϕ ∧ η |= ⊥, hence ϕ |= C, so that (ϕ ∧ C)⇔ ϕ

(ii) learning: add the conflict clause C to the clause set
(iii) backjumping: backtrack to the highest branching point s.t. the

stack contains all-but-one literals in η, and then unit-propagate
the unassigned literal on C

may jump back up much more than one decision level in the stack
=⇒ may avoid lots of redundant search!!.
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Background on SAT Solving

State-of-the-art backjumping and learning: intuitions

Conflict analysis: find η ⊂ µ (typically much smaller than µ!) s.t.
assigning only the literals in η would have falsified the same
clause after a chain of unit propagations

intuition: “η contains only the relevant assignments which caused
the failure”

Backjumping: climb up to many decision levels in the stack
intuition: “go back to the oldest decision where you’d have done
something different if only you had known η”

=⇒ may avoid lots of redundant search
=⇒ choose η s.t. all but one literals in η are as “old” as possible

Learning: in future branches, when all-but-one literals in η are
assigned, the remaining literal is assigned to false by
unit-propagation:

intuition: “when you’re about to repeat the mistake, do the opposite
of the last step”

=⇒ avoid finding the same conflict again
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Background on SAT Solving

Stack-based representation of a truth assignment µ

stack partitioned into decision levels:

one decision literal
its implied literals
each implied literal tagged with the
clause causing its unit-propagation
(antecedent clause)

equivalent to an implication graph:
a node without incoming edges
represent a decision literal
the graph contains l1

c7−→ l ,...,ln
c7−→ l iff

c def
=
∨n

j=1 ¬li ∨ l is the antecedent clause
of l

representation of the dependencies
between literals in µ

implied literals 

dec. level N

dec. level 1

dec. level 0

decision literal

. . .

. . .

. . .. . .

. . .

. . .

l01

l02

l11

l12

l1

lN2

lN1

lN
CN1

C12

C11

C02

C01

CN2
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Background on SAT Solving

Implication graph - example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9
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Background on SAT Solving

Building a conflict set/clause by resolution

1. C := conflicting clause
2. repeat

(i) resolve current clause C with the antecedent clause of the last
unit-propagated literal l in C

until C verifies some given termination criteria

Idea: “Undo” unit-propagations.

Decision strategy: repeat until C contains only decision literals

¬A1 ∨ A2

¬A1 ∨ A3 ∨ A9

¬A2 ∨ ¬A3 ∨ A4

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4 ∨ A10 ∨ A11
(A5)

¬A2 ∨ ¬A3 ∨ A10 ∨ A11
(A4)

¬A2 ∨ ¬A1 ∨ A9 ∨ A10 ∨ A11
(A3)

¬A1 ∨ A9 ∨ A10 ∨ A11
(A2)
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Background on SAT Solving

State-of-the-art in backjumping & learning

First Unique Implication Point (1st UIP) strategy:

corresponds to consider the first clause encountered containing
one literal of the current decision level (1st UIP).

¬A4 ∨ A5 ∨ A10

¬A4 ∨ A6 ∨ A11

Conflicting cl.︷ ︸︸ ︷
¬A5 ∨ ¬A6

¬A4 ∨ ¬A5 ∨ A11
(A6)

¬A4︸︷︷︸
1st UIP

∨A10 ∨ A11
(A5)
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Background on SAT Solving

1st UIP strategy – example

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

1st UIP

Decision

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ Conflict set: {¬A10,¬A11,A4}, learn c10 := A10 ∨ A11 ∨ ¬A4
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Background on SAT Solving

1st UIP strategy and backjumping

The added conflict clause states the reason for the conflict
The procedure backtracks to the most recent decision level of the
variables in the conflict clause which are not the UIP.
then the conflict clause forces the negation of the UIP by unit
propagation.

E.g.: c10 := A10 ∨ A11 ∨ ¬A4
=⇒ backtrack to A11, then assign ¬A4
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Background on SAT Solving

1st UIP strategy – example (7)

c1 : ¬A1 ∨ A2
√

c2 : ¬A1 ∨ A3 ∨ A9
√

c3 : ¬A2 ∨ ¬A3 ∨ A4
√

c4 : ¬A4 ∨ A5 ∨ A10
√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6 ×
c7 : A1 ∨ A7 ∨ ¬A12

√

c8 : A1 ∨ A8
√

c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
...

1st UIP

Decision

Conflict!

A5

A6

c4

c6

c6

c5

c4

c5

A5
A6

c3

c3

A4

A4

A2

A3

c2

c2

c1

A2
A3

A1

A1

A12

A13

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ Conflict set: {¬A10,¬A11,A4}, learn c10 := A10 ∨ A11 ∨ ¬A4
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Background on SAT Solving

1st UIP strategy – example (8)

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
c10 : A10 ∨ A11 ∨ ¬A4
...

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ backtrack up to A11 =⇒ {...,¬A9,¬A10,¬A11}
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Background on SAT Solving

1st UIP strategy – example (9)

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10

√

c5 : ¬A4 ∨ A6 ∨ A11
√

c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13
c10 : A10 ∨ A11 ∨ ¬A4

√

...

c9

c9

¬A4

¬A4

A5
A6

A4

A2
A3

A1

¬A9 ¬A11

¬A10

¬A11

A12

A13

¬A10

¬A9

=⇒ unit propagate ¬A4 =⇒ {...,¬A9,¬A10,¬A11,A4}...
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Background on SAT Solving

Learning – example

c1 : ¬A1 ∨ A2
c2 : ¬A1 ∨ A3 ∨ A9
c3 : ¬A2 ∨ ¬A3 ∨ A4
c4 : ¬A4 ∨ A5 ∨ A10
c5 : ¬A4 ∨ A6 ∨ A11
c6 : ¬A5 ∨ ¬A6
c7 : A1 ∨ A7 ∨ ¬A12
c8 : A1 ∨ A8
c9 : ¬A7 ∨ ¬A8 ∨ ¬A13

√

c10 : A9 ∨ A10 ∨ A11 ∨ ¬A1
√

c11 : A9 ∨ A10 ∨ A11 ∨ ¬A12 ∨ ¬A13
√

...

¬A9

¬A11

¬A10

¬A1
¬A13

A12

¬A1
¬A13

c10

c10

¬A1

c11

c11

c11

c11

c10

¬A13
A7
A8

¬A1
A2
A3
A4
A5
A6

¬A10

¬A11

A12

A13

A1

¬A9

¬A9

¬A10

A12

¬A11

=⇒ Unit: {¬A1,¬A13}
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Background on SAT Solving

Remark: the “quality” of conflict sets

Different ideas of “good” conflict set
Backjumping: if causes the highest backjump (“local” role)
Learning: if causes the maximum pruning (“global” role)

Many different strategies implemented
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Background on SAT Solving

Drawbacks of Learning

Prunes drastically the search.
Problem: may cause a blowup in space
=⇒ techniques to drop learned clauses when necessary

according to their size
according to their activity.

Definition
A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment).

Property
In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.
=⇒ CDCL solvers require polynomial space
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Background on SAT Solving

Incremental SAT solving [Een & Sorenson’03]

Many CDCL solvers provide a stack-based incremental interface
it is possible to push/pop φi into a stack of formulas Φ

def
= {φ1, ..., φk}

check incrementally the satisfiability of
∧k

i=1 φi .
Maintains the status of the search from one call to the other

in particular it records the learned clauses (plus other information)
keeping track efficiently of their dependencies on the φi ’s

=⇒ reuses search from one call to another

Essential in many applications (in particular in FV)
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Background on SAT Solving

Many applications of SAT Solvers

Many successful applications of SAT:
Boolean circuits
(Bounded) Planning
(Bounded) Model Checking
Cryptography
Scheduling
...

All NP-complete problem can be (polynomially) converted to SAT.
Key issue: find an efficient encoding.
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SAT-based Model Checking: Generalities

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space
an expert user can make the difference (e.g. reordering, algorithms)

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based techniques

Various techniques: Bounded Model Checking, K-induction,
Interpolant-based, IC3/PDR,...
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SAT-based Model Checking: Generalities

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked using a SAT
solver

can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)
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Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 0:

1

p

No counter-example found.
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Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 1:

1 2

p q

No counter-example found.
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Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 2:

1 2 3

p pq

No counter-example found.
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Bounded Model Checking: Intuitions

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 3:

1 2 3 4

p pq

1 2 3 4

p pq

The 2nd trace is a counter-example!
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Bounded Model Checking: General Encoding

The problem [Biere et al, 1999]

Ingredients:

A system written as a Kripke structure M := 〈S, I,T ,L〉
A property f written as a LTL formula:
an integer k ≥ 0 (bound)

Problem
Is there a (possibly-partial) execution path π of M of length k satisfying
the temporal property f?

the check is repeated for increasing values of k = 1,2,3, ...
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Bounded Model Checking: General Encoding

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f ]]k
defined as follows:

[[M, f ]]k := [[M]]k ∧ [[f ]]k (1)

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1), (2)

[[f ]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f ]]0k ) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f ]]0k ), (3)

the vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f ]]k encodes the fact that the k -path satisfies f
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Bounded Model Checking: General Encoding

The Encoding [cont.]

The encoding for a formula f with k steps, [[f ]]k is the disjunction of

the constraints needed to express a model without loopback:

(¬(
∨k

l=0 R(sk , sl)) ∧ [[f ]]0k )

S SS S S
10 k−1 kl

[[f ]]ik , i ∈ [0, k ]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a no-loopback path

the constraints needed to express a given loopback, for all
possible points of loopback:

∨k
l=0(R(sk , sl) ∧ l [[f ]]0k )

S SS S S
10 k−1 kl

l [[f ]]ik , i ∈ [0, k ]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a path with a loopback from sk to sl
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Bounded Model Checking: General Encoding

The encoding of [[f ]]ik and l [[f ]]ik
f [[f ]]ik l [[f ]]ik
p pi pi

¬p ¬pi ¬pi

h ∧ g [[h]]ik ∧ [[g]]ik l [[h]]ik ∧ l [[g]]ik
h ∨ g [[h]]ik ∨ [[g]]ik l [[h]]ik ∨ l [[g]]ik

Xg [[g]]i+1
k if i < k

⊥ otherwise.
l [[g]]i+1

k if i < k
l [[g]]lk otherwise.

Gg ⊥
∧k

j=min(i,l) l [[g]]jk
Fg

∨k
j=i [[g]]jk

∨k
j=min(i,l) l [[g]]jk

hUg
∨k

j=i

(
[[g]]jk ∧

∧j−1
n=i [[h]]nk

) ∨k
j=i

(
l [[g]]jk ∧

∧j−1
n=i l [[h]]nk

)
∨∨i−1

j=l

(
l [[g]]jk ∧

∧k
n=i l [[h]]nk ∧

∧j−1
n=l l [[h]]nk

)
hRg

∨k
j=i

(
[[h]]jk ∧

∧j
n=i [[g]]nk

) ∧k
j=min(i,l) l [[g]]jk ∨∨k
j=i

(
l [[h]]jk ∧

∧j
n=i l [[g]]nk

)
∨∨i−1

j=l

(
l [[h]]jk ∧

∧k
n=i l [[g]]nk ∧

∧j
n=l l [[g]]nk

)
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Bounded Model Checking: Relevant Subcases

Example: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f ]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

  −p   −p   −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f ]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk
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Bounded Model Checking: Relevant Subcases

Example: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f ]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj
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Bounded Model Checking: Relevant Subcases

Example: GFq (fair states)

f := GFq, s.t. q Boolean: does q hold infinitely often?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f ]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj
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Bounded Model Checking: Relevant Subcases

Example: GFq ∧ Fp (fair reachability)

f := GFq ∧ Fp, s.t. p,q Boolean: provided that q holds infinitely
often, is there a reachable state in which p holds?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f ]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj
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Bounded Model Checking: An Example

Example: a bugged 3-bit shift register

System M:
I(x) := > (arbitrary initial state)
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 1)

Property: AF(¬x [0] ∧ ¬x [1] ∧ ¬x [2])

BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?
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Bounded Model Checking: An Example

Example: a bugged 3-bit shift register [cont.]

k = 2:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

[[M]]2 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1) ∧
(x2[0] ↔ x1[1]) ∧ (x2[1] ↔ x1[2]) ∧ (x2[2] ↔ 1)

)
∧

∨2
l=0 Ll :

 ((x0[0] ↔ x2[1]) ∧ (x0[1] ↔ x2[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x2[1]) ∧ (x1[1] ↔ x2[2]) ∧ (x1[2] ↔ 1))∨
((x2[0] ↔ x2[1]) ∧ (x2[1] ↔ x2[2]) ∧ (x2[2] ↔ 1))

 ∧

∧2
i=0(x 6= 0) :

 (x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2]) ∧
(x2[0] ∨ x2[1] ∨ x2[2])


=⇒ SAT: xi [j] := 1 ∀i , j
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Bounded Model Checking: An Example

Bounded Model Checking: summary

incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

very efficient for some problems (typically debugging)
lots of enhancements
current symbolic model checkers embed a SAT based BMC tool
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Bounded Model Checking: An Example

Efficiency Issues in Bounded Model Checking

Caching different problems:
can we exploit the similarities between problems at k and k + 1?

Simplification of encodings
Reduced Boolean Circuits (RBC)
Boolean Expression Diagrams (BED)
And-Inverter Graphs (AIG)
Simplification based on Binary-Clauses Reasoning

When can we stop increasing the bound k if we don’t find
violations?
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Computing upper bounds for k

Basic bounds for k

Theorem [Biere et al. TACAS 1999]

Let f be a LTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M| · 2|f |.

|M| · 2|f | is always a bound of k .

|M| huge!
=⇒ not so easy to compute in a symbolic setting.

=⇒ need to find better bounds!

Note: [Biere et al. TACAS 1999] use “M |= Ef ” as “there exists a path of M verifying f”,
so that M 6|= A¬f ⇐⇒ M |= Ef
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Computing upper bounds for k

Other bounds for k

ACTL & ECTL
ACTL is a subset of CTL in which “A...” (resp. “E...”) sub-formulas
occur only positively (resp. negatively) in each formula.
e.g. AG(p → AGAFq)

ECTL is a subset of CTL in which “E...” (resp. “A...”) sub-formulas
occur only positively (resp. negatively) in each formula.
e.g. EF(p ∧ EFEG¬q)

ECTL is the dual subset of ACTL: φ ∈ ECTL⇐⇒ ¬φ ∈ ACTL.
Many frequently-used LTL properties ¬f have equivalent ACTL
representations A¬f ′ (e.g. G(p → GFq) wrt. AG(p → AGAFq))

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M|.
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Computing upper bounds for k

Other bounds for k (cont)

Theorem [Biere et al. TACAS 1999]
Let p be a Boolean formula and d be the diameter of M. Then
M |= EFp ⇐⇒ M |=k EFp for some k ≤ d .

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula and d be the recurrence diameter of M.
Then M |= Ef ⇐⇒ M |=k Ef for some k ≤ d .
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Computing upper bounds for k

The diameter

Definition: diameter
Given M, the diameter of M is the smallest integer d s.t. for every path
s0, ..., sd+1 there exist a path t0, ..., tl s.t. l ≤ d , t0 = s0 and tl = sd+1.

Intuition: if u is reachable from v , then there is a path from v to u
of length d or less.

=⇒ it is the maximum distance between two states in M.

uv
d=4
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Computing upper bounds for k

The diameter: computation

d is the smallest integer d which makes the following formula true:

∀s0, ..., sd+1.∃t0, ..., td .
d∧

i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→

(
t0 = s0 ∧

d−1∧
i=0

T (ti , ti+1) ∧
d∨

i=0

ti = sd+1

)
︸ ︷︷ ︸

t0,...,ti is another path from s0 to sd+1 for some i

Quantified Boolean formula (QBF): much harder than
NP-complete!
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Computing upper bounds for k

The recurrence diameter

Definition: recurrence diameter
Given M, the recurrence diameter of M is the smallest integer d s.t. for
every path s0, ..., sd+1 there exist j ≤ d s.t. sd+1 = sj .

. . . . . . 

s0 si = sd+1 sd

Intuition: the maximum length of a non-loop path
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Computing upper bounds for k

The recurrence diameter: computation

d is the smallest integer d which makes the following formula true:

∀s0, ..., sd+1.

d∧
i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→
d∨

i=0

si = sd+1︸ ︷︷ ︸
s0,...,sd+1 contains a cicle

Validity problem: coNP-complete (solvable by SAT).
Possibly much longer than the diameter!

Diameter = 1 Recurrence Diameter = 3
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Inductive reasoning on invariants (aka “K-Induction”)

Inductive Reasoning on Invariants

Invariant: “AGGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then we can conclude that the system is correct for all reachable
states.
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Inductive reasoning on invariants (aka “K-Induction”)

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk ))→ Good(sk ) is valid
(i.e. its negation is unsatisfiable)

then we can conclude that the system is correct for all reachable
states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk )) ∧ ¬Good(sk ) )

(iii) N.B: “(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .
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Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants

Problem: Induction may fail because of unreachable states:
if (Good(sk−1) ∧ R(sk−1, sk ))→ Good(sk ) is not valid, this does
not mean that the property does not hold
both sk−1 and sk might be unreachable
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Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants [cont.]

Solution (once you know you cannot reach ¬Good in up to 1 step):
increase the depth of induction
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧
R(sk−1, sk )∧¬(sk−2 = sk−1))→ Good(sk )

...

force loop freedom with ¬(si = sj) for every i 6= j s.t. i , j ≤ k
performed after step-1 BMC step returns “unsat”:
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1)
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Inductive reasoning on invariants (aka “K-Induction”)

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk )) ∧ ¬Good(sk ); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk )) ∧ ¬Good(sk )
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4, ....
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk ) and
R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps
K-Induction steps can be shifted (k def

= 0) to share the subformulas:∧k−1
i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)
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Inductive reasoning on invariants (aka “K-Induction”)

Mixed BMC & K-Induction [Sheeran et al. 2000]
Basen := I(s0) ∧

∧n−1
i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn)

Stepn :=
∧n

i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn+1)
Uniquen :=

∧
0≤i≤j≤n ¬(si = sj+1)

Algorithm

1. function CHECK_PROPERTY (I,R, ϕ)
2. for n := 0,1,2,3, .... do
3. if (DPLL(Basen) == SAT)
4. then return PROPERTY_VIOLATED;
5. else if (DPLL(Stepn ∧ Uniquen) == UNSAT)
6. then return PROPERTY_VERIFIED;
7. end for;

=⇒ reuses previous search if DPLL is incremental!!
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K-Induction: An Example

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: AG¬x [0]
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K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.
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K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

BMC Step 1: (...)=⇒ unsat
K-Induction Step 2: (¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧

¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))
) ∧ x2[0]


∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))

=⇒ sat:


¬x0[0], ¬x0[1], x0[2]
¬x1[0], x1[1], ¬x1[2]

x2[0], ¬x2[1], ¬x2[2]

 =⇒ not proved

Remark

{¬x0[0],¬x0[1], x0[2]}, {¬x1[0], x1[1],¬x1[2]}, and
{ x2[0],¬x2[1],¬x2[2]} are non-reachable.
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K-Induction: An Example

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:

(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))

) ∧ x3[0]


∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!
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K-Induction: An Example

Other Successful SAT-based (UNbounded) MC
Techniques

Counter-example guided abstraction refinement (CEGAR)
[Clarke et al. CAV 2002]
Interpolant-based MC
[Mc Millan, TACAS 2005]
IC3/PDR
[Bradley, VMCAI 2011]
...

For a survey see e.g.
[Amla et al., CHARME 2005, Prasad et al. STTT 2005].
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Exercises

Ex: CDCL SAT Solving

Which of the following figures may correspond to a modern DPLL 1st-UIP
backjumping step?

(a) (b) (c)

¬A3

A2

¬A1

Conflict Clause:
(¬A4 ∨ A1 ∨ ¬A3)

A4

A3

¬A2A2

¬A1

Conflict Clause:

A4

A3

A1

A2

¬A1

Conflict Clause:
(¬A4 ∨ A1 ∨ ¬A3)

A4

A3

[ Solution: The correct answer is (a). (b) represents standard chronological
backtracking, whilst (c) is nonsense. ]
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Exercises

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two Boolean
formulas: I(x , y) def

= ¬x ∧ y , T (x , y , x ′, y ′) def
= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the

LTL property: ϕ def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.
[ Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]
2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[ Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1) ]
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Exercises

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[ Solution: b) ]
4. What are the diameter and the recurrence diameter of this system?

[ Solution:

00

11 10

01

diameter = recurrence diameter = 3

]
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