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Background: Finite-Word Automata Language Containment

System’s computations
The behaviors (computations) of a system can be seen as
sequences of assignments to propositions.

MODULE main
VAR done: Boolean;
ASSIGN
init(done):=0;
next(done):= case

!done: {0,1};
done: done;

esac;
Since the state space is finite, the set of computations can be
represented by a finite automaton.

or
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Background: Finite-Word Automata Language Containment

Correct computations

Some computations are correct and others are not acceptable.
We can build an automaton for the set of all acceptable
computations.
Example: eventually, done will be true forever (FGdone).
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Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.
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Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.
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Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata

Basic model of computational systems with finite memory.

Widely applicable
Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.
Synchronous Circuits.
Regular Expression Pattern Matching

Grep, Lex, Emacs.
Protocols

Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...
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Background: Finite-Word Automata Automata on Finite Words

Notation

a,b ∈ Σ finite alphabet.
u, v ,w ∈ Σ∗ finite words.

ε empty word.
u.v concatenation.
ui = u.u. .u repeated i-times.

U,V ⊆ Σ∗ Finite word languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 11 / 97



Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata Definition

Definition
A Nondeterministic Finite-State Automaton (NFA) is (Q,Σ, δ, I,F ) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of final states.
δ ⊆ Q × Σ×Q transition relation (edges).

We use q a−→ q′ to denote (q,a,q′) ∈ δ.

Definition
A Deterministic Finite-State Automaton (DFA) is a NFA s.t.:
δ : Q × Σ→ Q is a total function
Single initial state I = {q0}.
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Background: Finite-Word Automata Automata on Finite Words

Regular Languages

A run of NFA A on u = a0,a1, . . . ,an−1 is a finite sequence of
states q0,q1, . . . ,qn s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i < n.
An accepting run is one where qn ∈ F .
The language accepted by A is
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.
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Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata: examples

The DFA A1 over Σ = {a,b}:

Recognizes words which do not end in b.
The NFA A2 over Σ = {a,b}:

Recognizes words which end in b.
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Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}
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Background: Finite-Word Automata Automata on Finite Words

Determinisation [cont.]

NFA A2: Words which end in b.

A2 can be determinised into the automaton DA2 below.
(#States = 2Q.)

There are NFAs of size n for which the size of the minimum sized
DFA must have size O(2n).
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Background: Finite-Word Automata Automata on Finite Words

Closure Properties

Theorem (Boolean closure)
Given NFA A1,A2 over Σ we can construct NFA A over Σ s.t.

L(A) = L(A1) (Complement). |A| = 2O(|A1|).
L(A) = L(A1) ∪ L(A2) (union). |A| = |A1|+ |A2|.
L(A) = L(A1) ∩ L(A2) (intersection). |A| ≤ |A1| · |A2|.
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Background: Finite-Word Automata Automata on Finite Words
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Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97



Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97



Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97



Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97



Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97



Background: Finite-Word Automata Automata on Finite Words

Synchronous Product Construction

Definition: product of NFAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F ) where

Q = Q1 ×Q2,
I = I1 × I2,
F = F1 × F2,
〈p,q〉 a−→ 〈p′,q′〉 iff p a−→ p′ and q a−→ q′.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|(A1 × A2)| ≤ |A1| · |A2|.
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Background: Finite-Word Automata Automata on Finite Words

Example

A1 recognizes words with an even number of b’s.
A2 recognizes words with a number of a’s multiple of 3.
The Product Automaton A1 × A2 with F = {s0, t0}.
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Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).
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Infinite-Word Automata Automata on Infinite Words

Infinite Word Languages

Modeling infinite computations of reactive systems.
An ω-word α over Σ is an infinite sequence

a0, a1, a2 . . ..
Formally, α : N→ Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .
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Infinite-Word Automata Automata on Infinite Words

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb . . ..
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)
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Infinite-Word Automata Automata on Infinite Words

Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I,F ), where F ⊆ Q is the set of accepting states.

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence
ρ = qo,q1,q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F 6= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}
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Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely
many a’s.
With F = {s2} the automaton recognizes words with infinitely
many b’s.
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Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A2 be

With F = {s2}, the automaton A2 recognizes words with finitely many
a. Thus, L(A2) = L(A1).
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Infinite-Word Automata Automata on Infinite Words

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2
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Infinite-Word Automata Automata on Infinite Words

Closure Properties

Theorem (union, intersection)
For the NBAs A1,A2 we can construct

the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.
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Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F ) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)
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Infinite-Word Automata Automata on Infinite Words

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F ), where

Q = Q1 ×Q2 × {1,2}.
I = I1 × I2 × {1}.
F = F1 ×Q2 × {1}.

〈p,q,1〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and p 6∈ F1.
〈p,q,1〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and p ∈ F1.
〈p,q,2〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and q 6∈ F2.
〈p,q,2〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and q ∈ F2.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|A1 × A2| ≤ 2 · |A1| · |A2|.
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Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA,
and it points to one of the two tracks
As soon as it goes through an accepting state of the current track,
it switches to the other track
=⇒ in order to visit infinitely often a state in F (i.e., F1), it must
visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 ×Q2.
I = I1 × I2.
F = F1 ×Q2.
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Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Example
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Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.
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Infinite-Word Automata Automata on Infinite Words

Generalized Büchi Automaton

Definition
A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT )
where FT = 〈F1,F2, . . . ,Fk 〉 with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi 6= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language
equivalent plain Büchi Automaton.

Intuition
Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it
moves to (i + 1)mod K mode.
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Infinite-Word Automata Automata on Infinite Words

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let A def
= (Q,Σ, δ, I,FT ) a generalized BA s.f. FT def

= {F1, ...,FK}.
Then a language-equivalent BA A′ def

= (Q′,Σ, δ′, I′,F ′) is built as follows
Q′ = Q1 × {1, ...,K}.
I′ = I × {1}.
F ′ = F1 × {1}.
δ′ is s.t., for every i ∈ [1, ...,K ]:

〈p, i〉 a−→ 〈q, i〉 iff p a−→ q ∈ δ and p 6∈ Fi .

〈p, i〉 a−→ 〈q, (i + 1)mod K 〉 iff p a−→ q ∈ δ and p ∈ Fi .

Theorem
L(A′) = L(A).
|A′| ≤ K · |A|.
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Infinite-Word Automata Automata on Infinite Words

Degeneralizing a Büchi automaton: Example
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Infinite-Word Automata Automata on Infinite Words

Omega-regular Expressions

Definition
A language is called ω-regular if it has the form ∪n

i=1 Ui .(Vi)
ω where

Ui ,Vi are regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.
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Infinite-Word Automata Emptiness Checking

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises
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Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.
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Infinite-Word Automata Emptiness Checking

NFA Emptiness Checking (cont.)

// returns True if empty language, false otherwise

Bool DFS(NFA A) {
stack S=I;
Hashtable T=I;
while S!=∅ {

v=top(S);
if v∈F return False
if ∃w s.t. w∈ δ(v) && T(w)==0 {

hash(w,T);
push(w,S);

} else
pop(S);

}
return True;

}
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Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.
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Drawbacks: it stores too much information and does not find
directly a counterexample.
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Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).
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Infinite-Word Automata Emptiness Checking

Double Nested DFS - First DFS
// returns True if empty language, false otherwise
Bool DFS1(NBA A) {

stack S1=I; stack S2=∅;
Hashtable T1=I; Hashtable T2=∅;
while S1!=∅ {

v=top(S1);
if ∃w s.t. w∈ δ(v) && T1(w)==0 {

hash(w,T1);
push(w,S1);

} else {
pop(S1);
if (v∈F && !DFS2(v,S2,T2,A))

return False;
} }
return True;

}
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Infinite-Word Automata Emptiness Checking

Double Nested DFS - Second DFS

Bool DFS2(state f, stack & S, Hashtable & T, NBA A) {
hash(f,T);
S = {f}
while S!=∅ {

v=top(S);
if f∈ δ(v) return False;
if ∃w s.t. w∈ δ(v) && T(w)==0 {

hash(w);
push(w);

} else pop(S);
}
return True;

}

Remark: T passed by reference, is not reset at each call of DFS2 !
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Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.
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Infinite-Word Automata Emptiness Checking

Double Nested DFS: example
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The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= Aψ (CTL∗)

⇐⇒ M |= ψ (LTL)
⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths
that satisfy ¬ψ (do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and
not in ψ.
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The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL M.C. (dual version)

Let M be a Kripke model and ϕ def
= ¬ψ be an LTL formula

M |= Eϕ
⇐⇒ M 6|= A¬ϕ
⇐⇒ ...
⇐⇒ L(AM × Aϕ) 6= ∅

AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
Aϕ is a Büchi Automaton which represents all and only the paths
that satisfy ϕ

=⇒ AM × Aϕ represents all and only the paths appearing in both AM
and Aϕ.
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The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Kripke Structure M:
Example

{p,q}

{p,q}

{p,q}

Kripke Structure Buechi Automaton

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

=⇒ Substantially, add one initial state, move labels from states to
incoming edges, set all states as accepting states
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels
of a Kripke Structure. Also graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other
propositions are false;
in a Büchi Automaton, it means that p is true and all other
propositions are irrelevant (“don’t care”), i.e. they can be either
true or false.
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1
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The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a (Generalized) BA AM from a Fair Kripke
Structure M: Example

{p,q}

{p,q}

{p,q}

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

Generalized Buechi AutomatonFair Kripke Structure

=⇒ Substantially, add one initial state, move labels from states to
incoming edges, set fair states as accepting states
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The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
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On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 61 / 97



The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Translation problem

Problem
Given an LTL formula φ, find a Büchi Automaton that accepts the same
language of φ.

It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).
We will translate an LTL formula into a Generalized Büchi
Automata (GBA).
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The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Exponential Translation

From ϕ, create a fair Kripke model, like in chapter 7.
Convert it into a (Generalized) Büchi Automaton

Remark

Inefficient: up to 2EL(ϕ) states.
Kripke models require total truth assignments to state variables
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The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Example

Xϕ Xϕ Xϕ

−Xϕ Xϕ −Xϕ

−Xϕ −Xϕ

3

4
5 6

7 8

21 qp
ϕ

−p −qp

−p q −q−p qp

p −q −p −q

ϕ

ϕ ϕ−ϕ

−ϕ−ϕ

q
ϕ
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Example

Xϕ Xϕ Xϕ

−Xϕ Xϕ −Xϕ

−Xϕ −Xϕ

p q

p q

p q

p q

−pq −pq

−pq
−pq

−pq

−pq

−pq

−pq

−p−q

−p−q
−p−q

−p−q

p qp q

p q

p q

p −q

p −q

p −q

p −q

p −q

p −q

p −q −p−q

−p−q

−p−q

−p−q

p q

−pq

−pq
p −q

p q

3

4
5 6

7 8

21

ϕ

−qp

q

−p −q

ϕ

ϕ ϕ−ϕ

−ϕ−ϕ

ϕ
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

LTL Negative Normal Form (NNF)

Every LTL formula ϕ can be written into an equivalent formula ϕ′

using only the operators ∧, ∨, X, U, R on propositional literals.
Done by pushing negations down to literal level:
¬(ϕ1 ∨ ϕ2) =⇒ (¬ϕ1 ∧ ¬ϕ2)
¬(ϕ1 ∧ ϕ2) =⇒ (¬ϕ1 ∨ ¬ϕ2)
¬Xϕ1 =⇒ X¬ϕ1
¬(ϕ1Uϕ2) =⇒ (¬ϕ1R¬ϕ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ the resulting formula is expressed in terms of ∨, ∧, X , U, R
and literals (Negative Normal Form, NNF).

encoding linear if a DAG representation is used

In the construction of Aϕ we now assume that ϕ is in NNF.
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition)

Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to ϕ
ψ1Uψ2 =⇒ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2))
ψ1Rψ2 =⇒ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2))
until we get a Boolean combination of elementary subformulas of ϕ
(An elementary formula is a proposition or a X-formula.)
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik ) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik ).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik ) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r} )
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik )

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k )

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k ) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

ϕ ??
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∨
i (
∧

j lij ∧ X
∧

k ψik) !
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∧
j l1j [

∧
k ψ1k ]

[
∧

k ψ2k ]

∧
j l2j

[
∧

k ψik ]

∧
j lij

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∧
k ψik ?
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ
′
ik ]

[
∧

k ψ
′
2k ]

[
∧

k ψ
′
1k ]∨

i ′ (
∧

j l ′i ′j ∧ X
∧

k ψ
′
i ′k)

.
.

.
.
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∧
j l1j

∧
j l2j

∧
j lij

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ
′
ik ]

[
∧

k ψ
′
2k ]

[
∧

k ψ
′
1k ]

.
.

.
.
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the
automata graph has been built, then apply the following:

Step 4: For every ψiUϕi , for every state qj , mark qj with Fi iff
(ψiUϕi) /∈ qj or ϕi ∈ qj
(If there is no U-subformulas, then mark all states with F1

—i.e., FT def
= {Q}).
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
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On-the-fly Construction of Aφ - Expand

if ψ1 ∨ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)

∪Expand(Φ ∪ {ψ2}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)
(split s in two copies, process ψ2 on the first, ψ1 on the second,
add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1Uψ2}, 〈λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}〉)
∪Expand(Φ ∪ {ψ2}\{ψ1Uψ2}, 〈λ, χ, σ ∪ {ψ1Uψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ2}\{ψ1Rψ2}, 〈λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}〉)
∪Expand(Φ ∪ {ψ1, ψ2}\{ψ1Rψ2}, 〈λ, χ, σ ∪ {ψ1Rψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Rψ2 to σ)
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= >Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ\{Fψ}, 〈λ, χ ∪ {Fψ}, σ ∪ {Fψ}〉)
∪Expand(Φ ∪ {ψ}\{Fψ}, 〈λ, χ, σ ∪ {Fψ}〉)

if Gψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ}\{Gψ}, 〈λ, χ ∪ {Gψ}, σ ∪ {Gψ}〉)

Note: Expand(Φ ∪ {⊥, ψ}\{Gψ}, ...) = ∅
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT ) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).
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Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT ) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = FGp

Cover({FGp})
= Expand({FGp}, 〈∅, ∅, ∅〉)
= Expand(∅, 〈∅, {FGp}, {FGp}〉) ∪ Expand({Gp}, 〈∅, ∅, {FGp}〉)
= {〈∅, {FGp}, {FGp}〉} ∪ Expand({p}, 〈∅, {Gp}, {FGp,Gp}〉)
= {〈∅, {FGp}, {FGp}〉} ∪ Expand(∅, 〈{p}, {Gp}, {FGp,Gp,p}〉)
= {〈∅, {FGp}, {FGp}〉, 〈{p}, {Gp}, {FGp,Gp,p}〉}

Cover({Gp}) = Expand({Gp}, 〈∅, ∅, ∅〉)
= Expand({p}, 〈∅, {Gp}, {Gp}〉)
= Expand(∅, 〈{p}, {Gp}, {Gp,p}〉)
= {〈{p}, {Gp}, {Gp,p}〉}

Optimization:
merge 〈{p}, {Gp}, {FGp,Gp,p}〉 and 〈{p}, {Gp}, {Gp,p}〉
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = FGp

Call s1 = 〈∅, {FGp}, {FGp}〉, s2 = 〈{p}, {Gp}, {FGp,Gp,p}〉
Q = {s1, s2}
Q0 = {s1, s2}.
T : s1 → {s1, s2},

s2 → {s2}
FT = 〈F1〉 where F1 = {s2}.

[ XGp ] [ XFGp ]
p

p

p
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = pUq

Cover({pUq})
= Expand({pUq}, 〈∅, ∅, ∅〉)
= Expand({p}, 〈∅, {pUq}, {pUq}〉) ∪ Expand({q}, 〈∅, ∅, {pUq}〉)
= Expand(∅, 〈{p}, {pUq}, {pUq,p}〉) ∪ Expand(∅, 〈{q}, ∅, {pUq,q}〉)
= {〈{p}, {pUq}, {pUq,p}〉} ∪ {〈{q}, {>}, {pUq,q}〉}

Cover({>}) = {〈∅, {>}, {>}〉}
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = pUq

Let s1 =def 〈{p}, {pUq}, {pUq,p}〉, s2 =def 〈{q}, {>}, {pUq,q}〉,
s3 =def 〈∅, {>}, {>}〉.
Q = {s1, s2, s3},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s3}
s3 → {s3}

FT = 〈F1〉 where F1 = {s2, s3}.

[ XT ] [ XT ] [ X(pUq) ]

q

q
p

p
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = GFp

Cover({GFp})
= E({GFp}, 〈∅, ∅, ∅〉)
= E({Fp}, 〈∅, {GFp}, {GFp}〉)
= E({}, 〈∅, {GFp,Fp}, {GFp,Fp}〉) ∪ E({p}, 〈{}, {GFp}, {GFp,Fp}〉)
= E({}, 〈∅, {GFp,Fp}, {GFp,Fp}〉) ∪ E({}, 〈{p}, {GFp}, {GFp,Fp,p}〉)
= {〈∅, {GFp,Fp}, {GFp,Fp}〉} ∪ {〈{p}, {GFp}, {GFp,Fp,p}〉}

Note: GFp ∧ Fp ⇐⇒ GFp, s.t. Cover(GFp ∧ Fp) = Cover(GFp)
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: GFp

Let s1 =def 〈{p}, {GFp}, {GFp,Fp,p}〉,
s2 =def 〈∅, {GFp,Fp}, {GFp,Fp}〉,
Q = {s1, s2},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s1, s2}
FT = 〈F1〉 where F1 = {s1}.

[ XGFp ] [ XGFp ]

p
p

p
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

NBAs of disjunctions of formulas

Remark

If ϕ def
= (ϕ1 ∨ ϕ2) and Aϕ1 ,Aϕ2 are NBAs encoding ϕ1 and ϕ2 resp., then

L(ϕ) = L(ϕ1) ∪ L(ϕ2), so that Aϕ
def
= Aϕ1 ∪ Aϕ2 is an NBA encoding ϕ

Aϕ non necessarily the smallest/best NBA encoding ϕ

Example

Let ϕ def
= (GFp → GFq), i.e., ϕ ≡ (FG¬p ∨GFq).

Then AFG¬p ∪ AGFq encodes ϕ:

¬p

¬p q

q

q

¬p
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL
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q
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The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Suggested Exercises:

Find an NBA encoding:

p
Fp
Gp
pRq
(GFp ∧GFq)→ Gr
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The Automata-Theoretic Approach to Model Checking Complexity

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises
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The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ
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The Automata-Theoretic Approach to Model Checking Complexity

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ Some tools (e.g., Spin) allow specifications to be expressed
directly as NBAs
=⇒ complementation of NBA important!
for every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm
performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research
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Exercises

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
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Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises
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Exercises

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting
states, a, b are labels):

s1

s2

t1 t2

BA1 BA2

a

a

a

a
b b b

b

Write the product Büchi automaton BA1× BA2.
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Exercises

Ex: Product of Büchi automata

[ Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]
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Exercises

Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton A def
= 〈Q,Σ, δ, I,FT 〉, with two sets of

accepting states FT def
= {F1,F2} s.t. F1 def

= {s2},F2 def
= {s1}:

s1

s2

F2

F1

a

a

b b

convert it into an equivalent plain Büchi automaton.
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Exercises

Ex: De-generalization of Büchi Automata

[ Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]
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Exercises
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s22

a

b bb

a

a

b

a
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Exercises

Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Buchi automaton.

F1

p,q
s0

¬p,¬q
s1

¬p,q
s2

p,¬q
s3

[ Solution:

s1 s2

s3

p,¬q

p,¬q

p,q

p,q p,q

¬p,¬q

¬p,¬q ¬p,q

¬p,¬q

]
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Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form

[ Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq) ]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)

[ Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]
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[ Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]
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Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq.

[ Solution: false ]

(b) BA accepts all and only the paths verifying FGq.

[ Solution: true ]

(c) BA accepts only paths verifying Fq, but not all of them.

[ Solution: true ]

(d) BA accepts all the paths verifying Fq, but not only them.

[ Solution: false ]
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