
Introduction to Formal Methods
Chapter 08: Automata-theoretic LTL Model

Checking

Roberto Sebastiani and Stefano Tonetta

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/

Teaching assistant: Enrico Magnago – enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 18th May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the
authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 1 / 97

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 2 / 97

Background: Finite-Word Automata

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 3 / 97

Background: Finite-Word Automata Language Containment

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 4 / 97

Background: Finite-Word Automata Language Containment

System’s computations
The behaviors (computations) of a system can be seen as
sequences of assignments to propositions.

MODULE main
VAR done: Boolean;
ASSIGN
init(done):=0;
next(done):= case

!done: {0,1};
done: done;

esac;
Since the state space is finite, the set of computations can be
represented by a finite automaton.

or
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 5 / 97

Background: Finite-Word Automata Language Containment

System’s computations
The behaviors (computations) of a system can be seen as
sequences of assignments to propositions.

MODULE main
VAR done: Boolean;
ASSIGN
init(done):=0;
next(done):= case

!done: {0,1};
done: done;

esac;

Since the state space is finite, the set of computations can be
represented by a finite automaton.

or

!done done

done

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 5 / 97

Background: Finite-Word Automata Language Containment

Correct computations

Some computations are correct and others are not acceptable.
We can build an automaton for the set of all acceptable
computations.
Example: eventually, done will be true forever (FGdone).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 6 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Language Containment

Language Containment Problem

Solution to the verification problem
=⇒ Check if language of the system automaton is contained in the

language accepted by the property automaton.

The language containment problem is the problem of deciding if a
language is a subset of another language.

L(A1) ⊆ L(A2)⇐⇒ L(A1) ∩ L(A2) = {}

In order to solve the language containment problem, we need to
know:
(i) how to complement an automaton,

(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 7 / 97

Background: Finite-Word Automata Automata on Finite Words

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 8 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite Word Languages

An Alphabet Σ is a collection of symbols (letters).
E.g. Σ = {a,b}.
A finite word is a finite sequence of letters. (E.g. aabb.)
The set of all finite words is denoted by Σ∗.
A language U is a set of words, i.e. U ⊆ Σ∗.
Example: Words over Σ = {a,b} with equal number of a’s and b’s.
(E.g. aabb or abba.)
Language recognition problem: determine whether a word
belongs to a language.
Automata are computational devices able to solve language
recognition problems.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 9 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata

Basic model of computational systems with finite memory.

Widely applicable
Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.
Synchronous Circuits.
Regular Expression Pattern Matching

Grep, Lex, Emacs.
Protocols

Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 10 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata

Basic model of computational systems with finite memory.

Widely applicable
Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.
Synchronous Circuits.
Regular Expression Pattern Matching

Grep, Lex, Emacs.
Protocols

Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 10 / 97

Background: Finite-Word Automata Automata on Finite Words

Notation

a,b ∈ Σ finite alphabet.
u, v ,w ∈ Σ∗ finite words.

ε empty word.
u.v concatenation.
ui = u.u. .u repeated i-times.

U,V ⊆ Σ∗ Finite word languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 11 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata Definition

Definition
A Nondeterministic Finite-State Automaton (NFA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of final states.
δ ⊆ Q × Σ×Q transition relation (edges).

We use q a−→ q′ to denote (q,a,q′) ∈ δ.

Definition
A Deterministic Finite-State Automaton (DFA) is a NFA s.t.:
δ : Q × Σ→ Q is a total function
Single initial state I = {q0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 12 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata Definition

Definition
A Nondeterministic Finite-State Automaton (NFA) is (Q,Σ, δ, I,F) s.t.
Q Finite set of states.
Σ is a finite alphabet
I ⊆ Q set of initial states.
F ⊆ Q set of final states.
δ ⊆ Q × Σ×Q transition relation (edges).

We use q a−→ q′ to denote (q,a,q′) ∈ δ.

Definition
A Deterministic Finite-State Automaton (DFA) is a NFA s.t.:
δ : Q × Σ→ Q is a total function
Single initial state I = {q0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 12 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Languages

A run of NFA A on u = a0,a1, . . . ,an−1 is a finite sequence of
states q0,q1, . . . ,qn s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i < n.
An accepting run is one where qn ∈ F .
The language accepted by A is
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 13 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Languages

A run of NFA A on u = a0,a1, . . . ,an−1 is a finite sequence of
states q0,q1, . . . ,qn s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i < n.
An accepting run is one where qn ∈ F .
The language accepted by A is
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 13 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Languages

A run of NFA A on u = a0,a1, . . . ,an−1 is a finite sequence of
states q0,q1, . . . ,qn s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i < n.
An accepting run is one where qn ∈ F .
The language accepted by A is
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 13 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Languages

A run of NFA A on u = a0,a1, . . . ,an−1 is a finite sequence of
states q0,q1, . . . ,qn s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i < n.
An accepting run is one where qn ∈ F .
The language accepted by A is
L(A) = {u ∈ Σ∗ | A has an accepting run on u}
The languages accepted by a NFA are called regular languages.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 13 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata: examples

The DFA A1 over Σ = {a,b}:

Recognizes words which do not end in b.
The NFA A2 over Σ = {a,b}:

Recognizes words which end in b.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 14 / 97

Background: Finite-Word Automata Automata on Finite Words

Finite-State Automata: examples

The DFA A1 over Σ = {a,b}:

Recognizes words which do not end in b.
The NFA A2 over Σ = {a,b}:

Recognizes words which end in b.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 14 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 15 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 15 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 15 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 15 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A′ s.t. L(A) = L(A′).
Size: |A′| = 2O(|A|).

Each state of A′ corresponds to a set {s1, ..., sj} of states in A
(Q′ ⊆ 2Q), with the intended meaning that :

A′ is in the state {s1, .., sj} if A is in one of the states s1, ..., sj

The (unique) initial state is I′ =def {si | si ∈ I}
The deterministic transition relation δ′ : 2Q × Σ 7−→ 2Q is

{s} a−→ {si | s
a−→ si}

{s1, ..., sj , ..., sn}
a−→
⋃n

j=1{si | sj
a−→ si}

The set of final states F ′ is such that
{s1, ..., sn} ∈ F ′ iff si ∈ F for some i ∈ {1, ...,n}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 15 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation [cont.]

NFA A2: Words which end in b.

A2 can be determinised into the automaton DA2 below.
(#States = 2Q.)

There are NFAs of size n for which the size of the minimum sized
DFA must have size O(2n).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 16 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation [cont.]

NFA A2: Words which end in b.

A2 can be determinised into the automaton DA2 below.
(#States = 2Q.)

There are NFAs of size n for which the size of the minimum sized
DFA must have size O(2n).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 16 / 97

Background: Finite-Word Automata Automata on Finite Words

Determinisation [cont.]

NFA A2: Words which end in b.

A2 can be determinised into the automaton DA2 below.
(#States = 2Q.)

There are NFAs of size n for which the size of the minimum sized
DFA must have size O(2n).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 16 / 97

Background: Finite-Word Automata Automata on Finite Words

Closure Properties

Theorem (Boolean closure)
Given NFA A1,A2 over Σ we can construct NFA A over Σ s.t.

L(A) = L(A1) (Complement). |A| = 2O(|A1|).
L(A) = L(A1) ∪ L(A2) (union). |A| = |A1|+ |A2|.
L(A) = L(A1) ∩ L(A2) (intersection). |A| ≤ |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 17 / 97

Background: Finite-Word Automata Automata on Finite Words

Closure Properties

Theorem (Boolean closure)
Given NFA A1,A2 over Σ we can construct NFA A over Σ s.t.

L(A) = L(A1) (Complement). |A| = 2O(|A1|).
L(A) = L(A1) ∪ L(A2) (union). |A| = |A1|+ |A2|.
L(A) = L(A1) ∩ L(A2) (intersection). |A| ≤ |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 17 / 97

Background: Finite-Word Automata Automata on Finite Words

Closure Properties

Theorem (Boolean closure)
Given NFA A1,A2 over Σ we can construct NFA A over Σ s.t.

L(A) = L(A1) (Complement). |A| = 2O(|A1|).
L(A) = L(A1) ∪ L(A2) (union). |A| = |A1|+ |A2|.
L(A) = L(A1) ∩ L(A2) (intersection). |A| ≤ |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 17 / 97

Background: Finite-Word Automata Automata on Finite Words

Complementation of a NFA

A NFA A = (Q,Σ, δ, I,F) is complemented by:
determinising it into a DFA A′ = (Q′,Σ′, δ′, I′,F ′)
complementing it: A′ = (Q′,Σ′, δ′, I′,F ′)
|A′| = |A′| = 2O(|A|)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 18 / 97

Background: Finite-Word Automata Automata on Finite Words

Complementation of a NFA

A NFA A = (Q,Σ, δ, I,F) is complemented by:
determinising it into a DFA A′ = (Q′,Σ′, δ′, I′,F ′)
complementing it: A′ = (Q′,Σ′, δ′, I′,F ′)
|A′| = |A′| = 2O(|A|)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 18 / 97

Background: Finite-Word Automata Automata on Finite Words

Complementation of a NFA

A NFA A = (Q,Σ, δ, I,F) is complemented by:
determinising it into a DFA A′ = (Q′,Σ′, δ′, I′,F ′)
complementing it: A′ = (Q′,Σ′, δ′, I′,F ′)
|A′| = |A′| = 2O(|A|)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 18 / 97

Background: Finite-Word Automata Automata on Finite Words

Complementation of a NFA

A NFA A = (Q,Σ, δ, I,F) is complemented by:
determinising it into a DFA A′ = (Q′,Σ′, δ′, I′,F ′)
complementing it: A′ = (Q′,Σ′, δ′, I′,F ′)
|A′| = |A′| = 2O(|A|)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 18 / 97

Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97

Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97

Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97

Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97

Background: Finite-Word Automata Automata on Finite Words

Union of two NFAs

Definition: union of NFAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 19 / 97

Background: Finite-Word Automata Automata on Finite Words

Synchronous Product Construction

Definition: product of NFAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F) where

Q = Q1 ×Q2,
I = I1 × I2,
F = F1 × F2,
〈p,q〉 a−→ 〈p′,q′〉 iff p a−→ p′ and q a−→ q′.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|(A1 × A2)| ≤ |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 20 / 97

Background: Finite-Word Automata Automata on Finite Words

Synchronous Product Construction

Definition: product of NFAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F) where

Q = Q1 ×Q2,
I = I1 × I2,
F = F1 × F2,
〈p,q〉 a−→ 〈p′,q′〉 iff p a−→ p′ and q a−→ q′.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|(A1 × A2)| ≤ |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 20 / 97

Background: Finite-Word Automata Automata on Finite Words

Example

A1 recognizes words with an even number of b’s.
A2 recognizes words with a number of a’s multiple of 3.
The Product Automaton A1 × A2 with F = {s0, t0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 21 / 97

Background: Finite-Word Automata Automata on Finite Words

Example

A1 recognizes words with an even number of b’s.
A2 recognizes words with a number of a’s multiple of 3.
The Product Automaton A1 × A2 with F = {s0, t0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 21 / 97

Background: Finite-Word Automata Automata on Finite Words

Example

A1 recognizes words with an even number of b’s.
A2 recognizes words with a number of a’s multiple of 3.
The Product Automaton A1 × A2 with F = {s0, t0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 21 / 97

Background: Finite-Word Automata Automata on Finite Words

Example

A1 recognizes words with an even number of b’s.
A2 recognizes words with a number of a’s multiple of 3.
The Product Automaton A1 × A2 with F = {s0, t0}.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 21 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 22 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 22 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 22 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 22 / 97

Background: Finite-Word Automata Automata on Finite Words

Regular Expressions

Syntax: ∅ | ε | a | reg1.reg2 | reg1|reg2 | reg∗.
Every regular expression reg denotes a language L(reg).
Example: a∗.(b|bb).a∗. The words with either 1 b or 2 consecutive
b’s.

Theorem
For every regular expression reg we can construct a language
equivalent NFA of size O(|reg|).

Theorem
For every DFA A we can construct a language equivalent regular
expression reg(A).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 22 / 97

Infinite-Word Automata

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 23 / 97

Infinite-Word Automata Automata on Infinite Words

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 24 / 97

Infinite-Word Automata Automata on Infinite Words

Infinite Word Languages

Modeling infinite computations of reactive systems.
An ω-word α over Σ is an infinite sequence

a0, a1, a2
Formally, α : N→ Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 25 / 97

Infinite-Word Automata Automata on Infinite Words

Infinite Word Languages

Modeling infinite computations of reactive systems.
An ω-word α over Σ is an infinite sequence

a0, a1, a2
Formally, α : N→ Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 25 / 97

Infinite-Word Automata Automata on Infinite Words

Infinite Word Languages

Modeling infinite computations of reactive systems.
An ω-word α over Σ is an infinite sequence

a0, a1, a2
Formally, α : N→ Σ.
The set of all infinite words is denoted by Σω.
A ω-language L is collection of ω-words, i.e. L ⊆ Σω.

Example All words over {a,b} with infinitely many a’s.

Notation:
omega words α, β, γ ∈ Σω.
omega-languages L,L1 ⊆ Σω

For u ∈ Σ+, let uω = u.u.u . . .

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 25 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 26 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 26 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 26 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-Automata

We consider automaton running over infinite words.

Let α = aabbbb
There are several (infinite) possible runs.
Run ρ1 = s1, s1, s1, s1, s2, s2 . . .
Run ρ2 = s1, s1, s1, s1, s1, s1 . . .

Acceptance Conditions: Büchi (Muller, Rabin, Street):
Acceptance is based on states occurring infinitely often
Notation Let ρ ∈ Qω. Then,

Inf (ρ) = {s ∈ Q | ∃∞i ∈ N. ρ(i) = s}.
(The set of states occurring infinitely many times in ρ.)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 26 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I,F), where F ⊆ Q is the set of accepting states.

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence
ρ = qo,q1,q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F 6= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 27 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I,F), where F ⊆ Q is the set of accepting states.

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence
ρ = qo,q1,q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F 6= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 27 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I,F), where F ⊆ Q is the set of accepting states.

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence
ρ = qo,q1,q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F 6= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 27 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automata

Nondeterministic Büchi Automaton
A = (Q,Σ, δ, I,F), where F ⊆ Q is the set of accepting states.

A run ρ of A on ω-word α = a0,a1,a2, ... is an infinite sequence
ρ = qo,q1,q2, . . . s.t. q0 ∈ I and qi

ai−→ qi+1 for 0 ≤ i .
The run ρ is accepting if

Inf (ρ) ∩ F 6= ∅.
The language accepted by A
L(A) = {α ∈ Σω | A has an accepting run on α}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 27 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely
many a’s.
With F = {s2} the automaton recognizes words with infinitely
many b’s.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 28 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely
many a’s.
With F = {s2} the automaton recognizes words with infinitely
many b’s.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 28 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example

Let Σ = {a,b}.
Let a Deterministic Büchi Automaton (DBA) A1 be

With F = {s1} the automaton recognizes words with infinitely
many a’s.
With F = {s2} the automaton recognizes words with infinitely
many b’s.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 28 / 97

Infinite-Word Automata Automata on Infinite Words

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A2 be

With F = {s2}, the automaton A2 recognizes words with finitely many
a. Thus, L(A2) = L(A1).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 29 / 97

Infinite-Word Automata Automata on Infinite Words

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 30 / 97

Infinite-Word Automata Automata on Infinite Words

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 30 / 97

Infinite-Word Automata Automata on Infinite Words

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 30 / 97

Infinite-Word Automata Automata on Infinite Words

Deterministic vs. Nondeterministic Büchi Automata

Theorem
DBAs are strictly less powerful than NBAs.

The subset construction does not work:
let DA2 be

DA2 is not equivalent to A2
(e.g., it recognizes (b.a)ω)
There is no DBA equivalent to A2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 30 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties

Theorem (union, intersection)
For the NBAs A1,A2 we can construct

the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 31 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties

Theorem (union, intersection)
For the NBAs A1,A2 we can construct

the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 31 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties

Theorem (union, intersection)
For the NBAs A1,A2 we can construct

the NBA A s.t. L(A) = L(A1) ∪ L(A2). |A| = |A1|+ |A2|
the NBA A s.t. L(A) = L(A1) ∩ L(A2). |A| ≤ |A1| · |A2| · 2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 31 / 97

Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 32 / 97

Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 32 / 97

Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 32 / 97

Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 32 / 97

Infinite-Word Automata Automata on Infinite Words

Union of two NBAs

Definition: union of NBAs
Let A1 = (Q1,Σ1, δ1, I1,F1), A2 = (Q2,Σ2, δ2, I2,F2).
Then A = A1 ∪ A2 = (Q,Σ, δ, I,F) is defined as follows

Q := Q1 ∪Q2, I := I1 ∪ I2, F := F1 ∪ F2

R(s, s′) :=

{
R1(s, s′) if s ∈ Q1
R2(s, s′) if s ∈ Q2

Theorem
L(A) = L(A1) ∪ L(A2)

|A| = |A1|+ |A2|

Note
A is an automaton which just runs nondeterministically either A1 or A2
(same construction as with ordinary automata)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 32 / 97

Infinite-Word Automata Automata on Infinite Words

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F), where

Q = Q1 ×Q2 × {1,2}.
I = I1 × I2 × {1}.
F = F1 ×Q2 × {1}.

〈p,q,1〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and p 6∈ F1.
〈p,q,1〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and p ∈ F1.
〈p,q,2〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and q 6∈ F2.
〈p,q,2〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and q ∈ F2.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|A1 × A2| ≤ 2 · |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 33 / 97

Infinite-Word Automata Automata on Infinite Words

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let A1 = (Q1,Σ, δ1, I1,F1) and A2 = (Q2,Σ, δ2, I2,F2).
Then, A1 × A2 = (Q,Σ, δ, I,F), where

Q = Q1 ×Q2 × {1,2}.
I = I1 × I2 × {1}.
F = F1 ×Q2 × {1}.

〈p,q,1〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and p 6∈ F1.
〈p,q,1〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and p ∈ F1.
〈p,q,2〉 a−→ 〈p′,q′,2〉 iff p a−→ p′ and q a−→ q′ and q 6∈ F2.
〈p,q,2〉 a−→ 〈p′,q′,1〉 iff p a−→ p′ and q a−→ q′ and q ∈ F2.

Theorem
L(A1 × A2) = L(A1) ∩ L(A2).
|A1 × A2| ≤ 2 · |A1| · |A2|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 33 / 97

Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA,
and it points to one of the two tracks
As soon as it goes through an accepting state of the current track,
it switches to the other track
=⇒ in order to visit infinitely often a state in F (i.e., F1), it must
visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 ×Q2.
I = I1 × I2.
F = F1 ×Q2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 34 / 97

Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA,
and it points to one of the two tracks
As soon as it goes through an accepting state of the current track,
it switches to the other track
=⇒ in order to visit infinitely often a state in F (i.e., F1), it must
visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 ×Q2.
I = I1 × I2.
F = F1 ×Q2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 34 / 97

Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Intuition

The automaton remembers two tracks, one for each source NBA,
and it points to one of the two tracks
As soon as it goes through an accepting state of the current track,
it switches to the other track
=⇒ in order to visit infinitely often a state in F (i.e., F1), it must
visit infinitely often some state also in F2

Important subcase: If F2 = Q2, then
Q = Q1 ×Q2.
I = I1 × I2.
F = F1 ×Q2.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 34 / 97

Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Example

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 35 / 97

Infinite-Word Automata Automata on Infinite Words

Product of NBAs: Example

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 35 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 36 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 36 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 36 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 36 / 97

Infinite-Word Automata Automata on Infinite Words

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A1 we can construct an NBA A2 such that
L(A2) = L(A1).
|A2| = O(2|A1|·log(|A1|)).

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin
automaton

(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 36 / 97

Infinite-Word Automata Automata on Infinite Words

Generalized Büchi Automaton

Definition
A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT)
where FT = 〈F1,F2, . . . ,Fk 〉 with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi 6= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language
equivalent plain Büchi Automaton.

Intuition
Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it
moves to (i + 1)mod K mode.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 37 / 97

Infinite-Word Automata Automata on Infinite Words

Generalized Büchi Automaton

Definition
A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT)
where FT = 〈F1,F2, . . . ,Fk 〉 with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi 6= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language
equivalent plain Büchi Automaton.

Intuition
Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it
moves to (i + 1)mod K mode.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 37 / 97

Infinite-Word Automata Automata on Infinite Words

Generalized Büchi Automaton

Definition
A Generalized Büchi Automaton is a tuple A := (Q,Σ, δ, I,FT)
where FT = 〈F1,F2, . . . ,Fk 〉 with Fi ⊆ Q.
A run ρ of A is accepting if Inf (ρ) ∩ Fi 6= ∅ for each 1 ≤ i ≤ k .

Theorem
For every Generalized Büchi Automaton we can construct a language
equivalent plain Büchi Automaton.

Intuition
Let Q′ = Q × {1, . . . ,K}.
The automaton remains in phase i till it visits a state in Fi . Then, it
moves to (i + 1)mod K mode.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 37 / 97

Infinite-Word Automata Automata on Infinite Words

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let A def
= (Q,Σ, δ, I,FT) a generalized BA s.f. FT def

= {F1, ...,FK}.
Then a language-equivalent BA A′ def

= (Q′,Σ, δ′, I′,F ′) is built as follows
Q′ = Q1 × {1, ...,K}.
I′ = I × {1}.
F ′ = F1 × {1}.
δ′ is s.t., for every i ∈ [1, ...,K]:

〈p, i〉 a−→ 〈q, i〉 iff p a−→ q ∈ δ and p 6∈ Fi .

〈p, i〉 a−→ 〈q, (i + 1)mod K 〉 iff p a−→ q ∈ δ and p ∈ Fi .

Theorem
L(A′) = L(A).
|A′| ≤ K · |A|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 38 / 97

Infinite-Word Automata Automata on Infinite Words

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let A def
= (Q,Σ, δ, I,FT) a generalized BA s.f. FT def

= {F1, ...,FK}.
Then a language-equivalent BA A′ def

= (Q′,Σ, δ′, I′,F ′) is built as follows
Q′ = Q1 × {1, ...,K}.
I′ = I × {1}.
F ′ = F1 × {1}.
δ′ is s.t., for every i ∈ [1, ...,K]:

〈p, i〉 a−→ 〈q, i〉 iff p a−→ q ∈ δ and p 6∈ Fi .

〈p, i〉 a−→ 〈q, (i + 1)mod K 〉 iff p a−→ q ∈ δ and p ∈ Fi .

Theorem
L(A′) = L(A).
|A′| ≤ K · |A|.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 38 / 97

Infinite-Word Automata Automata on Infinite Words

Degeneralizing a Büchi automaton: Example

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 39 / 97

Infinite-Word Automata Automata on Infinite Words

Degeneralizing a Büchi automaton: Example

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 39 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-regular Expressions

Definition
A language is called ω-regular if it has the form ∪n

i=1 Ui .(Vi)
ω where

Ui ,Vi are regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 40 / 97

Infinite-Word Automata Automata on Infinite Words

Omega-regular Expressions

Definition
A language is called ω-regular if it has the form ∪n

i=1 Ui .(Vi)
ω where

Ui ,Vi are regular languages.

Theorem
A language L is ω-regular iff it is NBA-recognizable.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 40 / 97

Infinite-Word Automata Emptiness Checking

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 41 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA emptiness checking

Equivalent of finding a final state reachable from an initial state.
It can be solved with a DFS or a BFS.
A DFS finds a counterexample on the fly (it is stored in the stack
of the procedure).
A BFS finds a final state reachable with a shortest
counterexample, but it requires a further backward search to
reproduce the path.
Complexity: O(n).
Hereafter, assume w.l.o.g. that there is only one initial state.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 42 / 97

Infinite-Word Automata Emptiness Checking

NFA Emptiness Checking (cont.)

// returns True if empty language, false otherwise

Bool DFS(NFA A) {
stack S=I;
Hashtable T=I;
while S!=∅ {

v=top(S);
if v∈F return False
if ∃w s.t. w∈ δ(v) && T(w)==0 {

hash(w,T);
push(w,S);

} else
pop(S);

}
return True;

}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 43 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

NBA emptiness checking

Equivalent of finding an accepting cycle reachable from an initial
state.
A naive algorithm:

(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f , a second DFS finds if it can reach f

(i.e., if there exists a loop)
Complexity: O(n2).

SCC-based algorithm:
(i) Tarjan’s algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from

an initial state.
Complexity: O(n).
Drawbacks: it stores too much information and does not find
directly a counterexample.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 44 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS algorithm

Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis,
CAV’90]

two Hash tables:
T1: reachable states
T2: states reachable from a reachable final state

two stacks:
S1: current branch of states reachable
S2: current branch of states reachable from final state f

two nested DFS’s:
DFS1 looks for a path from an initial state to a cycle starting from an
accepting state
DFS2 looks for a cycle starting from an accepting state

It stops as soon as it finds a counterexample.
The counterexample is given by the stack of DFS2 (an accepting
cycle) preceded by the stack of DFS1 (a path from an initial state to
the cycle).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 45 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS - First DFS
// returns True if empty language, false otherwise
Bool DFS1(NBA A) {

stack S1=I; stack S2=∅;
Hashtable T1=I; Hashtable T2=∅;
while S1!=∅ {

v=top(S1);
if ∃w s.t. w∈ δ(v) && T1(w)==0 {

hash(w,T1);
push(w,S1);

} else {
pop(S1);
if (v∈F && !DFS2(v,S2,T2,A))

return False;
} }
return True;

}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 46 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS - Second DFS

Bool DFS2(state f, stack & S, Hashtable & T, NBA A) {
hash(f,T);
S = {f}
while S!=∅ {

v=top(S);
if f∈ δ(v) return False;
if ∃w s.t. w∈ δ(v) && T(w)==0 {

hash(w);
push(w);

} else pop(S);
}
return True;

}

Remark: T passed by reference, is not reset at each call of DFS2 !

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 47 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

???

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double nested DFS: intuition

DFS1 invokes DFS2 on each f1, ..., fn only after popping it (postorder):
suppose DFS2 is invoked on fj before than on fi

=⇒ fi not reachable from (any state s which is reachable from) fj
If during DFS2(fi , ...) it is encountered a state S which has already
been explored by DFS2(fj , ...) for some fj ,

can we reach fi from S?
No, because fi is not reachable from fj !

=⇒ it is safe to backtrack.

fj

fi

S

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 48 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

4

��

4
3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

4
3

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

4

��

4
3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

4
3

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

4

��

3
��

4

����

3
2

��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

6

����

6
5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

����

6
5

����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

2

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

6

��

6

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

Infinite-Word Automata Emptiness Checking

Double Nested DFS: example

1

��

1
6

��

6

��

2
5

��

5

����

6
����

5

��

4

��

3
��

4

����

3
��

2
1

��

1T1
S2S1

3

4 2

1 6

5

T2

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 49 / 97

The Automata-Theoretic Approach to Model Checking

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 50 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 51 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= Aψ (CTL∗)

⇐⇒ M |= ψ (LTL)
⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths
that satisfy ¬ψ (do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and
not in ψ.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 52 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= Aψ (CTL∗)

⇐⇒ M |= ψ (LTL)
⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths
that satisfy ¬ψ (do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and
not in ψ.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 52 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= Aψ (CTL∗)

⇐⇒ M |= ψ (LTL)
⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(AM) ∩ L(A¬ψ) = ∅
⇐⇒ L(AM × A¬ψ) = ∅
AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
A¬ψ is a Büchi Automaton which represents all and only the paths
that satisfy ¬ψ (do not satisfy ψ)

=⇒ AM × A¬ψ represents all and only the paths appearing in M and
not in ψ.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 52 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL M.C. (dual version)

Let M be a Kripke model and ϕ def
= ¬ψ be an LTL formula

M |= Eϕ
⇐⇒ M 6|= A¬ϕ
⇐⇒ ...
⇐⇒ L(AM × Aϕ) 6= ∅

AM is a Büchi Automaton equivalent to M (which represents all
and only the executions of M)
Aϕ is a Büchi Automaton which represents all and only the paths
that satisfy ϕ

=⇒ AM × Aϕ represents all and only the paths appearing in both AM
and Aϕ.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 53 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 54 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 54 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 54 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 54 / 97

The Automata-Theoretic Approach to Model Checking Automata-Theoretic LTL Model Checking

Automata-Theoretic LTL Model Checking

Four steps:
(i) Compute AM

(ii) Compute Aϕ
(iii) Compute the product AM × Aϕ
(iv) Check the emptiness of L(AM × Aϕ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 54 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 55 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing an NBA AM from a Kripke Structure M

Transform a Kripke structure M = 〈S,S0,R,L,AP〉 into an NBA
AM = 〈Q,Σ, δ, I,F 〉 s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: F := Q = S ∪ {init}
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 56 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Kripke Structure M:
Example

{p,q}

{p,q}

{p,q}

Kripke Structure Buechi Automaton

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

=⇒ Substantially, add one initial state, move labels from states to
incoming edges, set all states as accepting states

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 57 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels
of a Kripke Structure. Also graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other
propositions are false;
in a Büchi Automaton, it means that p is true and all other
propositions are irrelevant (“don’t care”), i.e. they can be either
true or false.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 58 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels
of a Kripke Structure. Also graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other
propositions are false;
in a Büchi Automaton, it means that p is true and all other
propositions are irrelevant (“don’t care”), i.e. they can be either
true or false.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 58 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Labels on Kripke Structures and BA’s - Remark

Note that the labels of a Büchi Automaton are different from the labels
of a Kripke Structure. Also graphically, they are interpreted differently:

p

in a Kripke Structure, it means that p is true and all other
propositions are false;
in a Büchi Automaton, it means that p is true and all other
propositions are irrelevant (“don’t care”), i.e. they can be either
true or false.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 58 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a NBA AM from a Fair Kripke Structure M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 59 / 97

The Automata-Theoretic Approach to Model Checking From Kripke Structures to Büchi Automata

Computing a (Generalized) BA AM from a Fair Kripke
Structure M: Example

{p,q}

{p,q}

{p,q}

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

Generalized Buechi AutomatonFair Kripke Structure

=⇒ Substantially, add one initial state, move labels from states to
incoming edges, set fair states as accepting states

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 60 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 61 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Translation problem

Problem
Given an LTL formula φ, find a Büchi Automaton that accepts the same
language of φ.

It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).
We will translate an LTL formula into a Generalized Büchi
Automata (GBA).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 62 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Translation problem

Problem
Given an LTL formula φ, find a Büchi Automaton that accepts the same
language of φ.

It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).
We will translate an LTL formula into a Generalized Büchi
Automata (GBA).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 62 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Translation problem

Problem
Given an LTL formula φ, find a Büchi Automaton that accepts the same
language of φ.

It is a fundamental problem in LTL model checking (in other words,
every model checking algorithm that verifies the correctness of an
LTL formula translates it in some sort of finite-state machine).
We will translate an LTL formula into a Generalized Büchi
Automata (GBA).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 62 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Exponential Translation

From ϕ, create a fair Kripke model, like in chapter 7.
Convert it into a (Generalized) Büchi Automaton

Remark

Inefficient: up to 2EL(ϕ) states.
Kripke models require total truth assignments to state variables

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 63 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Exponential Translation

From ϕ, create a fair Kripke model, like in chapter 7.
Convert it into a (Generalized) Büchi Automaton

Remark

Inefficient: up to 2EL(ϕ) states.
Kripke models require total truth assignments to state variables

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 63 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Example

Xϕ Xϕ Xϕ

−Xϕ Xϕ −Xϕ

−Xϕ −Xϕ

3

4
5 6

7 8

21 qp
ϕ

−p −qp

−p q −q−p qp

p −q −p −q

ϕ

ϕ ϕ−ϕ

−ϕ−ϕ

q
ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 64 / 97

The Automata-Theoretic Approach to Model Checking From LTL Formulas to Büchi Automata: generalities

Example

Xϕ Xϕ Xϕ

−Xϕ Xϕ −Xϕ

−Xϕ −Xϕ

p q

p q

p q

p q

−pq −pq

−pq
−pq

−pq

−pq

−pq

−pq

−p−q

−p−q
−p−q

−p−q

p qp q

p q

p q

p −q

p −q

p −q

p −q

p −q

p −q

p −q −p−q

−p−q

−p−q

−p−q

p q

−pq

−pq
p −q

p q

3

4
5 6

7 8

21

ϕ

−qp

q

−p −q

ϕ

ϕ ϕ−ϕ

−ϕ−ϕ

ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 65 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 66 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

LTL Negative Normal Form (NNF)

Every LTL formula ϕ can be written into an equivalent formula ϕ′

using only the operators ∧, ∨, X, U, R on propositional literals.
Done by pushing negations down to literal level:
¬(ϕ1 ∨ ϕ2) =⇒ (¬ϕ1 ∧ ¬ϕ2)
¬(ϕ1 ∧ ϕ2) =⇒ (¬ϕ1 ∨ ¬ϕ2)
¬Xϕ1 =⇒ X¬ϕ1
¬(ϕ1Uϕ2) =⇒ (¬ϕ1R¬ϕ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ the resulting formula is expressed in terms of ∨, ∧, X , U, R
and literals (Negative Normal Form, NNF).

encoding linear if a DAG representation is used

In the construction of Aϕ we now assume that ϕ is in NNF.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 67 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

LTL Negative Normal Form (NNF)

Every LTL formula ϕ can be written into an equivalent formula ϕ′

using only the operators ∧, ∨, X, U, R on propositional literals.
Done by pushing negations down to literal level:
¬(ϕ1 ∨ ϕ2) =⇒ (¬ϕ1 ∧ ¬ϕ2)
¬(ϕ1 ∧ ϕ2) =⇒ (¬ϕ1 ∨ ¬ϕ2)
¬Xϕ1 =⇒ X¬ϕ1
¬(ϕ1Uϕ2) =⇒ (¬ϕ1R¬ϕ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ the resulting formula is expressed in terms of ∨, ∧, X , U, R
and literals (Negative Normal Form, NNF).

encoding linear if a DAG representation is used

In the construction of Aϕ we now assume that ϕ is in NNF.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 67 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

LTL Negative Normal Form (NNF)

Every LTL formula ϕ can be written into an equivalent formula ϕ′

using only the operators ∧, ∨, X, U, R on propositional literals.
Done by pushing negations down to literal level:
¬(ϕ1 ∨ ϕ2) =⇒ (¬ϕ1 ∧ ¬ϕ2)
¬(ϕ1 ∧ ϕ2) =⇒ (¬ϕ1 ∨ ¬ϕ2)
¬Xϕ1 =⇒ X¬ϕ1
¬(ϕ1Uϕ2) =⇒ (¬ϕ1R¬ϕ2)
¬(φ1Rφ2) =⇒ (¬φ1U¬φ2)

=⇒ the resulting formula is expressed in terms of ∨, ∧, X , U, R
and literals (Negative Normal Form, NNF).

encoding linear if a DAG representation is used

In the construction of Aϕ we now assume that ϕ is in NNF.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 67 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition)

Apply recursively the following steps:

Step 1: Apply the tableau expansion rules to ϕ
ψ1Uψ2 =⇒ ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2))
ψ1Rψ2 =⇒ ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2))
until we get a Boolean combination of elementary subformulas of ϕ
(An elementary formula is a proposition or a X-formula.)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 68 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Tableaux rules: a quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 69 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 70 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 70 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 70 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 70 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then
push the conjunctions inside the next:

ϕ =⇒
∨

i

(
∧

j

lij ∧
∧
k

Xψik) =⇒
∨

i

(
∧

j

lij ∧ X
∧
k

ψik).

Each disjunct (

labels︷︸︸︷∧
j

lij ∧

next part︷ ︸︸ ︷
X
∧
k

ψik) represents a state:

the conjunction of literals
∧

j lij represents a set of labels in Σ
(e.g., if Vars(ϕ) = {p,q, r}, p ∧ ¬q represents the two labels
{p,¬q, r} and {p,¬q,¬r})
X
∧

k ψik represents the next part of the state
(obbligations for the successors)

N.B., if no next part occurs, X> is implicitly assumed

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 70 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 71 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 71 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 71 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 71 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

Step 3: For every state Si represented by (
∧

j lij ∧ X

ϕi︷ ︸︸ ︷∧
k

ψik)

label the incoming edges of Si with
∧

j lij
mark that the state Si satisfies ϕ

apply recursively steps 1-2-3 to ϕi
def
=
∧

k ψik ,
rewrite ϕi into

∨
i′(
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k)

from each disjunct (
∧

j l ′i′ j ∧ X
∧

k ψ
′
i′k) generate a new state Sii′ (if

not already present) and label it as satisfying ϕi
def
=
∧

k ψik

draw an edge from Si to all states Sii ′ which satisfy
∧

k ψik

(if no next part occurs, X> is implicitly assumed, so that an edge
to a “true” node is drawn)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 71 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

ϕ ??

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∨
i (
∧

j lij ∧ X
∧

k ψik) !

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∧
j l1j [

∧
k ψ1k]

[
∧

k ψ2k]

∧
j l2j

[
∧

k ψik]

∧
j lij

(
∧

j l1j ∧ X
∧

k ψ1k)

(
∧

j l2j ∧ X
∧

k ψ2k)

(
∧

j lij ∧ X
∧

k ψik)

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∧
k ψik ?

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ
′
ik]

[
∧

k ψ
′
2k]

[
∧

k ψ
′
1k]∨

i ′ (
∧

j l ′i ′j ∧ X
∧

k ψ
′
i ′k)

.
.

.
.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

∧
j l1j

∧
j l2j

∧
j lij

.
.

.
.

.
.

.
.

∨
i (
∧

j lij ∧ X
∧

k ψik) !

∧
j l ′1′j

∧
j l ′2′j

∧
j l ′i ′j [

∧
k ψ
′
ik]

[
∧

k ψ
′
2k]

[
∧

k ψ
′
1k]

.
.

.
.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 72 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aϕ (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the
automata graph has been built, then apply the following:

Step 4: For every ψiUϕi , for every state qj , mark qj with Fi iff
(ψiUϕi) /∈ qj or ϕi ∈ qj
(If there is no U-subformulas, then mark all states with F1

—i.e., FT def
= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 73 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - State

Henceforth, a state is represented by a tuple s := 〈λ, χ, σ〉 where:
λ is the set of labels
χ is the next part, i.e. the set of X -formulas satisfied by s
σ is the set of the subformulas of φ satisfied by s (necessary for the
fairness definition)

Given a set of LTL formulas Ψ
def
= {ψ1, ..., ψk}, we define

Cover(Ψ)
def
= Expand(Ψ, 〈∅, ∅, ∅〉) to be the set of initial states of

the Buchi automaton representing
∧

j ψj .
Combines steps 1. and 2. of previous slides
Expand() defined recursively as follows

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 74 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Given a set of formulas Φ to expand and a state s, we define the set of
states Expand(Φ, s) recursively as follows:

if Φ = ∅, Expand(Φ, s) = {s}
if ⊥ ∈ Φ, Expand(Φ, s) = ∅
if > ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{>}, 〈λ, χ, σ ∪ {>}〉)
if l ∈ Φ and s = 〈λ, χ, σ〉, l propositional literal
Expand(Φ, s) = Expand(Φ\{l}, 〈λ ∪ {l}, χ, σ ∪ {l}〉)
(add l to the labels of s and to set of satisfied formulas)
if Xψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) = Expand(Φ\{Xψ}, 〈λ, χ ∪ {ψ}, σ ∪ {Xψ}〉)
(add ψ to the next part of s and Xψ to set of satisfied formulas)
if ψ1 ∧ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =
Expand(Φ ∪ {ψ1, ψ2}\{ψ1 ∧ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∧ ψ2}〉)
(process both ψ1 and ψ2 and add ψ1 ∧ ψ2 to σ)
...Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 75 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

if ψ1 ∨ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)

∪Expand(Φ ∪ {ψ2}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)
(split s in two copies, process ψ2 on the first, ψ1 on the second,
add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1Uψ2}, 〈λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}〉)
∪Expand(Φ ∪ {ψ2}\{ψ1Uψ2}, 〈λ, χ, σ ∪ {ψ1Uψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ2}\{ψ1Rψ2}, 〈λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}〉)
∪Expand(Φ ∪ {ψ1, ψ2}\{ψ1Rψ2}, 〈λ, χ, σ ∪ {ψ1Rψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Rψ2 to σ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 76 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

if ψ1 ∨ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)

∪Expand(Φ ∪ {ψ2}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)
(split s in two copies, process ψ2 on the first, ψ1 on the second,
add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1Uψ2}, 〈λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}〉)
∪Expand(Φ ∪ {ψ2}\{ψ1Uψ2}, 〈λ, χ, σ ∪ {ψ1Uψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ2}\{ψ1Rψ2}, 〈λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}〉)
∪Expand(Φ ∪ {ψ1, ψ2}\{ψ1Rψ2}, 〈λ, χ, σ ∪ {ψ1Rψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Rψ2 to σ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 76 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

if ψ1 ∨ ψ2 ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)

∪Expand(Φ ∪ {ψ2}\{ψ1 ∨ ψ2}, 〈λ, χ, σ ∪ {ψ1 ∨ ψ2}〉)
(split s in two copies, process ψ2 on the first, ψ1 on the second,
add ψ1 ∨ ψ2 to σ)
if ψ1Uψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ1}\{ψ1Uψ2}, 〈λ, χ ∪ {ψ1Uψ2}, σ ∪ {ψ1Uψ2}〉)
∪Expand(Φ ∪ {ψ2}\{ψ1Uψ2}, 〈λ, χ, σ ∪ {ψ1Uψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Uψ2 to σ)
if ψ1Rψ2 ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ ∪ {ψ2}\{ψ1Rψ2}, 〈λ, χ ∪ {ψ1Rψ2}, σ ∪ {ψ1Rψ2}〉)
∪Expand(Φ ∪ {ψ1, ψ2}\{ψ1Rψ2}, 〈λ, χ, σ ∪ {ψ1Rψ2}〉)

(split s in two copies and process ψ1 on the first, ψ2 on the
second, add ψ1Rψ2 to σ)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 76 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= >Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ\{Fψ}, 〈λ, χ ∪ {Fψ}, σ ∪ {Fψ}〉)
∪Expand(Φ ∪ {ψ}\{Fψ}, 〈λ, χ, σ ∪ {Fψ}〉)

if Gψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ}\{Gψ}, 〈λ, χ ∪ {Gψ}, σ ∪ {Gψ}〉)

Note: Expand(Φ ∪ {⊥, ψ}\{Gψ}, ...) = ∅

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 77 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= >Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ\{Fψ}, 〈λ, χ ∪ {Fψ}, σ ∪ {Fψ}〉)
∪Expand(Φ ∪ {ψ}\{Fψ}, 〈λ, χ, σ ∪ {Fψ}〉)

if Gψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ}\{Gψ}, 〈λ, χ ∪ {Gψ}, σ ∪ {Gψ}〉)

Note: Expand(Φ ∪ {⊥, ψ}\{Gψ}, ...) = ∅

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 77 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

On-the-fly Construction of Aφ - Expand

Two relevant subcases: Fψ def
= >Uψ and Gψ def

= ⊥Rψ
if Fψ ∈ Φ and s = 〈λ, χ, σ〉,

Expand(Φ, s) =Expand(Φ\{Fψ}, 〈λ, χ ∪ {Fψ}, σ ∪ {Fψ}〉)
∪Expand(Φ ∪ {ψ}\{Fψ}, 〈λ, χ, σ ∪ {Fψ}〉)

if Gψ ∈ Φ and s = 〈λ, χ, σ〉,
Expand(Φ, s) =Expand(Φ ∪ {ψ}\{Gψ}, 〈λ, χ ∪ {Gψ}, σ ∪ {Gψ}〉)

Note: Expand(Φ ∪ {⊥, ψ}\{Gψ}, ...) = ∅

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 77 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Definition of Aφ

Given a set of LTL formulas Ψ, we define
Cover(Ψ)

def
= Expand(Ψ, 〈∅, ∅, ∅〉).

For an LTL formula φ, we construct a Generalized NBA
Aφ = (Q,Q0,Σ,L,T ,FT) as follows:

Σ = 2vars(φ)

Q is the smallest set such that
Cover({φ}) ⊆ Q
if 〈λ, χ, σ〉 ∈ Q, then Cover(χ) ∈ Q

Q0 = Cover({φ}).
L(〈λ, χ, σ〉) = {a ∈ Σ|a |= λ}
(s, s′) ∈ T iff, s = 〈λ, χ, σ〉 and s′ ∈ Cover(χ)

FT = 〈F1,F2, ...,Fk 〉 where, for all (ψiUφi) occurring positively in φ,
Fi = {〈λ, χ, σ〉 ∈ Q | (ψiUφi) /∈ σ or φi ∈ σ}.
(If there is no U-subformulas, then FT def

= {Q}).

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 78 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = FGp

Cover({FGp})
= Expand({FGp}, 〈∅, ∅, ∅〉)
= Expand(∅, 〈∅, {FGp}, {FGp}〉) ∪ Expand({Gp}, 〈∅, ∅, {FGp}〉)
= {〈∅, {FGp}, {FGp}〉} ∪ Expand({p}, 〈∅, {Gp}, {FGp,Gp}〉)
= {〈∅, {FGp}, {FGp}〉} ∪ Expand(∅, 〈{p}, {Gp}, {FGp,Gp,p}〉)
= {〈∅, {FGp}, {FGp}〉, 〈{p}, {Gp}, {FGp,Gp,p}〉}

Cover({Gp}) = Expand({Gp}, 〈∅, ∅, ∅〉)
= Expand({p}, 〈∅, {Gp}, {Gp}〉)
= Expand(∅, 〈{p}, {Gp}, {Gp,p}〉)
= {〈{p}, {Gp}, {Gp,p}〉}

Optimization:
merge 〈{p}, {Gp}, {FGp,Gp,p}〉 and 〈{p}, {Gp}, {Gp,p}〉

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 79 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = FGp

Call s1 = 〈∅, {FGp}, {FGp}〉, s2 = 〈{p}, {Gp}, {FGp,Gp,p}〉
Q = {s1, s2}
Q0 = {s1, s2}.
T : s1 → {s1, s2},

s2 → {s2}
FT = 〈F1〉 where F1 = {s2}.

[XGp] [XFGp]
p

p

p
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 80 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = pUq

Cover({pUq})
= Expand({pUq}, 〈∅, ∅, ∅〉)
= Expand({p}, 〈∅, {pUq}, {pUq}〉) ∪ Expand({q}, 〈∅, ∅, {pUq}〉)
= Expand(∅, 〈{p}, {pUq}, {pUq,p}〉) ∪ Expand(∅, 〈{q}, ∅, {pUq,q}〉)
= {〈{p}, {pUq}, {pUq,p}〉} ∪ {〈{q}, {>}, {pUq,q}〉}

Cover({>}) = {〈∅, {>}, {>}〉}

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 81 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = pUq

Let s1 =def 〈{p}, {pUq}, {pUq,p}〉, s2 =def 〈{q}, {>}, {pUq,q}〉,
s3 =def 〈∅, {>}, {>}〉.
Q = {s1, s2, s3},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s3}
s3 → {s3}

FT = 〈F1〉 where F1 = {s2, s3}.

[XT] [XT] [X(pUq)]

q

q
p

p

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 82 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: φ = GFp

Cover({GFp})
= E({GFp}, 〈∅, ∅, ∅〉)
= E({Fp}, 〈∅, {GFp}, {GFp}〉)
= E({}, 〈∅, {GFp,Fp}, {GFp,Fp}〉) ∪ E({p}, 〈{}, {GFp}, {GFp,Fp}〉)
= E({}, 〈∅, {GFp,Fp}, {GFp,Fp}〉) ∪ E({}, 〈{p}, {GFp}, {GFp,Fp,p}〉)
= {〈∅, {GFp,Fp}, {GFp,Fp}〉} ∪ {〈{p}, {GFp}, {GFp,Fp,p}〉}

Note: GFp ∧ Fp ⇐⇒ GFp, s.t. Cover(GFp ∧ Fp) = Cover(GFp)

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 83 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Example: GFp

Let s1 =def 〈{p}, {GFp}, {GFp,Fp,p}〉,
s2 =def 〈∅, {GFp,Fp}, {GFp,Fp}〉,
Q = {s1, s2},
Q0 = {s1, s2},
T : s1 → {s1, s2},

s2 → {s1, s2}
FT = 〈F1〉 where F1 = {s1}.

[XGFp] [XGFp]

p
p

p

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 84 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

NBAs of disjunctions of formulas

Remark

If ϕ def
= (ϕ1 ∨ ϕ2) and Aϕ1 ,Aϕ2 are NBAs encoding ϕ1 and ϕ2 resp., then

L(ϕ) = L(ϕ1) ∪ L(ϕ2), so that Aϕ
def
= Aϕ1 ∪ Aϕ2 is an NBA encoding ϕ

Aϕ non necessarily the smallest/best NBA encoding ϕ

Example

Let ϕ def
= (GFp → GFq), i.e., ϕ ≡ (FG¬p ∨GFq).

Then AFG¬p ∪ AGFq encodes ϕ:

¬p

¬p q

q

q

¬p

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 85 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

NBAs of disjunctions of formulas

Remark

If ϕ def
= (ϕ1 ∨ ϕ2) and Aϕ1 ,Aϕ2 are NBAs encoding ϕ1 and ϕ2 resp., then

L(ϕ) = L(ϕ1) ∪ L(ϕ2), so that Aϕ
def
= Aϕ1 ∪ Aϕ2 is an NBA encoding ϕ

Aϕ non necessarily the smallest/best NBA encoding ϕ

Example

Let ϕ def
= (GFp → GFq), i.e., ϕ ≡ (FG¬p ∨GFq).

Then AFG¬p ∪ AGFq encodes ϕ:

¬p

¬p q

q

q

¬p

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 85 / 97

The Automata-Theoretic Approach to Model Checking On-the-fly construction of Buc̈hi Automata from LTL

Suggested Exercises:

Find an NBA encoding:

p
Fp
Gp
pRq
(GFp ∧GFq)→ Gr

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 86 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 87 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute AM : |AM | = O(|M|)

(ii) Compute Aϕ: |Aϕ| = O(2|ϕ|)
(iii) Compute the product AM × Aϕ:
|AM × Aϕ| = |AM | · |Aϕ| = O(|M| · 2|ϕ|)

(iv) Check the emptiness of L(AM × Aϕ): O(|AM × Aϕ|) = O(|M| · 2|ϕ|)
=⇒ the complexity of LTL M.C. grows linearly wrt. the size of the
model M and exponentially wrt. the size of the property ϕ

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 88 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ Some tools (e.g., Spin) allow specifications to be expressed
directly as NBAs
=⇒ complementation of NBA important!
for every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm
performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 89 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ Some tools (e.g., Spin) allow specifications to be expressed
directly as NBAs
=⇒ complementation of NBA important!
for every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm
performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 89 / 97

The Automata-Theoretic Approach to Model Checking Complexity

Final Remarks

Büchi automata are in general more expressive than LTL!
=⇒ Some tools (e.g., Spin) allow specifications to be expressed
directly as NBAs
=⇒ complementation of NBA important!
for every LTL formula, there are many possible equivalent NBAs
=⇒ lots of research for finding “the best” conversion algorithm
performing the product and checking emptiness very relevant
=⇒ lots of techniques developed (e.g., partial order reduction)
=⇒ lots on ongoing research

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 89 / 97

Exercises

Outline

1 Background: Finite-Word Automata
Language Containment
Automata on Finite Words

2 Infinite-Word Automata
Automata on Infinite Words
Emptiness Checking

3 The Automata-Theoretic Approach to Model Checking
Automata-Theoretic LTL Model Checking
From Kripke Structures to Büchi Automata
From LTL Formulas to Büchi Automata: generalities
On-the-fly construction of Buc̈hi Automata from LTL
Complexity

4 Exercises

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 90 / 97

Exercises

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting
states, a, b are labels):

s1

s2

t1 t2

BA1 BA2

a

a

a

a
b b b

b

Write the product Büchi automaton BA1× BA2.
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 91 / 97

Exercises

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting
states, a, b are labels):

s1

s2

t1 t2

BA1 BA2

a

a

a

a
b b b

b

Write the product Büchi automaton BA1× BA2.
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 91 / 97

Exercises

Ex: Product of Büchi automata

[Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 92 / 97

Exercises

Ex: Product of Büchi automata

[Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 92 / 97

Exercises

Ex: Product of Büchi automata

[Solution: The product is:

s1

s2

t2

t2

s1

s2

t1

t1

s1

s2

t2

t2

s1

s2

t1

t1

track 1 track 2

a

b

a

b b

a

a

a

aa
b

bb
b

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 92 / 97

Exercises

Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton A def
= 〈Q,Σ, δ, I,FT 〉, with two sets of

accepting states FT def
= {F1,F2} s.t. F1 def

= {s2},F2 def
= {s1}:

s1

s2

F2

F1

a

a

b b

convert it into an equivalent plain Büchi automaton.

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 93 / 97

Exercises

Ex: De-generalization of Büchi Automata

[Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 94 / 97

Exercises

Ex: De-generalization of Büchi Automata

[Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 94 / 97

Exercises

Ex: De-generalization of Büchi Automata

[Solution: The result is:

s21

s11 s12

s22

a

b bb

a

a

b

a

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 94 / 97

Exercises

Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Buchi automaton.

F1

p,q
s0

¬p,¬q
s1

¬p,q
s2

p,¬q
s3

[Solution:

s1 s2

s3

p,¬q

p,¬q

p,q

p,q p,q

¬p,¬q

¬p,¬q ¬p,q

¬p,¬q

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 95 / 97

Exercises

Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Buchi automaton.

F1

p,q
s0

¬p,¬q
s1

¬p,q
s2

p,¬q
s3 [Solution:

s1 s2

s3

p,¬q

p,¬q

p,q

p,q p,q

¬p,¬q

¬p,¬q ¬p,q

¬p,¬q

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 95 / 97

Exercises

Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Buchi automaton.

F1

p,q
s0

¬p,¬q
s1

¬p,q
s2

p,¬q
s3 [Solution:

s1 s2

s3

p,¬q

p,¬q

p,q

p,q p,q

¬p,¬q

¬p,¬q ¬p,q

¬p,¬q

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 95 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form

[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form

[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]
(b) find the initial states of a corresponding Buchi automaton (for each state, define

the labels of the incoming arcs and the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form
[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form
[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)

[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form
[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)
[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Construction of Büchi Automata

Consider the LTL formula ϕ def
= (G¬p)→ (pUq).

(a) rewrite ϕ into Negative Normal Form
[Solution: (G¬p)→ (pUq) =⇒ (¬G¬p) ∨ (pUq) =⇒ (Fp) ∨ (pUq)]

(b) find the initial states of a corresponding Buchi automaton (for each state, define
the labels of the incoming arcs and the “next” section.)
[Solution: Applying tableaux rules we obtain: p ∨ XFp ∨ q ∨ (p ∧ X(pUq)), which
is already in disjunctive normal form. This correspond to the following four initial
states:

[>] [Fp] [>] [pUq]

p q p

]
Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 96 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq.

[Solution: false]

(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq.

[Solution: false]
(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]

(b) BA accepts all and only the paths verifying FGq.

[Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq.

[Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]

(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them.

[Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]

(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them.

[Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

Exercises

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting
states):

q

q

q

Say which of the following sentences are true and which are false.

(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them. [Solution: false]

Sebastiani and Tonetta Ch. 08: Automata-theoretic LTL Model Checking Monday 18th May, 2020 97 / 97

	Background: Finite-Word Automata
	Language Containment
	Automata on Finite Words

	Infinite-Word Automata
	Automata on Infinite Words
	Emptiness Checking

	The Automata-Theoretic Approach to Model Checking
	Automata-Theoretic LTL Model Checking
	From Kripke Structures to Büchi Automata
	From LTL Formulas to Büchi Automata: generalities
	On-the-fly construction of Buchi Automata from LTL
	Complexity

	Exercises

