Introduction to Formal Methods Chapter 08: Automata-theoretic LTL Model Checking

Roberto Sebastiani and Stefano Tonetta

> DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/
> Teaching assistant: Enrico Magnago - enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday $18^{\text {th }}$ May, 2020, 14:49

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

Outline

(1) Background: Finite-Word Automata

- Language Containment
- Automata on Finite Words
(2) Infinite-Word Automata
- Automata on Infinite Words
- Emptiness Checking
(3) The Automata-Theoretic Approach to Model Checking
- Automata-Theoretic LTL Model Checking
- From Kripke Structures to Büchi Automata
- From LTL Formulas to Büchi Automata: generalities
- On-the-fly construction of Buc̈hi Automata from LTL
- Complexity
(4) Exercises

System's computations

- The behaviors (computations) of a system can be seen as sequences of assignments to propositions.

```
MODULE main
VAR done: Boolean;
ASSIGN
init(done):=0;
next(done):= case
        !done: {0,1};
    done: done;
esac;
```


- Since the state space is finite, the set of computations can be represented by a finite automaton.

Correct computations

- Some computations are correct and others are not acceptable.
- We can build an automaton for the set of all acceptable computations.
- Example: eventually, done will be true forever (FGdone).

Language Containment Problem

- Solution to the verification problem
\Longrightarrow Check if language of the system automaton is contained in the language accepted by the property automaton.
- The language containment problem is the problem of deciding if a language is a subset of another language.

$$
\mathcal{L}\left(A_{1}\right) \subseteq \mathcal{L}\left(A_{2}\right) \Longleftrightarrow \mathcal{L}\left(A_{1}\right) \cap \overline{\mathcal{L}\left(A_{2}\right)}=\{ \}
$$

- In order to solve the language containment problem, we need to know:
(i) how to complement an automaton,
(ii) how to intersect two automata,
(iii) how to check the language emptiness of an automaton.

Finite Word Languages

- An Alphabet Σ is a collection of symbols (letters). E.g. $\Sigma=\{a, b\}$.
- A finite word is a finite sequence of letters. (E.g. aabb.) The set of all finite words is denoted by Σ^{*}.
- A language U is a set of words, i.e. $U \subseteq \Sigma^{*}$. Example: Words over $\Sigma=\{a, b\}$ with equal number of a 's and b 's. (E.g. aabb or abba.)
- Language recognition problem: determine whether a word belongs to a language.
- Automata are computational devices able to solve language recognition problems.

Finite-State Automata

- Basic model of computational systems with finite memory.
- Widely applicable
- Embedded System Controllers.

Languages: Ester-el, Lustre, Verilog.

- Synchronous Circuits.
- Regular Expression Pattern Matching

Grep, Lex, Emacs.

- Protocols

Network Protocols
Architecture: Bus, Cache Coherence, Telephony,...

Notation

$a, b \in \Sigma$ finite alphabet.
$u, v, w \in \Sigma^{*}$ finite words.
ϵ empty word.
u.v concatenation.
$u^{i}=u . u$. . u repeated i-times.
$U, V \subseteq \Sigma^{*}$ Finite word languages.

Finite-State Automata Definition

```
Definition
A Nondeterministic Finite-State Automaton (NFA) is (Q, \Sigma, \delta, I, F) s.t.
Q Finite set of states.
\Sigma is a finite alphabet
I\subseteqQ set of initial states.
F\subseteqQ set of final states.
\delta\subseteqQ\times\Sigma\timesQ transition relation (edges).
```

We use $q \xrightarrow{a} q^{\prime}$ to denote $\left(q, a, q^{\prime}\right) \in \delta$.

Definition

A Deterministic Finite-State Automaton (DFA) is a NFA s.t.:
$\delta: Q \times \Sigma \rightarrow Q$ is a total function
Single initial state $I=\left\{q_{0}\right\}$.

Regular Languages

- A run of NFA A on $u=a_{0}, a_{1}, \ldots, a_{n-1}$ is a finite sequence of states $q_{0}, q_{1}, \ldots, q_{n}$ s.t. $q_{0} \in I$ and $q_{i} \xrightarrow{a_{i}} q_{i+1}$ for $0 \leq i<n$.
- An accepting run is one where $q_{n} \in F$.
- The language accepted by A is $\mathcal{L}(A)=\left\{u \in \Sigma^{*} \mid A\right.$ has an accepting run on $\left.u\right\}$
- The languages accepted by a NFA are called regular languages.

Finite-State Automata: examples

- The DFA A_{1} over $\Sigma=\{a, b\}$:

Recognizes words which do not end in b.

- The NFA A_{2} over $\Sigma=\{a, b\}$:

Recognizes words which end in b.

Determinisation

Theorem (determinisation)

Given a NFA A we can construct a DFA A^{\prime} s.t. $\mathcal{L}(A)=\mathcal{L}\left(A^{\prime}\right)$. Size: $\left|A^{\prime}\right|=2^{O(|A|)}$.

- Each state of A^{\prime} corresponds to a set $\left\{s_{1}, \ldots, s_{j}\right\}$ of states in A $\left(Q^{\prime} \subseteq 2^{Q}\right)$, with the intended meaning that:
- A^{\prime} is in the state $\left\{s_{1}, . ., s_{j}\right\}$ if A is in one of the states s_{1}, \ldots, s_{j}
- The (unique) initial state is $I^{\prime}=\operatorname{def}\left\{s_{i} \mid s_{i} \in I\right\}$
- The deterministic transition relation $\delta^{\prime}: 2^{Q} \times \Sigma \longmapsto 2^{Q}$ is
- $\{s\} \xrightarrow{a}\left\{s_{i} \mid s \xrightarrow{a} s_{i}\right\}$
- $\left\{s_{1}, \ldots, s_{j}, \ldots, s_{n}\right\} \xrightarrow{a} \bigcup_{j=1}^{n}\left\{s_{i} \mid s_{j} \xrightarrow{a} s_{i}\right\}$
- The set of final states F^{\prime} is such that $\left\{s_{1}, \ldots, s_{n}\right\} \in F^{\prime}$ iff $s_{i} \in F$ for some $i \in\{1, \ldots, n\}$

Determinisation [cont.]

- NFA A_{2} : Words which end in b.

- A_{2} can be determinised into the automaton $D A_{2}$ below. (\#States = 2^{Q}.)

Closure Properties

Theorem (Boolean closure)

Given NFA A_{1}, A_{2} over Σ we can construct NFA A over Σ s.t.

- $\mathcal{L}(A)=\overline{\mathcal{L}\left(A_{1}\right)}$ (Complement). $|A|=2^{O\left(\left|A_{1}\right|\right)}$.
- $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$ (union). $|A|=\left|A_{1}\right|+\left|A_{2}\right|$.
- $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$ (intersection). $|A| \leq\left|A_{1}\right| \cdot\left|A_{2}\right|$.

Complementation of a NFA

A NFA $A=(Q, \Sigma, \delta, I, F)$ is complemented by:

- determinising it into a DFA $A^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, I^{\prime}, F^{\prime}\right)$
- complementing it: $\overline{A^{\prime}}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, I^{\prime}, \overline{F^{\prime}}\right)$
- $\left|\overline{A^{\prime}}\right|=\left|A^{\prime}\right|=2^{O(|A|)}$

Union of two NFAs

Definition: union of NFAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$. Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$
- $R\left(s, s^{\prime}\right):=\left\{\begin{array}{l}R_{1}\left(s, s^{\prime}\right) \text { if } s \in Q_{1} \\ R_{2}\left(s, s^{\prime}\right) \text { if } s \in Q_{2}\end{array}\right.$

Theorem

- $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$
- $|A|=\left|A_{1}\right|+\left|A_{2}\right|$

Note

A is an automaton which just runs nondeterministically either A_{1} or A_{2}

Synchronous Product Construction

Definition: product of NFAs
Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, l_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, l_{2}, F_{2}\right)$.
Then, $A_{1} \times A_{2}=(Q, \Sigma, \delta, I, F)$ where

- $Q=Q_{1} \times Q_{2}$,
- $I=I_{1} \times I_{2}$,
- $F=F_{1} \times F_{2}$,
- $\langle p, q\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$.

Theorem

```
L}(\mp@subsup{A}{1}{}\times\mp@subsup{A}{2}{})=\mathcal{L}(\mp@subsup{A}{1}{})\cap\mathcal{L}(\mp@subsup{A}{2}{})
|(\mp@subsup{A}{1}{}\times\mp@subsup{A}{2}{})|\leq|\mp@subsup{A}{1}{}|\cdot|\mp@subsup{A}{2}{}|.
```


Example

- A_{1} recognizes words with an even number of b 's.
- A_{2} recognizes words with a number of a's multiple of 3 .
- The Product Automaton $A_{1} \times A_{2}$ with $F=\left\{s_{0}, t_{0}\right\}$.

Regular Expressions

- Syntax: $\emptyset|\epsilon| a\left|r e g_{1} \cdot r e g_{2}\right| r e g_{1}\left|r e g_{2}\right| r e g^{*}$.
- Every regular expression reg denotes a language $\mathcal{L}(r e g)$.
- Example: $a^{*} .(b \mid b b) . a^{*}$. The words with either $1 b$ or 2 consecutive b's.

Theorem

For every regular expression reg we can construct a language equivalent NFA of size $O(|r e g|)$.

Theorem

For every DFA A we can construct a language equivalent regular expression reg(A).

Infinite Word Languages

Modeling infinite computations of reactive systems.

- An ω-word α over Σ is an infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.
The set of all infinite words is denoted by Σ^{ω}.

- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$.

Example All words over $\{a, b\}$ with infinitely many a's.
Notation:
omega words $\alpha, \beta, \gamma \in \Sigma^{\omega}$.
omega-languages $L, L_{1} \subseteq \Sigma^{\omega}$
For $u \in \Sigma^{+}$, let $u^{\omega}=$ u.u.u...

Omega-Automata

- We consider automaton running over infinite words.

- Let $\alpha=$ aabbbb....

There are several (infinite) possible runs.
Run $\rho_{1}=s_{1}, s_{1}, s_{1}, s_{1}, s_{2}, s_{2} \ldots$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1} \ldots$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):

Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^{\omega}$. Then,

$$
\operatorname{Inf}(\rho)=\left\{s \in Q \mid \exists^{\infty} i \in \mathbb{N} . \rho(i)=s\right\}
$$

(The set of states occurring infinitely many times in ρ.)

Büchi Automata

Nondeterministic Büchi Automaton

$A=(Q, \Sigma, \delta, l, F)$, where $F \subseteq Q$ is the set of accepting states.

- A run ρ of A on ω-word $\alpha=a_{0}, a_{1}, a_{2}, \ldots$ is an infinite sequence

$$
\rho=q_{0}, q_{1}, q_{2}, \ldots \text { s.t. } q_{0} \in I \text { and } q_{i} \xrightarrow{a_{i}} q_{i+1} \text { for } 0 \leq i
$$

- The run ρ is accepting if

$$
\operatorname{Inf}(\rho) \cap F \neq \emptyset .
$$

- The language accepted by A

$$
\mathcal{L}(A)=\left\{\alpha \in \Sigma^{\omega} \mid \quad A \text { has an accepting run on } \alpha\right\}
$$

Büchi Automaton: Example

Let $\Sigma=\{a, b\}$.
Let a Deterministic Büchi Automaton (DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognizes words with infinitely many a's.
- With $F=\left\{s_{2}\right\}$ the automaton recognizes words with infinitely many b's.

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A_{2} be

With $F=\left\{s_{2}\right\}$, the automaton A_{2} recognizes words with finitely many
a. Thus, $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$.

Deterministic vs. Nondeterministic Büchi Automata

Theorem

DBAs are strictly less powerful than NBAs.
The subset construction does not work: let $D A_{2}$ be

- $D A_{2}$ is not equivalent to A_{2} (e.g., it recognizes (b.a) ${ }^{\omega}$)

Closure Properties

Theorem (union, intersection)
For the NBAs A_{1}, A_{2} we can construct

- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right) .|A|=\left|A_{1}\right|+\left|A_{2}\right|$
- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right) .|A| \leq\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot 2$.

Union of two NBAs

Definition: union of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$
- $R\left(s, s^{\prime}\right):=\left\{\begin{array}{l}R_{1}\left(s, s^{\prime}\right) \text { if } s \in Q_{1} \\ R_{2}\left(s, s^{\prime}\right) \text { if } s \in Q_{2}\end{array}\right.$

Theorem

- $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$
- $|A|=\left|A_{1}\right|+\left|A_{2}\right|$

Note

A is an automaton which just runs nondeterministically either A_{1} or A_{2} (same construction as with ordinary automata)

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, l_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, l_{2}, F_{2}\right)$.
Then, $A_{1} \times A_{2}=(Q, \Sigma, \delta, I, F)$, where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \times\{1,2\} . \\
& I=I_{1} \times I_{2} \times\{1\} . \\
& F=F_{1} \times Q_{2} \times\{1\} .
\end{aligned}
$$

$\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \notin F_{1}$. $\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \in F_{1}$. $\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \notin F_{2}$. $\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \in F_{2}$.

Theorem

- $\mathcal{L}\left(A_{1} \times A_{2}\right)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$.
- $\left|A_{1} \times A_{2}\right| \leq 2 \cdot\left|A_{1}\right| \cdot\left|A_{2}\right|$.

Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track
\Longrightarrow in order to visit infinitely often a state in F (i.e., F_{1}), it must visit infinitely often some state also in F_{2}
- Important subcase: If $F_{2}=Q_{2}$, then

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& I=I_{1} \times I_{2} \\
& F=F_{1} \times Q_{2}
\end{aligned}
$$

Product of NBAs: Example

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$. $\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Generalized Büchi Automaton

Definition

- A Generalized Büchi Automaton is a tuple $A:=(Q, \Sigma, \delta, I, F T)$ where $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ with $F_{i} \subseteq Q$.
- A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem

For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi Automaton.

Intuition

Let $Q^{\prime}=Q \times\{1, \ldots, K\}$.
The automaton remains in phase i till it visits a state in F_{i}. Then, it moves to $(i+1) \bmod K$ mode.

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let $A \stackrel{\text { def }}{=}(Q, \Sigma, \delta, I, F T)$ a generalized BA s.f. $F T \stackrel{\text { def }}{=}\left\{F_{1}, \ldots, F_{K}\right\}$.
Then a language-equivalent $\mathrm{BA} A^{\prime} \stackrel{\text { def }}{=}\left(Q^{\prime}, \Sigma, \delta^{\prime}, l^{\prime}, F^{\prime}\right)$ is built as follows $Q^{\prime}=Q_{1} \times\{1, \ldots, K\}$.
$I^{\prime}=I \times\{1\}$.
$F^{\prime}=F_{1} \times\{1\}$.
δ^{\prime} is s.t., for every $i \in[1, \ldots, K]$:

$$
\begin{array}{ll}
\langle p, i\rangle \xrightarrow{a}\langle q, i\rangle & \text { iff } p \xrightarrow{a} q \in \delta \text { and } p \notin F_{i} . \\
\langle p, i\rangle \xrightarrow{a}\langle q,(i+1) \bmod K\rangle & \text { iff } p \xrightarrow{a} q \in \delta \text { and } p \in F_{i} .
\end{array}
$$

Theorem

- $\mathcal{L}\left(A^{\prime}\right)=\mathcal{L}(A)$.
- $\left|A^{\prime}\right| \leq K \cdot|A|$.

Degeneralizing a Büchi automaton: Example

Omega-regular Expressions

Definition

A language is called ω-regular if it has the form $\cup_{i=1}^{n} U_{i} .\left(V_{i}\right)^{\omega}$ where U_{i}, V_{i} are regular languages.

Theorem

A language L is ω-regular iff it is NBA-recognizable.

NFA emptiness checking

- Equivalent of finding a final state reachable from an initial state.
- It can be solved with a DFS or a BFS.
- A DFS finds a counterexample on the fly (it is stored in the stack of the procedure).
- A BFS finds a final state reachable with a shortest counterexample, but it requires a further backward search to reproduce the path.
- Complexity: $O(n)$.
- Hereafter, assume w.l.o.g. that there is only one initial state.

NFA Emptiness Checking (cont.)

// returns True if empty language, false otherwise

```
Bool DFS(NFA A) {
    stack S=I;
    Hashtable T=I;
    while S!=\emptyset {
        v=top(S);
        if v\inF return False
        if \existsw s.t. w\in (v) && T(w)==0 {
        hash(w,T);
        push(w,S);
        } else
        pop(S);
    }
    return True;
}
```


NBA emptiness checking

- Equivalent of finding an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f (i.e., if there exists a loop)
- Complexity: $O\left(n^{2}\right)$.
- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.
- Complexity: $O(n)$.
- Drawbacks: it stores too much information and does not find directly a counterexample.

Double Nested DFS algorithm

- Double Nested DFS [Courcoubetis, Vardi, Wolper, Yannakakis, CAV'90]
- two Hash tables:
- T1: reachable states
- T2: states reachable from a reachable final state
- two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- two nested DFS's:
- DFS1 looks for a path from an initial state to a cycle starting from an accepting state
- DFS2 looks for a cycle starting from an accepting state
- It stops as soon as it finds a counterexample.
- The counterexample is given by the stack of DFS2 (an accepting cycle) preceded by the stack of DFS1 (a path from an initial state to the cycle).

Double Nested DFS - First DFS

// returns True if empty language, false otherwise Bool DFSI (NBA A) \{
stack S1=I; stack S2=Ø;
Hashtable T1=I; Hashtable T2=Ø;
while S1!=Ø \{
$\mathrm{v}=\mathrm{top}(\mathrm{S} 1)$;
if $\exists \mathrm{w}$ s.t. $w \in \delta(\mathrm{v}) \& \& \mathrm{~T}(\mathrm{w})==0$ \{
hash(w,T1);
push(w,S1);
\} else \{
pop(S1);
if (v $\in F$ \&\& !DFS2(v,S2,T2,A))
return False;
\} \}
return True;

Double Nested DFS - Second DFS

```
Bool DFS2(state f, stack & S, Hashtable & T, NBA A) {
    hash(f,T);
    S = {f}
    while S!=\emptyset {
        v=top (S);
        if f\in\delta(v) return False;
        if \existsw s.t. w\in\delta(v) && T(w)==0 {
        hash(w);
        push(w);
        } else pop(S);
    }
    return True;
}
```

Remark: T passed by reference, is not reset at each call of DFS2!

Double nested DFS: intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during DFS2 $\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by $D F S 2\left(f_{j}, \ldots\right)$ for some f_{j},
- can we reach f_{i} from S ?
- No, because f_{i} is not reachable from f_{j} !
\Longrightarrow it is safe to backtrack.

Double Nested DFS: example

T1
S1
T2
S2

Automata-Theoretic LTL Model Checking

- Let M be a Kripke model and ψ be an LTL formula

$$
\begin{aligned}
& M \models \mathbf{A} \psi \text { (CTL*) } \\
\Longleftrightarrow & M \models \psi \quad(\text { LTL) } \\
\Longleftrightarrow & \mathcal{L}(M) \subseteq \mathcal{L}(\psi) \\
\Longleftrightarrow & \mathcal{L}(M) \cap \mathcal{L}(\psi)=\emptyset \\
\Longleftrightarrow & \mathcal{L}(M) \cap \mathcal{L}(\neg \psi)=\emptyset \\
\Longleftrightarrow & \mathcal{L}\left(A_{M}\right) \cap \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset \\
\Longleftrightarrow & \mathcal{L}\left(A_{M} \times A_{\neg \psi}\right)=\emptyset
\end{aligned}
$$

- A_{M} is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)
$\Longrightarrow A_{M} \times A_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ.

Automata-Theoretic LTL M.C. (dual version)

- Let M be a Kripke model and $\varphi \stackrel{\text { def }}{=} \neg \psi$ be an LTL formula

$$
\begin{aligned}
& M \models \mathbf{E}_{\varphi} \\
\Longleftrightarrow & M \not \models \mathbf{A} \neg \varphi \\
\Leftrightarrow & \cdots \\
\Leftrightarrow & \mathcal{L}\left(A_{M} \times A_{\varphi}\right) \neq \emptyset
\end{aligned}
$$

- A_{M} is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- A_{φ} is a Büchi Automaton which represents all and only the paths that satisfy φ
$\Longrightarrow A_{M} \times A_{\varphi}$ represents all and only the paths appearing in both A_{M} and A_{φ}.

Automata-Theoretic LTL Model Checking

Four steps:

(i) Compute A_{M}
(ii) Compute A_{φ}
(iii) Compute the product $A_{M} \times A_{\varphi}$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke structure $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, l, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: I:=\{init\}
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:

$$
\begin{aligned}
\delta: & q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{a} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\left|A_{M}\right|=|M|+1$

Computing a NBA A_{M} from a Kripke Structure M : Example

Kripke Structure

Buechi Automaton
\Longrightarrow Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are irrelevant ("don't care"), i.e. they can be either true or false.

Computing a NBA A_{M} from a Fair Kripke Structure M

- Transforming a fair K.S. $M=\left\langle S, S_{0}, R, L, A P, F T\right\rangle$, $F T=\left\{F_{1}, \ldots, F_{n}\right\}$, into a generalized NBA $A_{M}=\left\langle Q, \Sigma, \delta, I, F T^{\prime}\right\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: I:= \{init $\}$
- Accepting States: $F T^{\prime}:=F T$
- Transitions:

$$
\begin{aligned}
\delta: & q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{a} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\left|A_{M}\right|=|M|+1$

Computing a (Generalized) BA A_{M} from a Fair Kripke Structure M: Example

Fair Kripke Structure

Generalized Buechi Automaton
\Longrightarrow Substantially, add one initial state, move labels from states to incoming edges, set fair states as accepting states

Translation problem

Problem

Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

- It is a fundamental problem in LTL model checking (in other words, every model checking algorithm that verifies the correctness of an LTL formula translates it in some sort of finite-state machine).
- We will translate an LTL formula into a Generalized Büchi Automata (GBA).

Exponential Translation

- From φ, create a fair Kripke model, like in chapter 7.
- Convert it into a (Generalized) Büchi Automaton

Remark

Inefficient: up to $2^{E L(\varphi)}$ states.

- Kripke models require total truth assignments to state variables

Example

Example

LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ^{\prime} using only the operators $\wedge, \vee, \mathbf{X}, \mathbf{U}, \mathbf{R}$ on propositional literals.
- Done by pushing negations down to literal level:

$$
\begin{aligned}
& \neg\left(\varphi_{1} \vee \varphi_{2}\right) \Longrightarrow\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
& \neg\left(\varphi_{1} \wedge \varphi_{2}\right) \Longrightarrow\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
&\left.\neg \mathbf{X} \varphi_{1}\right) \\
& \neg\left(\varphi_{1} \mathbf{U}_{\varphi_{2}}\right)\left.\Longrightarrow \mathbf{X}_{1}\right) \\
& \neg\left(\varphi_{1} \mathbf{R} \phi_{2}\right) \Longrightarrow\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right) \\
& \Rightarrow\left(\phi_{1} \mathbf{U} \neg \phi_{2}\right)
\end{aligned}
$$

\Longrightarrow the resulting formula is expressed in terms of $\vee, \wedge, X, \mathbf{U}, \mathbf{R}$ and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used
- In the construction of A_{φ} we now assume that φ is in NNF.

On-the-fly Construction of A_{φ} (Intuition)

Apply recursively the following steps:
Step 1: Apply the tableau expansion rules to φ
$\psi_{1} \mathbf{U} \psi_{2} \Longrightarrow \psi_{2} \vee\left(\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right)$
$\psi_{1} \mathbf{R} \psi_{2} \Longrightarrow \psi_{2} \wedge\left(\psi_{1} \vee \mathbf{X}\left(\psi_{1} \mathbf{R} \psi_{2}\right)\right)$
until we get a Boolean combination of elementary subformulas of φ (An elementary formula is a proposition or a \mathbf{X}-formula.)

Tableaux rules: a quote

"After all... tomorrow is another day." [Scarlett O'Hara, "Gone with the Wind"]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} l_{i j} \wedge \bigwedge_{k} \mathbf{X} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right) .
$$

- Each disjunct $(\overbrace{\bigwedge_{j} l_{i j}}^{\text {labels }} \wedge \overbrace{\mathbf{X} \bigwedge_{k} \psi_{i k}}^{\text {next part }})$ represents a state:
- the conjunction of literals $\bigwedge_{j} l_{i j}$ represents a set of labels in Σ (e.g., if $\operatorname{Vars}(\varphi)=\{p, q, r\}, p \wedge \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\mathbf{X} \wedge_{k} \psi_{i k}$ represents the next part of the state (obbligations for the successors)
- N.B., if no next part occurs, $\mathrm{X} \top$ is implicitly assumed

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{j j} \wedge \mathbf{X} \overbrace{\bigwedge_{k}} \psi_{i k})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$,
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\wedge_{j} \mu_{i j}^{\prime} \wedge \mathbf{X} \wedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$
- from each disjunct $\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$ generate a new state $S_{i i^{\prime}}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \Lambda_{k} \psi_{i k}$
- draw an edge from S_{i} to all states $S_{i i^{\prime}}$ which satisfy $\Lambda_{k} \psi_{i k}$
- (if no next part occurs, $\mathbf{X} T$ is implicitly assumed, so that an edge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

φ ??

On-the-fly Construction of A_{φ} (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the automata graph has been built, then apply the following:

Step 4: For every $\psi_{i} \mathbf{U}_{\varphi_{i}}$, for every state q_{j}, mark q_{j} with F_{i} iff
$\left(\psi_{i} \mathbf{U}_{i}\right) \notin q_{j}$ or $\varphi_{i} \in q_{j}$
(If there is no U -subformulas, then mark all states with F_{1}
-i.e., $F T \stackrel{\text { def }}{=}\{Q\}$).

On-the-fly Construction of A_{ϕ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of ϕ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$ to be the set of initial states of the Buchi automaton representing $\bigwedge_{j} \psi_{j}$.
- Combines steps 1. and 2. of previous slides
- Expand() defined recursively as follows

On-the-fly Construction of A_{ϕ} - Expand

Given a set of formulas Φ to expand and a state s, we define the set of states Expand (Φ, s) recursively as follows:

- if $\Phi=\emptyset$, $\operatorname{Expand}(\Phi, s)=\{s\}$
- if $\perp \in \Phi, \operatorname{Expand}(\Phi, s)=\emptyset$
- if $T \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}(\Phi \backslash\{T\},\langle\lambda, \chi, \sigma \cup\{T\}\rangle)$
- if $I \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle, I$ propositional literal
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}(\Phi \backslash\{I\},\langle\lambda \cup\{I\}, \chi, \sigma \cup\{I\}\rangle)$
(add $/$ to the labels of s and to set of satisfied formulas)
- if $\mathbf{X} \psi \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}(\Phi \backslash\{X \psi\},\langle\lambda, \chi \cup\{\psi\}, \sigma \cup\{\mathbf{X} \psi\}\rangle)$
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)
- if $\psi_{1} \wedge \psi_{2} \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=$
Expand $\left(\Phi \cup\left\{\psi_{1}, \psi_{2}\right\} \backslash\left\{\psi_{1} \wedge \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \wedge \psi_{2}\right\}\right\rangle\right)$
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{ϕ} - Expand

- if $\psi_{1} \vee \psi_{2} \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}\left(\Phi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$ $\cup E x p a n d\left(\Phi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$
(split s in two copies, process ψ_{2} on the first, ψ_{1} on the second, add $\psi_{1} \vee \psi_{2}$ to σ)
- if $\psi_{1} \mathbf{U} \psi_{2} \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}\left(\Phi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$ $\cup \operatorname{Expand}\left(\Phi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$
(split s in two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{U} \psi_{2}$ to σ)
- if $\psi_{1} \mathbf{R} \psi_{2} \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Phi, s)=\operatorname{Expand}\left(\Phi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{R} \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}\right\rangle\right)$ \cup Expand $\left(\Phi \cup\left\{\psi_{1}, \psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{R} \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}\right\rangle\right)$
(split s in two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{R} \psi_{2}$ to σ)

On-the-fly Construction of A_{ϕ} - Expand

Two relevant subcases: $\mathbf{F} \psi \stackrel{\text { def }}{=} T \mathbf{U} \psi$ and $\mathbf{G} \psi \stackrel{\text { def }}{=} \perp \mathbf{R} \psi$

- if $\mathbf{F} \psi \in \Phi$ and $\boldsymbol{s}=\langle\lambda, \chi, \sigma\rangle$, Expand $(\Phi, s)=$ Expand $(\Phi \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi \cup\{\mathbf{F} \psi\}, \sigma \cup\{\mathbf{F} \psi\}\rangle)$ $\cup E x p a n d(\Phi \cup\{\psi\} \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi, \sigma \cup\{\mathbf{F} \psi\}\rangle)$
- if $\mathbf{G} \psi \in \Phi$ and $s=\langle\lambda, \chi, \sigma\rangle$, Expand $(\Phi, s)=$ Expand $(\Phi \cup\{\psi\} \backslash\{\mathbf{G} \psi\},\langle\lambda, \chi \cup\{\mathbf{G} \psi\}, \sigma \cup\{\mathbf{G} \psi\}\rangle)$ Note: Expand $(\Phi \cup\{\perp, \psi\} \backslash\{\mathbf{G} \psi\}, \ldots)=\emptyset$

Definition of A_{ϕ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula ϕ, we construct a Generalized NBA $A_{\phi}=\left(Q, Q_{0}, \Sigma, L, T, F T\right)$ as follows:

- $\Sigma=2^{\operatorname{vars}(\phi)}$
- Q is the smallest set such that
- Cover $(\{\phi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$
- $Q_{0}=\operatorname{Cover}(\{\phi\})$.
- $L(\langle\lambda, \chi, \sigma\rangle)=\{a \in \Sigma \mid a \models \lambda\}$
- $\left(s, s^{\prime}\right) \in T$ iff, $s=\langle\lambda, \chi, \sigma\rangle$ and $s^{\prime} \in \operatorname{Cover}(\chi)$
- $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ where, for all $\left(\psi_{i} \mathbf{U} \phi_{i}\right)$ occurring positively in ϕ, $F_{i}=\left\{\langle\lambda, \chi, \sigma\rangle \in Q \mid\left(\psi_{i} \mathbf{U} \phi_{i}\right) \notin \sigma\right.$ or $\left.\phi_{i} \in \sigma\right\}$.
(If there is no U-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Example: $\phi=$ FGp

Cover (\{FGp\})
$=\operatorname{Expand}(\{\mathbf{F G} p\},\langle\emptyset, \emptyset, \emptyset\rangle)$
$=\operatorname{Expand}(\emptyset,\langle\emptyset,\{\mathbf{F G p}\},\{\mathbf{F G p}\}\rangle) \cup \operatorname{Expand}(\{\mathbf{G} p\},\langle\emptyset, \emptyset,\{\mathbf{F G p}\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F} \mathbf{G} p\},\{\mathbf{F} \mathbf{G} p\}\rangle\} \cup \operatorname{Expand}(\{p\},\langle\emptyset,\{\mathbf{G} p\},\{\mathbf{F} \mathbf{G} p, \mathbf{G} p\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle\} \cup \operatorname{Expand}(\emptyset,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle\}$

- $\operatorname{Cover}(\{\mathbf{G} p\})=\operatorname{Expand}(\{\mathbf{G} p\},\langle\emptyset, \emptyset, \emptyset\rangle)$

$$
\begin{aligned}
& =\operatorname{Expand}(\{p\},\langle\emptyset,\{\mathbf{G} p\},\{\mathbf{G} p\}\rangle) \\
& =\operatorname{Expand}(\emptyset,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{G} p, p\}\rangle) \\
& =\{\langle\{p\},\{\mathbf{G} p\},\{\mathbf{G} p, p\}\rangle\}
\end{aligned}
$$

- Optimization:
merge $\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F} \mathbf{G} p, \mathbf{G} p, p\}\rangle$ and $\langle\{p\},\{\mathbf{G} p\},\{\mathbf{G} p, p\}\rangle$

Example: $\phi=$ FGp

- Call $s_{1}=\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle, \boldsymbol{s}_{2}=\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle$
- $Q=\left\{s_{1}, s_{2}\right\}$
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$.
- $T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$,
$s_{2} \rightarrow\left\{s_{2}\right\}$
- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{2}\right\}$.
[XGp]

Example: $\phi=p \mathbf{U} q$

$$
\begin{aligned}
& \operatorname{Cover}(\{p \mathbf{U} q\}) \\
= & \operatorname{Expand}(\{p \mathbf{U} q\},\langle\emptyset, \emptyset, \emptyset\rangle) \\
= & \operatorname{Expand}(\{p\},\langle\emptyset,\{p \mathbf{U} q\},\{p \mathbf{U} q\}\rangle) \cup \operatorname{Expand}(\{q\},\langle\emptyset, \emptyset,\{p \mathbf{U} q\}\rangle) \\
= & \operatorname{Expand}(\emptyset,\langle\{p\},\{p \mathbf{U} q\},\{p \mathbf{U} q, p\}\rangle) \cup \operatorname{Expand}(\emptyset,\langle\{q\}, \emptyset,\{p \mathbf{U} q, q \\
= & \{\langle\{p\},\{p \mathbf{U} q\},\{p \mathbf{U} q, p\}\rangle\} \cup\{\langle\{q\},\{\top\},\{p \mathbf{U} q, q\}\rangle\} \\
& \operatorname{Cover}(\{\top\})=\{\langle\emptyset,\{\top\},\{\top\}\rangle\}
\end{aligned}
$$

Example: $\phi=p \mathbf{U} q$

- Let $s_{1}=\operatorname{def}\langle\{p\},\{p \mathbf{U} q\},\{p \mathbf{U} q, p\}\rangle, s_{2}=\operatorname{def}\langle\{q\},\{T\},\{p \mathbf{U} q, q\}\rangle$, $s_{3}=\operatorname{def}\langle\emptyset,\{T\},\{T\}\rangle$.
- $Q=\left\{s_{1}, s_{2}, s_{3}\right\}$,
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$,
- $T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$,

$$
\begin{aligned}
& s_{2} \rightarrow\left\{s_{3}\right\} \\
& s_{3} \rightarrow\left\{s_{3}\right\}
\end{aligned}
$$

- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{2}, s_{3}\right\}$.

Example: $\phi=$ GFp

```
Cover(\{GFp\})
= E({GFp},\langle\emptyset,\emptyset,\emptyset\rangle)
= E({\mathbf{F}p},\langle\emptyset,{\mathbf{GFp}},{\mathbf{GF}p}\rangle)
= E({},\langle\emptyset,{\mathbf{GFp,Fp}},{\mathbf{GFp,Fp}}\rangle)\cupE({p},\langle{},{\mathbf{GFp}},{\mathbf{GFp,Fp}\rangle)})
```



```
= {\langle\emptyset,{\mathbf{GFp,Fp}},{\mathbf{GFp,Fp}}\rangle}\cup{\langle{p},{\mathbf{GFp}},{\mathbf{GFp},\mathbf{F}p,p}\rangle}
Note: \(\mathbf{G F} p \wedge \mathbf{F} p \Longleftrightarrow \mathbf{G F} p\), s.t. \(\operatorname{Cover}(\mathbf{G F} p \wedge \mathbf{F} p)=\operatorname{Cover}(\mathbf{G F} p)\)
```


Example: GFp

- Let $s_{1}=\operatorname{def}\langle\{p\},\{\mathbf{G F} p\},\{\mathbf{G F} p, \mathbf{F} p, p\}\rangle$, $s_{2}={ }_{\operatorname{def}}\langle\emptyset,\{\mathbf{G F} p, \mathbf{F} p\},\{\mathbf{G F} p, \mathbf{F} p\}\rangle$,
- $Q=\left\{s_{1}, s_{2}\right\}$,
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$,
- $T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$,

$$
s_{2} \rightarrow\left\{s_{1}, s_{2}\right\}
$$

- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{1}\right\}$.

NBAs of disjunctions of formulas

Remark

If $\varphi \stackrel{\text { def }}{=}\left(\varphi_{1} \vee \varphi_{2}\right)$ and $A_{\varphi_{1}}, \boldsymbol{A}_{\varphi_{2}}$ are NBAs encoding φ_{1} and φ_{2} resp., then $\mathcal{L}(\varphi)=\mathcal{L}\left(\varphi_{1}\right) \cup \mathcal{L}\left(\varphi_{2}\right)$, so that $\boldsymbol{A}_{\varphi} \stackrel{\text { def }}{=} \boldsymbol{A}_{\varphi_{1}} \cup \boldsymbol{A}_{\varphi_{2}}$ is an NBA encoding φ

- A_{φ} non necessarily the smallest/best NBA encoding φ

Example

Let $\varphi \stackrel{\text { def }}{=}(\mathbf{G F} p \rightarrow \mathbf{G F q})$, i.e., $\varphi \equiv(\mathbf{F G} \neg p \vee \mathbf{G F q})$.
Then $A_{\mathrm{FG}-p} \cup A_{\mathrm{GF} q}$ encodes φ :

Suggested Exercises:

- Find an NBA encoding:
- p
- Fp
- Gp
- pRq
- $(\mathbf{G F} p \wedge \mathbf{G F} q) \rightarrow \mathbf{G} r$

Automata-Theoretic LTL Model Checking: complexity

Four steps:
(i) Compute $A_{M}:\left|A_{M}\right|=O(|M|)$
(ii) Compute $A_{\varphi}:\left|A_{\varphi}\right|=O\left(2^{|\varphi|}\right)$
(iii) Compute the product $A_{M} \times A_{\varphi}$:

$$
\left|A_{M} \times A_{\varphi}\right|=\left|A_{M}\right| \cdot\left|A_{\varphi}\right|=O\left(|M| \cdot 2^{|\varphi|}\right)
$$

(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right): O\left(\left|A_{M} \times A_{\varphi}\right|\right)=O\left(|M| \cdot 2^{|\varphi|}\right)$
\Longrightarrow the complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Final Remarks

- Büchi automata are in general more expressive than LTL! \Longrightarrow Some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
\Longrightarrow complementation of NBA important!
- for every LTL formula, there are many possible equivalent NBAs \Longrightarrow lots of research for finding "the best" conversion algorithm
- performing the product and checking emptiness very relevant \Longrightarrow lots of techniques developed (e.g., partial order reduction) \Longrightarrow lots on ongoing research

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting states, a, b are labels):

Write the product Büchi automaton $B A 1 \times B A 2$.

Ex: Product of Büchi automata

[Solution: The product is:

Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton $A \stackrel{\text { def }}{=}\langle Q, \Sigma, \delta, I, F T\rangle$, with two sets of accepting states $F T \xlongequal{=}\{F 1, F 2\}$ s.t. $F 1 \stackrel{\text { def }}{=}\{s 2\}, F 2 \xlongequal{=}\{s 1\}$:

convert it into an equivalent plain Büchi automaton.

Ex: De-generalization of Büchi Automata

[Solution: The result is:

1

Ex: From Kripke models to Büchi automata

Given the following fair Kripke model M, convert it into an equivalent Buchi automaton.

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q)$.
(a) rewrite φ into Negative Normal Form
[Solution: $(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q) \Longrightarrow(\neg \mathbf{G} \neg p) \vee(p \mathbf{U} q) \Longrightarrow(F p) \vee(p \mathbf{U} q)]$
(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and the "next" section.)
[Solution: Applying tableaux rules we obtain: $p \vee \mathbf{X F p} \vee q \vee(p \wedge \mathbf{X}(p \mathbf{U}))$, which is already in disjunctive normal form. This correspond to the following four initial states:

Sebastiani and Tonetta

[T]

$[p \mathbf{d}]$

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them. [Solution: false]

