Introduction to Formal Methods Chapter 05: Symbolic CTL Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/
Teaching assistant: Enrico Magnago - enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday $18^{\text {th }}$ May, 2020, 14:48

[^0]
Outline

(1) Motivations
(2) Ordered Binary Decision Diagrams
(3) Symbolic representation of systems
(4) Symbolic CTL Model Checking
(5) A simple example

6 Symbolic CTL M.C: efficiency issues
(7) Exercises

The Main Problem of CTL M.C. State Space Explosion

- The bottleneck:
- Exhaustive analysis may require to store all the states of the Kripke structure, and to explore them one-by-one
- The state space may be exponential in the number of components and variables
(E.g., 300 Boolean vars \Longrightarrow up to $2^{300} \approx 10^{100}$ states!)
- State Space Explosion:
- too much memory required
- too much CPU time required to explore each state
- A solution: Symbolic Model Checking

Symbolic Model Checking

Symbolic representation:

- manipulation of sets of states (rather than single states);
- sets of states represented by formulae in propositional logic;
- set cardinality not directly correlated to size
- expansion of sets of transitions (rather than single transitions);

Symbolic Model Checking [cont.]

- two main symbolic techniques:
- Binary Decision Diagrams (BDDs)
- Propositional Satisfiability Checkers (SAT solvers)
- Different model checking algorithms:
- Fix-point Model Checking (historically, for CTL)
- Fix-point Model Checking for LTL (conversion to fair CTL MC)
- Bounded Model Checking (historically, for LTL)
- Invariant Checking
- ...

Ordered Binary Decision Diagrams (OBDDs) [Bryant, '85]

Canonical representation of Boolean formulas

- "If-then-else" binary direct acyclic graphs (DAGs) with one root and two leaves: 1,0 (or T, \perp; or T, F)
- Variable ordering $A_{1}, A_{2}, \ldots, A_{n}$ imposed a priori.
- Paths leading to 1 represent models Paths leading to 0 represent counter-models

Note
 Some authors call them Reduced Ordered Binary Decision Diagrams (ROBDDs)

OBDD - Examples

OBDDs of $\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)$ with different variable orderings

Ordered Decision Trees

- Ordered Decision Tree: from root to leaves, variables are encountered always in the same order
- Example: Ordered Decision tree for $\varphi=(a \wedge b) \vee(c \wedge d)$

From Ordered Decision Trees to OBDD's: reductions

- Recursive applications of the following reductions:
- share subnodes: point to the same occurrence of a subtree (via hash consing)
- remove redundancies: nodes with same left and right children can be eliminated ("if A then B else B " \Longrightarrow " B ")

Reduction: example

Recursive structure of an OBDD

Assume the variable ordering $A_{1}, A_{2}, \ldots, A_{n}$:
$\operatorname{OBDD}\left(\mathrm{T},\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=1$
$\operatorname{OBDD}\left(\perp,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=0$
$\operatorname{OBDD}\left(\varphi,\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\right)=$ if A_{1}
then $\operatorname{OBDD}\left(\varphi\left[A_{1} \mid \top\right],\left\{A_{2}, \ldots, A_{n}\right\}\right)$ else $\operatorname{OBDD}\left(\varphi\left[A_{1} \mid \perp\right],\left\{A_{2}, \ldots, A_{n}\right\}\right)$

Incrementally building an OBDD

- obdd_build $(\top,\{\ldots\}):=1$,
- obdd_build $(\perp,\{\ldots\}):=0$,
- obdd_build $\left(A_{i},\{\ldots\}\right):=\operatorname{ite}\left(A_{i}, 1,0\right)$,
- obdd_build $\left((\neg \varphi),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ $\operatorname{apply}\left(\neg\right.$, obdd_build $\left.\left(\varphi,\left\{A_{1}, \ldots, A_{n}\right\}\right)\right)$
- obdd_build $\left(\left(\varphi_{1}\right.\right.$ op $\left.\left.\varphi_{2}\right),\left\{A_{1}, \ldots, A_{n}\right\}\right):=$ reduce(apply (op, obdd_build $\left(\varphi_{1},\left\{A_{1}, \ldots, A_{n}\right\}\right), \quad o p \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$ obdd_build $\left(\varphi_{2},\left\{A_{1}, \ldots, A_{n}\right\}\right)$
))
"ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$ " is "If \boldsymbol{A}_{i} Then φ_{i}^{\top} Else φ_{i}^{\perp} "

Incrementally building an OBDD (cont.)

- apply (op, $\left.O_{i}, O_{j}\right):=\left(O_{i}\right.$ op $\left.O_{j}\right)$ if $\left(O_{i}, O_{j} \in\{1,0\}\right)$
- apply $\left(\neg, i t e\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)\right):=$ ite $\left(A_{i}, \operatorname{apply}\left(\neg, \varphi_{i}^{\top}\right), \operatorname{apply}\left(\neg, \varphi_{i}^{\perp}\right)\right)$
- apply (op, ite $\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right)$, ite $\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right):=$ if $\left(A_{i}=A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}, \varphi_{j}^{\top}\right)$, apply (op, $\left.\varphi_{i}^{\perp}, \varphi_{j}^{\perp}\right)$)
if $\left(A_{i}<A_{j}\right)$ then ite $\left(A_{i}, \quad\right.$ apply $\left(o p, \varphi_{i}^{\top}\right.$, ite $\left.\left(A_{j}, \varphi_{i}^{\top}, \varphi_{j}^{\perp}\right)\right)$, apply (op, φ_{i}^{\perp}, ite $\left.\left.\left(A_{j}, \varphi_{j}^{\top}, \varphi_{j}^{\perp}\right)\right)\right)$ if $\left(A_{i}>A_{j}\right)$ then ite $\left(A_{j}, \quad\right.$ apply $\left(o p, i t e\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\top}\right)$, apply (op, ite $\left.\left.\left(A_{i}, \varphi_{i}^{\top}, \varphi_{i}^{\perp}\right), \varphi_{j}^{\perp}\right)\right)$
$o p \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$

Incrementally building an OBDD (cont.)

- Ex: build the obdd for $A_{1} \vee A_{2}$ from those of A_{1}, A_{2} (order: A_{1}, A_{2}):

$=\operatorname{ite}\left(A_{1}, \operatorname{apply}\left(\vee, \top, \operatorname{ite}\left(A_{1}, \top, \perp\right)\right)\right.$, apply $\left.\left(\vee, \perp, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right)$
- Ex: build the obdd for $\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right)$ from those of $\left(A_{1} \vee A_{2}\right),\left(A_{1} \vee \neg A_{2}\right)$ (order: $\left.A_{1}, A_{2}\right)$:

$=\operatorname{ite}\left(A_{1}, \operatorname{apply}(\wedge, \top, \top), \operatorname{apply}\left(\wedge, \operatorname{ite}\left(A_{2}, \top, \perp\right)\right.\right.$, ite $\left.\left(A_{2}, \perp, \top\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \operatorname{apply}(\wedge, \top, \perp), \operatorname{apply}(\wedge, \perp, \top)\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \operatorname{ite}\left(A_{2}, \perp, \perp\right)\right)$
$=\operatorname{ite}\left(A_{1}, \top, \perp\right)$

OBBD incremental building - example

$$
\varphi=\left(A_{1} \vee A_{2}\right) \wedge\left(A_{1} \vee \neg A_{2}\right) \wedge\left(\neg A_{1} \vee A_{2}\right) \wedge\left(\neg A_{1} \vee \neg A_{2}\right)
$$

$$
(\mathrm{A} 1 \mathrm{v} \mathrm{~A} 2)^{\wedge}(\mathrm{A} 1 \mathrm{v}-\mathrm{A} 2) \wedge(-\mathrm{A} 1 \mathrm{v} 22)^{\wedge}(-\mathrm{A} 1 \mathrm{v}-\mathrm{A} 2)
$$

Critical choice of variable Orderings in OBDD's

$$
\left(a_{1} \leftrightarrow b_{1}\right) \wedge\left(a_{2} \leftrightarrow b_{2}\right) \wedge\left(a_{3} \leftrightarrow b_{3}\right)
$$

Linear size

OBDD's as canonical representation of Boolean formulas

- An OBDD is a canonical representation of a Boolean formula: once the variable ordering is established, equivalent formulas are represented by the same OBDD:

$$
\varphi_{1} \leftrightarrow \varphi_{2} \Longleftrightarrow O B D D\left(\varphi_{1}\right)=O B D D\left(\varphi_{2}\right)
$$

- equivalence check requires constant time! \Longrightarrow validity check requires constant time! $(\varphi \leftrightarrow \top)$ \Longrightarrow (un)satisfiability check requires constant time! ($\varphi \leftrightarrow \perp$)
- the set of the paths from the root to 1 represent all the models of the formula
- the set of the paths from the root to 0 represent all the counter-models of the formula

Exponentiality of OBDD's

- The size of OBDD's may grow exponentially wrt. the number of variables in worst-case
- Consequence of the canonicity of OBDD's (unless $P=$ co-NP)
- Example: there exist no polynomial-size OBDD representing the electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD's may be bigger than that of the final one (e.g., inconsistent formula)

Useful Operations over OBDDs

- the equivalence check between two OBDDs is simple
- are they the same OBDD? (\Longrightarrow constant time)
- the size of a Boolean composition is up to the product of the size of the operands: $\mid f$ op $g \mid=O(|f| \cdot|g|)$

$\mathbf{O}(|f| \mathbf{f g} \mid)$

Boolean quantification

Shannon's expansion:

- If v is a Boolean variable and f is a Boolean formula, then
$\exists v . f:=\left.\left.f\right|_{v=0} \vee f\right|_{v=1}$
$\forall v . f:=\left.\left.f\right|_{v=0} \wedge f\right|_{v=1}$
- v does no more occur in $\exists v . f$ and $\forall v . f$!!
- Multi-variable quantification: $\exists\left(w_{1}, \ldots, w_{n}\right) . f:=\exists w_{1} \ldots \exists w_{n} . f$
- Intuition:
- $\mu \models \exists v . f$ iff exists tvalue $\in\{T, \perp\}$ s.t. $\mu \cup\{v:=$ tvalue $\} \models f$
- $\mu \models \forall v$.f iff forall tvalue $\in\{T, \perp\}, \mu \cup\{v:=$ tvalue $\} \models f$
- Example: $\exists b, c \cdot((a \wedge b) \vee(c \wedge d))=a \vee d$

Note

Naive expansion of quantifiers to propositional logic may cause a blow-up in size of the formulae

OBDD's and Boolean quantification

- OBDD's handle quantification operations quite efficiently
- if f is a sub-OBDD labeled by variable v, then $\left.f\right|_{v=1}$ and $\left.f\right|_{v=0}$ are the "then" and "else" branches of f

\Longrightarrow lots of sharing of subformulae!

OBDD - summary

- Factorize common parts of the search tree (DAG)
- Require setting a variable ordering a priori (critical!)
- Canonical representation of a Boolean formula.
- Once built, logical operations (satisfiability, validity, equivalence) immediate.
- Represents all models and counter-models of the formula.
- Require exponential space in worst-case
- Very efficient for some practical problems (circuits, symbolic model checking).

Symbolic Representation of Kripke Structures

- Symbolic representation:
- sets of states as their characteristic function (Boolean formula)
- provide logical representation and transformations of characteristic functions
- Example:
- three state variables x_{1}, x_{2}, x_{3} :
$\{000,001,010,011\}$ represented as "first bit false": $\neg x_{1}$
- with five state variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$:
$\{00000,00001,00010,00011,00100,00101,00110,00111, \ldots$,
$01111\}$ still represented as "first bit false": $\neg x_{1}$

Kripke Structures in Propositional Logic

- Let $M=(S, I, R, L, A F)$ be a Kripke structure
- States $s \in S$ are described by means of an array V of Boolean state variables.
- A state is a truth assignment to each atomic proposition in V .
- 0100 is represented by the formula ($\left.\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x_{4}\right)$
- we call $\xi(s)$ the formula representing the state $s \in S$ (Intuition: $\xi(s)$ holds iff the system is in the state s)
- A set of states $Q \subseteq S$ can be represented by (any formula which is logically equivalent to) the formula $\xi(Q)$:

$$
\bigvee_{s \in Q} \xi(s)
$$

(Intuition: $\xi(Q)$ holds iff the system is in one of the states $s \in Q$)

- Bijection between models of $\xi(Q)$ and states in Q

Remark

- every propositional formula is a (typically very compact) representation of the set of assignments satisfying it
- Any formula equivalent to $\xi(Q)$ is a representation of Q \Longrightarrow Typically Q can be encoded by much smaller formulas than $V_{s \in Q} \xi(s)!$
- Example: $Q=\{00000,00001,00010,00011,00100,00101$, 00110, 00111,..., 01111\} represented as "first bit false": $\neg x_{1}$

$$
\left.\begin{array}{rl}
\bigvee_{s \in Q} \xi(s)= & \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee \\
& \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge \neg x_{4} \wedge x_{5}\right) \vee \\
& \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{5}\right) \vee \\
& \ldots \\
& \left(\neg x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5}\right)
\end{array}\right\} 2^{4} \text { disjuncts }
$$

Symbolic Representation of Set Operators

One-to-one correspondence between sets and Boolean operators

- Set of all the states: $\xi(S):=\top$
- Empty set: $\xi(\emptyset):=\perp$
- Union represented by disjunction:
$\xi(P \cup Q):=\xi(P) \vee \xi(Q)$
- Intersection represented by conjunction:
$\xi(P \cap Q):=\xi(P) \wedge \xi(Q)$
- Complement represented by negation:
$\xi(S / P):=\neg \xi(P)$

Symbolic Representation of Transition Relations

- The transition relation R is a set of pairs of states: $R \subseteq S \times S$
- A transition is a pair of states $\left(s, s^{\prime}\right)$
- A new vector of variables V' (the next state vector) represents the value of variables after the transition has occurred
- $\xi\left(s, s^{\prime}\right)$ defined as $\xi(s) \wedge \xi\left(s^{\prime}\right)$ (Intuition: $\xi\left(s, s^{\prime}\right)$ holds iff the system is in the state s and moves to state s^{\prime} in next step)
- The transition relation R can be (naively) represented by

$$
\bigvee_{\left(s, s^{\prime}\right) \in R} \xi\left(s, s^{\prime}\right)=\bigvee_{\left(s, s^{\prime}\right) \in R}\left(\xi(s) \wedge \xi\left(s^{\prime}\right)\right)
$$

Note

Each formula equivalent to $\xi(R)$ is a representation of R \Longrightarrow Typically R can be encoded by a much smaller formula than $\bigvee_{\left(s, s^{\prime}\right) \in R} \xi(s) \wedge \xi\left(s^{\prime}\right)!$

Example: a simple counter

MODULE main
VAR
v0
v1
: boolean;
1 : boolean;
out : 0..3;

ASSIGN

$$
\begin{array}{ll}
\text { init }(v 0) & :=0 ; \\
\text { next }(v 0) & :=!v 0 ; \\
\text { init }(v 1) & :=0 ; \\
\text { next }(v 1) & :=(v 0 \text { xor v1); } \\
\text { out }:=\text { toint }(v 0)+2 * t o i n t(v 1) ;
\end{array}
$$

Example: a simple counter [cont.]

$$
\begin{aligned}
\xi(R)= & \left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right) \\
\vee_{\left(s, s^{\prime}\right) \in R} \xi(s) \wedge \xi\left(s^{\prime}\right)= & \left(\neg v_{1} \wedge \neg v_{0} \wedge \neg v_{1}^{\prime} \wedge v_{0}^{\prime}\right) \vee \\
& \left(\neg v_{1} \wedge v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge \neg v_{0} \wedge v_{1}^{\prime} \wedge v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge v_{0} \wedge \neg v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right)
\end{aligned}
$$

Pre-Image

- (Backward) pre-image of a set:

Evaluate one-shot all transitions ending in the states of the set

- Set theoretic view:

Prelmage $(P, R):=\left\{s \mid\right.$ for some $\left.s^{\prime} \in P,\left(s, s^{\prime}\right) \in R\right\}$

- Logical view: $\xi(\operatorname{Prelmage}(P, R)):=\exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$
- μ over V is s.t $\mu \models \exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$ iff, for some μ^{\prime} over V^{\prime}, we have: $\mu \cup \mu^{\prime} \models\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$, i.e., $\mu^{\prime} \models \xi(P)\left[V^{\prime}\right]$ and $\left.\mu \cup \mu^{\prime} \models \xi(R)\left[V, V^{\prime}\right]\right)$
- Intuition: $\mu \Longleftrightarrow \boldsymbol{s}, \mu^{\prime} \Longleftrightarrow \boldsymbol{s}^{\prime}, \mu \cup \mu^{\prime} \Longleftrightarrow\left\langle\boldsymbol{s}, \boldsymbol{s}^{\prime}\right\rangle$

Example: simple counter

$$
\begin{aligned}
& \xi(R)=\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \oplus v_{1}\right) \\
& \xi(P):=\left(v_{0} \leftrightarrow v_{1}\right)(\text { i.e., } P=\{00,11\})
\end{aligned}
$$

$\xi($ Prelmage $(P, R))$
$\exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$
$\exists v_{0}^{\prime} v_{1}^{\prime} \cdot\left(\left(v_{0}^{\prime} \leftrightarrow v_{1}^{\prime}\right) \wedge\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right)\right)$

$v_{1} \quad$ (i.e., $\left.\{10,11\}\right)$

Pre-Image [cont.]

Forward Image

- Forward image of a set:

Evaluate one-shot all transitions from the states of the set

- Set theoretic view:

$$
\operatorname{Image}(P, R):=\left\{s^{\prime} \mid \text { for some } s \in P,\left(s, s^{\prime}\right) \in R\right\}
$$

- Logical Characterization:

$$
\xi(\operatorname{Image}(P, R)):=\exists V .\left(\xi(P)[V] \wedge \xi(R)\left[V, V^{\prime}\right]\right)
$$

Example: simple counter

$$
\begin{aligned}
& \xi(R)=\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right) \\
& \xi(P):=\left(v_{0} \leftrightarrow v_{1}\right)\text { (i.e., } P=\{00,11\}) \\
& \xi(\operatorname{Image}(P, R))=\exists V .\left(\xi(P)[V] \wedge \xi(R)\left[V, V^{\prime}\right]\right) \\
&=\exists V .\left(\left(v_{0} \leftrightarrow v_{1}\right) \wedge\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right)\right) \\
&=\cdots \\
&=\neg v_{1}^{\prime} \quad(\text { i.e., }\{00,01\})
\end{aligned}
$$

Forward Image [cont.]

Application of the Transition Relation

- Image and Prelmage of a set of states S computed by means of quantified Boolean formulae
- The whole set of transitions can be fired (either forward or backward) in one logical operation
- The symbolic computation of Prelmage and Image provide the primitives for symbolic search of the state space of FSM's

Symbolic CTL model checking

- Problem: $M \models \varphi$?,
- $M=\langle S, I, R, L, A P\rangle$ being a Kripke structure and
- φ being a CTL formula
- Solution: represent I and R as Boolean formulas $\xi(I), \xi(R)$ and encode them as OBDDs, and
- Apply fix-point CTL M.C. algorithm:
- using OBDDs to represent sets of states and relations,
- using OBDD operations to handle set operations
- using OBDD quantification technique to compute Prelmages

General Schema

Assume φ written in terms of \neg, \wedge, EX, EU, EG

- A general M.C. algorithm (fix-point):
(i) represent I and R as Boolean formulas $\xi(I), \xi(R)$
(ii) for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\xi\left(\left[\varphi_{i}\right]\right)$
(iii) Check if $\xi(I) \rightarrow \xi([\varphi])$

Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up

- $\xi\left(\left[\varphi_{i}\right]\right)$ computed directly, without computing [φ_{i}] explicitly!!!
- Boolean operators handled directly by OBDDs
- next temporal operators EX: handled by symbolic Prelmage computation
- other temporal operators EG, EU: handled by fix-point symbolic computation

Symbolic Denotation of a CTL formula $\varphi: \xi([\varphi])$

$\xi([\varphi]):=\xi(\{s \in S: M, s \models \varphi\})$

```
\(\xi([f a / s e])=\perp\)
\(\xi(\) [true \()=\mathrm{T}\)
\(\xi([p])=p\)
\(\xi\left(\left[\neg \varphi_{1}\right]\right) \quad=\neg \xi\left(\left[\varphi_{1}\right]\right.\)
\(\xi\left(\left[\varphi_{1} \wedge \varphi_{2}\right]\right)=\xi\left(\left[\varphi_{1}\right]\right) \wedge \xi\left(\left[\varphi_{2}\right]\right)\)
\(\xi([\mathbf{E X} \varphi])=\exists V^{\prime} .\left(\xi([\varphi])\left[V^{\prime}\right] \wedge \xi(R)\left[V^{\prime}, V^{\prime}\right]\right)\)
\(\xi([\mathbf{E G} \beta])=\nu Z .(\xi([\beta]) \wedge \xi([\mathbf{E X Z}]))\)
\(\xi\left(\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]\right)=\mu Z .\left(\xi\left(\left[\beta_{2}\right]\right) \vee\left(\xi\left(\left[\beta_{1}\right]\right) \wedge \xi([\mathbf{E X Z}])\right)\right.\)
```

Notation: if X_{1} and X_{2} are OBDDs and op is a Boolean operator, we write " X_{1} op X_{2} " for "reduce(apply (op, $\left.X_{1}, X_{2}\right)$)"

General M.C. Procedure

OBDD Check(CTL_formula β) \{
if (In_OBDD_Hash(β))
return OBDD_Get_From_Hash(β);
case β of
true:
false:
$\neg \beta_{1}$:
$\beta_{1} \wedge \beta_{2}$:
EX β_{1} :
EG β_{1} :
$\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$: return $\operatorname{Check} _\operatorname{EU}\left(\operatorname{Check}\left(\beta_{1}\right)\right.$) $\left.\operatorname{Check}\left(\beta_{2}\right)\right)$;
return obdd_true;
return obdd_false;
return $\neg \operatorname{Check}\left(\beta_{1}\right)$;
return $\left(\operatorname{Check}\left(\beta_{1}\right) \wedge \operatorname{Check}\left(\beta_{2}\right)\right)$;
return Prelmage(Check $\left(\beta_{1}\right)$);
return Check_EG(Check(β_{1}));

Prelmage

OBDD Prelmage(OBDD $X)$ \{ return $\exists V^{\prime} .\left(X\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$;

Check_EG

OBDD Check_EG(OBDD X) \{

$$
Y^{\prime}:=X ; j:=1 ;
$$

repeat

$$
Y:=Y^{\prime} ; j:=j+1 ;
$$

$$
\left.Y^{\prime}:=Y \wedge \text { Prelmage }(Y)\right) ;
$$

until ($Y^{\prime} \leftrightarrow Y$);
return Y;
\}

Check_EU

OBDD Check_EU(OBDD $\left.X_{1}, X_{2}\right)\{$

$$
Y^{\prime}:=X_{2} ; j:=1
$$

repeat
$Y:=Y^{\prime} ; j:=j+1 ;$
$Y^{\prime}:=Y \vee\left(X_{1} \wedge \operatorname{Prelmage}(Y)\right) ;$
until $\left(Y^{\prime} \leftrightarrow Y\right)$;
return Y;
\}

CTL Symbolic Model Checking - Summary

- Based on fixed point CTL M.C. algorithms
- Kripke structure encoded as Boolean formulas (OBDDs)
- All operations handled as (quantified) Boolean operations
- Avoids building the state graph explicitly
- reduces dramatically the state explosion problem \Longrightarrow problems of up to 10^{120} states handled!!

A simple example

MODULE main
VAR

```
b0 : boolean;
b1 : boolean;
```


ASSIGN

```
init(b0) := 0;
next(b0) := case
```

 b0 : 1;
 ! b0 : \(\{0,1\}\);
 esac;
init(b1) : = 0;
next (b1) := case
b1 : 1;
! b1 : $\{0,1\}$;
esac;

A simple example [cont.]

- N Boolean variables $b 0, b 1, \ldots$
- Initially, all variables set to 0
- Each variable can pass from 0 to 1, but not vice-versa
- 2^{N} states, all reachable
- (Simplified) model of a student career behaviour.

A simple example: FSM

A simple example: $O B D D(\xi(R))$

A simple example: states vs. OBDD nodes [NuSMV.2]

A simple example: reaching K bits true

- Property $\mathrm{EF}(b 0+b 1+\ldots+b(N-1) \geq K)(K \leq N)$ (it may be reached a state in which K bits are true)
- E.g.: "it is reachable a state where K exams are passed"

A simple example: FSM

A simple example: $O B D D(\xi(\varphi))$

A simple example: states vs. OBDD nodes [NuSMV.2]

Roberto Sebastiani
Ch. 05: Symbolic CTL Model Checking
Monday $18^{\text {th }}$ May, 2020

Back to OBDDs: Efficiency Issues

OBDD packages provides efficient basis for Symbolic Model Checking:

- unique representant for each OBDD via hash tables
- complement-based representation of negation
- memoizing partial computations
- garbage collection mechanisms
- variable reordering algorithms, dynamic activation
- specialized algorithms for relational products for Image/Prelmage computations

Symbolic Model Checkers

- Most hardware design companies have their own Symbolic Model Checker(s)
- Intel, IBM, Motorola, Siemens, ST, Cadence, ...
- very advanced tools
- proprietary technolgy!
- On the academic side
- CMU SMV [McMillan]
- VIS [Berkeley, Colorado]
- Bwolen Yang's SMV [CMU]
- NuSMV [CMU, IRST, UNITN, UNIGE]
- ...

Ex: OBDDs

Let $\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$ and $\varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B . \varphi$. Using the variable ordering " A, B, C ", draw the OBDD corresponding to the formulas φ and φ^{\prime}.
$\varphi \stackrel{\text { def }}{=}(A \wedge(B \vee C))$
[Solution:

]

Ex: OBDDs (cont.)

$\varphi^{\prime} \stackrel{\text { def }}{=} \exists A . \forall B .(A \wedge(B \vee C))$
[Solution:

$$
\begin{array}{rlrll}
\varphi^{\prime} & \stackrel{\text { def }}{=} & \exists A \cdot \forall B \cdot \varphi & & \\
& = & \forall B \cdot(A \wedge(B \vee C)))[A:=\top] & & \\
& =\forall B \cdot(B \vee C)) & & (\forall \\
& =((B \vee C)[B:=\top] & \wedge & (B \vee C)[B:=\perp]) & \vee \\
& =(\top & \wedge & \perp \\
& =C & & &
\end{array}
$$

which corresponds to the following OBDD:

Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

```
MODULE main
VAR v1 : boolean; v2 : boolean;
INIT (!v1 & !v2)
TRANS (next(v1) <-> !v1) & (next(v2) <-> (v1<->v2))
```

and consider the property $P \stackrel{\text { def }}{=}\left(v_{1} \wedge v_{2}\right)$. Write:

- the Boolean formulas $I\left(v_{1}, v_{2}\right)$ and $T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing respectively the initial states and the transition relation of M.
[Solution: $I\left(v_{1}, v_{2}\right)$ is $\left(\neg v_{1} \wedge \neg v_{2}\right), T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ is $\left.\left(v_{1}^{\prime} \leftrightarrow \neg V_{1}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow\left(v_{1} \leftrightarrow V_{2}\right)\right)\right]$
- the graph representing the FSM. (Assume the notation " $v_{1} v_{2}$ " for labeling the states: e.g. " 10 " means " $v_{1}=1, v_{2}=0$ ".)
[Solution:

Ex: Symbolic CTL Model Checking (cont.)

- the Boolean formula representing symbolically EXP. [The formula must be computed symbolically, not simply inferred from the graph of the previous question!]
[Solution:

$$
\begin{aligned}
\mathbf{E X}(P) & =\exists v_{1}^{\prime}, v_{2}^{\prime} \cdot\left(T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right) \wedge P\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \\
& =\exists v_{1}^{\prime}, v_{2}^{\prime} \cdot(\left(v_{1}^{\prime} \leftrightarrow \neg v_{1}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow\left(v_{1} \leftrightarrow v_{2}\right)\right) \wedge \underbrace{\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right)}_{\Longrightarrow v_{1}^{\prime}=\mathrm{T}, v_{2}^{\prime}=\top})
\end{aligned}
$$

$$
\begin{aligned}
& =\overbrace{\left(\neg V_{1} \wedge \neg v_{2}\right)}^{v_{1}^{\prime}=T, v_{2}^{\prime}=T} \vee \perp \vee \perp \vee \perp \\
& =\left(\neg v_{1} \wedge \neg v_{2}\right)
\end{aligned}
$$

Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

```
VAR v1 : boolean; v2 : boolean;
INIT init(v1) <-> init(v2)
TRANS (v1 <-> next(v2)) & (v2 <-> next(v1));
```

write:

- the Boolean formulas $I\left(v_{1}, v_{2}\right)$ and $T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing the initial states and the transition relation of M respectively.
[Solution: $I\left(v_{1}, v_{2}\right)$ is $\left(v_{1} \leftrightarrow v_{2}\right), T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ is $\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)$]
- the graph representing the FSM. (Assume the notation " $v_{1} v_{2}$ " for labeling the states. E.g., " 10 " means " $v_{1}=1, v_{2}=0$ ".)
[Solution:

Ex: Symbolic CTL Model Checking (cont.)

- the Boolean formula $R^{1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing the set of states which can be reached after exactly 1 step.
NOTE: this must be computed symbolically, not simply deduced from the graph of question b).
[Solution:

$$
\begin{aligned}
R^{1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)= & \exists v_{1}, v_{2} \cdot\left(I\left(v_{1}, v_{2}\right) \wedge T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \\
= & \exists v_{1}, v_{2} \cdot\left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right) \\
= & \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\perp, v_{2}=\perp\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\perp, v_{2}=\top\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=T, v_{2}=\perp\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\top, v_{2}=\top\right] \\
= & \left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right) \vee \perp \vee \perp \vee\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \\
= & \left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right) \vee\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \\
= & \left(v_{1}^{\prime} \leftrightarrow v_{2}^{\prime}\right)
\end{aligned}
$$

[^0]: Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

