Introduction to Formal Methods Chapter 04: CTL Model Checking

Roberto Sebastiani

> DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/ Teaching assistant: Enrico Magnago - enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday $18^{\text {th }}$ May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) CTL Model Checking: general ideas
(2) CTL Model Checking: a simple example
(3) Some theoretical issues
(4) CTL Model Checking: algorithms
(5) CTL Model Checking: some examples
(6) A relevant subcase: invariants
(7) Exercises

Outline

(1) CTL Model Checking: general ideas
(2) CTL Model Checking: a simple example
(3) Some theoretical issues
(4) CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

A A relevant subcase: invariants
(7) Exercises

CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:
- ...the property is expressed a CTL formula φ :

$$
A G(p \rightarrow A F q)
$$

- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula $(M \models \varphi)$.

CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula φ :

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula $(M \models \varphi)$.

CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula φ :

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula $(M \models \varphi)$.

CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula φ :

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula $(M \models \varphi)$.

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:
$[\varphi]:=\{s \in S: M, s \mid=\varphi\}$
$([\varphi]$ is called the denotation of φ)
2 then compare with the set of initial states:
$I \subseteq[\varphi]$?

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:
$[\varphi]:=\{s \in S: M, s \models \varphi\}$
($[\varphi]$ is called the denotation of φ)
2 then compare with the set of initial states:

CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:
$[\varphi]:=\{s \in S: M, s \vDash \varphi\}$
($[\varphi]$ is called the denotation of φ)
2 then compare with the set of initial states:
$I \subseteq[\varphi]$?

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing $\left[\varphi_{i}\right]$ for each subformula φ_{i} of $\mathrm{AG}(p \rightarrow \mathrm{AFq})$:

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing $\left[\varphi_{i}\right]$ for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing $\left[\varphi_{i}\right]$ for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:
- [q],

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing [φ_{i}] for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:
- [q],
- [AFq],

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing [φ_{i}] for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:
- [q],
- [AFq],
- [p],

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing [φ_{i}] for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:
- [q],
- [AFq],
- [p],
- [$p \rightarrow \mathrm{AF} q]$,

CTL Model Checking: General Idea [cont.]

In order to compute [φ]:

- proceed "bottom-up" on the structure of the formula, computing [φ_{i}] for each subformula φ_{i} of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$:
- [q],
- [AFq],
- [p],
- $[p \rightarrow \mathbf{A F} q]$,
- $[\mathbf{A G}(p \rightarrow \mathbf{A F} q)]$

CTL Model Checking: General Idea [cont.]

In order to compute each [φ_{i}]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

CTL Model Checking: General Idea [cont.]

In order to compute each $\left[\varphi_{i}\right]$:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

CTL Model Checking: General Idea [cont.]

In order to compute each $\left[\varphi_{i}\right]$:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

CTL Model Checking: General Idea [cont.]

In order to compute each [$\left[\varphi_{i}\right]$:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

CTL Model Checking: General Idea [cont.]

In order to compute each [φ_{i}]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators $\mathbf{A X}, \mathbf{E X}$ by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

Tableaux rules: a quote

"After all... tomorrow is another day."
[Scarlett O'Hara, "Gone with the Wind"]

Outline

(1) CTL Model Checking: general ideas

(2) CTL Model Checking: a simple example

(3) Some theoretical issues

4 CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

6 A relevant subcase: invariants
(7) Exercises

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$

- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$ - Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$

- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\text { AFq] }]^{(1)}=[q]$; $[\mathbf{A F q}]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F q}]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$

- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$

- Recall the AF tableau rule: AF $q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$

- Recall the AF tableau rule: AF $q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$

- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$
- $[\mathbf{A F} q]^{(3)}=[q \vee \mathbf{A X}(q \vee \mathbf{A X} q)]=\{2\} \cup\{1\}=\{1,2\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$

- Recall the AF tableau rule: AF $q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$
- $[\mathbf{A F} q]^{(3)}=[q \vee \mathbf{A X}(q \vee \mathbf{A X} q)]=\{2\} \cup\{1\}=\{1,2\}$
\Longrightarrow (fix point reached)

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$ - Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G}]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

"AG(p -> AF q)"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi]$; $[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

"AG(p -> AF q)"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

"AG(p -> AF q)"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $[\mathbf{A G} \varphi]^{(2)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $\left[\mathbf{A G} \mathbf{G}_{\varphi}{ }^{(2)}=[\varphi] \cap \mathbf{A X}\left[\mathbf{A} \mathbf{G}_{\varphi}\right]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}\right.$
(3) $[\mathbf{A G} \varphi]^{(3)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(2)}=\{1,2,4\} \cap\{ \}=\{ \}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

"p -> AF q"

- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $[\mathbf{A G}]^{(2)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$
(3) $[\mathbf{A G} \varphi]^{(3)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(2)}=\{1,2,4\} \cap\{ \}=\{ \}$
\Longrightarrow (fix point reached)

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

- The set of states where the formula holds is empty
\Longrightarrow the initial state does not satisfy the property $\Longrightarrow M \nLeftarrow \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: 1,2, \{3, 4\} (satisfying $E F(p \wedge E G \neg q))$

Counter-example reconstruction in general is not trivial, based on

 intermediate sets.
CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

- The set of states where the formula holds is empty \Longrightarrow the initial state does not satisfy the property
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\mathrm{EF}(p \wedge \mathrm{EG} \neg q))$

Counter-example reconstruction in general is not trivial, based on intermediate sets.

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

- The set of states where the formula holds is empty \Longrightarrow the initial state does not satisfy the property $\Longrightarrow M \notin \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: 1,2, $\{3,4\}^{\omega}$ (satisfying $\mathrm{EF}(p \wedge \mathrm{EG} \neg q))$

Counter-example reconstruction in general is not trivial, based on

 intermediate sets.
CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ [cont.]

- The set of states where the formula holds is empty \Longrightarrow the initial state does not satisfy the property $\Longrightarrow M \nLeftarrow \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\operatorname{EF}(p \wedge \mathbf{E G} \neg q))$

Counter-example reconstruction in general is not trivial, based on intermediate sets.

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty \Longrightarrow the initial state does not satisfy the property $\Longrightarrow M \notin \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\operatorname{EF}(p \wedge E \mathbf{E} \neg q))$

Note

Counter-example reconstruction in general is not trivial, based on intermediate sets.

Outline

(1) CTL Model Checking: general ideas
(2) CTL Model Checking: a simple example
(3) Some theoretical issues

4 CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

A A relevant subcase: invariants
(7) Exercises

The fixed-point theory of lattice of sets

Definition

- For any finite set S, the structure $\left(2^{S}, \subseteq\right)$ forms a complete lattice with \cup as join and \cap as meet operations.
- A function $F: 2^{S} \longmapsto 2^{S}$ is monotonic provided $S_{1} \subseteq S_{2} \Rightarrow F\left(S_{1}\right) \subseteq F\left(S_{2}\right)$.

The fixed-point theory of lattice of sets

Definition

- For any finite set S, the structure $\left(2^{S}, \subseteq\right)$ forms a complete lattice with \cup as join and \cap as meet operations.
- A function $F: 2^{S} \longmapsto 2^{S}$ is monotonic provided $S_{1} \subseteq S_{2} \Rightarrow F\left(S_{1}\right) \subseteq F\left(S_{2}\right)$.

Fixed Points

Definition
 Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, S finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}$, $a \subseteq S$ is a fixed point of F iff
- a is a least fixed point (LFP) of F, written $\mu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of F, written $\nu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a^{\prime} \subseteq a$

Fixed Points

Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, S finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of F iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of F, written $\mu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of F, written $\nu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a^{\prime} \subseteq a$

Fixed Points

Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, S finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of F iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of F, written $\mu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a \subseteq a^{\prime}$
\square
- a is a greatest fixed point (GFP) of F, written $\nu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a^{\prime} \subseteq a$

Fixed Points

Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, S finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of F iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of F, written $\mu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of F, written $\nu x . F(x)$, iff, for every other fixed point a^{\prime} of $F, a^{\prime} \subseteq a$

Iteratively computing fixed points

Tarski's Theorem
 A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene's Theorem
 A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

Iteratively computing fixed points

Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene's Theorem

A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of F is the limit of the chain
- the greatest fixed point of F is the limit of chain

Since 2^{S} is finite, convergence is obtained in a finite number of steps.

Iteratively computing fixed points

Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene's Theorem

A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of F is the limit of the chain $\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of F is the limit of chain Since 2^{S} is finite, convergence is obtained in a finite number of steps.

Iteratively computing fixed points

Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene's Theorem

A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of F is the limit of the chain
$\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of F is the limit of chain
$S \supseteq F(S) \supseteq F(F(S)) \ldots$
Since 2^{S} is finite, convergence is obtained in a finite number of steps.

Iteratively computing fixed points

Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene's Theorem

A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of F is the limit of the chain
$\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of F is the limit of chain
$S \supseteq F(S) \supseteq F(F(S)) \ldots$
Since 2^{S} is finite, convergence is obtained in a finite number of steps.

CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify φ with its denotation $[\varphi]$
we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}, \subseteq\right\rangle$

CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify φ with its denotation [φ]
we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}, \subseteq\right\rangle$

CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify φ with its denotation [φ]
\Longrightarrow we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}, \subseteq\right\rangle$

Denotation of a CTL formula $\varphi:[\varphi]$

Definition of $[\varphi]$

$[\varphi]:=\{s \in S: M, s \models \varphi\}$

Recursive definition of $[\varphi]$

Denotation of a CTL formula $\varphi:[\varphi]$

Definition of $[\varphi]$

$[\varphi]:=\{s \in S: M, s \models \varphi\}$

Recursive definition of $[\varphi]$

$$
\begin{array}{ll}
{[\text { true }]} & =S \\
{[\text { false }]} & =\{ \} \\
{[p]} & =\{s \mid p \in L(s)\} \\
{\left[\neg \varphi_{1}\right]} & =S /\left[\varphi_{1}\right] \\
{\left[\varphi_{1} \wedge \varphi_{2}\right]} & =\left[\varphi_{1}\right] \cap\left[\varphi_{2}\right] \\
{[\mathbf{E X} \varphi]} & =\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\} \\
{[\mathbf{E G} \beta]} & =\nu Z .([\beta] \cap[\mathbf{E X Z}]) \\
{\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]} & =\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[\mathbf{E X Z}]\right)\right)
\end{array}
$$

Case EX

- $[E X \varphi]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $[E X \varphi]$ is said to be the Pre-image of $[\varphi]$ (Preimage([$\varphi])$)
- Key step of every CTL M.C. operation

Note

Proimage () is monotonic: $X \subseteq X^{\prime} \Longrightarrow$ Preimage $(X) \subseteq$ Preimage $\left(X^{\prime}\right)$

Case EX

- $\left[\mathrm{EX}_{\varphi}\right]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $\left[\mathbf{E X}_{\varphi}\right]$ is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$)
- Key step of every CTL M.C. operation

Note
Preimage () is monotonic: $X \subseteq X^{\prime} \Longrightarrow$ Preimage $(X) \subseteq$ Preimage $\left(X^{\prime}\right)$

Case EX

- $[\operatorname{EX} \varphi]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $\left[\mathbf{E X}_{\varphi}\right]$ is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$)
- Key step of every CTL M.C. operation

Case EX

- $[E X \varphi]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $\left[\mathbf{E X}_{\varphi}\right]$ is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$)
- Key step of every CTL M.C. operation

Note

Preimage() is monotonic: $X \subseteq X^{\prime} \Longrightarrow \operatorname{Preimage}(X) \subseteq \operatorname{Preimage}\left(X^{\prime}\right)$

Case EG

- $\nu Z .([\beta] \cap[E X Z])$: greatest fixed point of the function
$F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta}([\varphi]) & =([\beta] \cap \text { Preimage }([\varphi]) \\
& =\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- F_{β} Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$

Theorem (Clarke \& Emerson)

$[E G B]=\nu Z .([\beta] \cap[E X Z])$

Case EG

- $\nu Z .([\beta] \cap[E X Z])$: greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta}([\varphi]) & =([\beta] \cap \text { Preimage }([\varphi]) \\
& =\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- F_{β} Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit , in a finite number of steps.

Case EG

- $\nu Z .([\beta] \cap[E X Z])$: greatest fixed point of the function
$F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta}([\varphi]) & =([\beta] \cap \text { Preimage }([\varphi]) \\
& =\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- F_{β} Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit in a finite number of steps.

Case EG

- $\nu Z .([\beta] \cap[E X Z])$: greatest fixed point of the function
$F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta}([\varphi]) & =([\beta] \cap \text { Preimage }([\varphi]) \\
& =\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- F_{β} Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit $S \supseteq F_{\beta}(S) \supseteq F_{\beta}\left(F_{\beta}(S)\right) \supseteq \ldots$, in a finite number of steps.

Case EG

- $\nu Z .([\beta] \cap[E X Z])$: greatest fixed point of the function
$F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta}([\varphi]) & =([\beta] \cap \text { Preimage }([\varphi]) \\
& =\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- F_{β} Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit $S \supseteq F_{\beta}(S) \supseteq F_{\beta}\left(F_{\beta}(S)\right) \supseteq \ldots$, in a finite number of steps.

Theorem (Clarke \& Emerson)

$[\mathbf{E G} \beta]=\nu Z .([\beta] \cap[\mathbf{E X Z}])$

Case EG [cont.]

- We can compute $X:=[\mathbf{E G} \beta]$ inductively as follows:

$$
\begin{array}{ll}
X_{0} & :=S \\
X_{1} & :=F_{\beta}(S) \\
X_{2}:=F_{\beta}\left(F_{\beta}(S)\right)=[\beta] \cap \operatorname{Preimage}\left(X_{1}\right) \\
\cdots & :=F_{\beta}^{j+1}(S)=[\beta] \cap \operatorname{Preimage}\left(X_{j}\right)
\end{array}
$$

- Noticing that $X_{1}=[\beta]$ and $X_{j+1} \subseteq X_{j}$ for every
$j \geq 0$, and that
we can use instead the following inductive schema:

Case EG [cont.]

- We can compute $X:=[\mathbf{E G} \beta]$ inductively as follows:

$$
\begin{array}{ll}
X_{0} & :=S \\
X_{1} & :=F_{\beta}(S) \\
X_{2}:=F_{\beta}\left(F_{\beta}(S)\right)=[\beta] \cap \operatorname{Preimage}\left(X_{1}\right) \\
\cdots & \\
X_{j+1}:=F_{\beta}^{j+1}(S)=[\beta] \cap \operatorname{Preimage}\left(X_{j}\right)
\end{array}
$$

- Noticing that $X_{1}=[\beta]$ and $X_{j+1} \subseteq X_{j}$ for every $j \geq 0$, and that
$([\beta] \cap Y) \subseteq X_{j} \subseteq[\beta] \Longrightarrow([\beta] \cap Y)=\left(X_{j} \cap Y\right)$, we can use instead the following inductive schema:
- $X_{1} \quad:=[\beta]$

- $X_{j+1}:=X_{j} \cap \operatorname{Preimage}\left(X_{j}\right)$

Case EU

- $\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$: least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta_{1}, \beta_{2}}([\varphi])=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}([\varphi])\right)$
$=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi]\right.\right.$ s.t. $\left.\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)$

Theorem (Clarke \& Emerson)

Case EU

- $\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$: least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
{\stackrel{F}{\beta_{1}, \beta_{2}}}^{([\varphi])=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}([\varphi])\right), ~(\varphi)}
$$

$$
=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit
in a finite number of steps.

Case EU

- $\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$: least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta_{1}, \beta_{2}}([\varphi]) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }([\varphi])\right) \\
& =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit
in a finite number of steps.

Case EU

- μZ. ($\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$: least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta_{1}, \beta_{2}}([\varphi]) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }([\varphi])\right) \\
& =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit $\emptyset \subseteq F_{\beta_{1}, \beta_{2}}(\emptyset) \subseteq F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) \subseteq \ldots$, in a finite number of steps.

Case EU

- μZ. ($\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$: least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta_{1}, \beta_{2}}([\varphi]) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }([\varphi])\right) \\
& =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit $\emptyset \subseteq F_{\beta_{1}, \beta_{2}}(\emptyset) \subseteq F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) \subseteq \ldots$, in a finite number of steps.

Theorem (Clarke \& Emerson)
$\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]=\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[\mathbf{E X Z}]\right)\right)$

Case EU [cont.]

- We can compute $X:=\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]$ inductively as follows:

$$
\begin{array}{lll}
X_{0} & :=\emptyset & \\
X_{1} & :=F_{\beta_{1}, \beta_{2}}(\emptyset) & =\left[\beta_{2}\right] \\
X_{2} & :=F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }\left(X_{1}\right)\right)
\end{array}
$$

$$
\left.X_{j+1}:=F_{\beta_{1}, \beta_{2}}^{j+1}(\emptyset)\right) \quad=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{j}\right)\right)
$$

- Noticing that $X_{1}=\left[\beta_{2}\right]$ and $X_{j+1} \supseteq X_{j}$ for every
$j \geq 0$, and that
$\left(\left[\beta_{2}\right] \cup Y\right) \supseteq X_{j} \supseteq\left[\beta_{2}\right] \Longrightarrow\left(\left[\beta_{2}\right] \cup Y\right)=\left(X_{j} \cup Y\right)$,
we can use instead the following inductive schema:

Case EU [cont.]

- We can compute $X:=\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]$ inductively as follows:

$$
\begin{array}{lll}
X_{0} & :=\emptyset & =\left[\beta_{2}\right] \\
X_{1} & :=F_{\beta_{1}, \beta_{2}}(\emptyset) & \\
X_{2} & :=F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{1}\right)\right)
\end{array}
$$

$$
\left.X_{j+1}:=F_{\beta_{1}, \beta_{2}}^{j+1}(\emptyset)\right)=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{j}\right)\right)
$$

- Noticing that $X_{1}=\left[\beta_{2}\right]$ and $X_{j+1} \supseteq X_{j}$ for every
$j \geq 0$, and that
$\left(\left[\beta_{2}\right] \cup Y\right) \supseteq X_{j} \supseteq\left[\beta_{2}\right] \Longrightarrow\left(\left[\beta_{2}\right] \cup Y\right)=\left(X_{j} \cup Y\right)$, we can use instead the following inductive schema:
- $X_{1}:=\left[\beta_{2}\right]$
- $X_{j+1}:=X_{j} \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{j}\right)\right)$

A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathbf{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[T] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$ - We can compute $X:=[\mathbf{E F} \beta]$ inductively as follows:

A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathbf{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[\top] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$
- We can compute $X:=[E F \beta]$ inductively as follows:

A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathbf{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[\top] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$
- We can compute $X:=[\mathbf{E F} \beta]$ inductively as follows:
- $X_{1} \quad:=[\beta]$
- $X_{j+1}:=X_{j} \cup \operatorname{Preimage}\left(X_{j}\right)$

Outline

(1) CTL Model Checking: general ideas
(2) CTL Model Checking: a simple example
(3) Some theoretical issues
4) CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

6 A relevant subcase: invariants
(4) Exercises

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):
- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$: if the main operator of φ_{i} is a

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas Sub(φ) of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$: if the main operator of φ_{i} is a

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$: if the main operator of φ_{i} is a

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a

> Propositional atoms: apply labeling function
> Boolean operator: apply standard set operations
> temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a
fixpoint is reached

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
fixpoint is reached

General Schema

- Assume φ written in terms of \neg, \wedge, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of φ are checked bottom-up
- To compute each [φ_{i}]: if the main operator of φ_{i} is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

General M.C. Procedure

state_set Check(CTL_formula β) \{
case β of
true:
false:
p :
$\neg \beta_{1}$:
$\beta_{1} \wedge \beta_{2}$:
EX β_{1} : return Prelmage(Check $\left(\beta_{1}\right)$);
EG β_{1} : return Check_EG(Check $\left(\beta_{1}\right)$);
$\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$: return Check_EU(Check $\left(\beta_{1}\right)$, $\left.\operatorname{Check}\left(\beta_{2}\right)\right)$;

Prelmage

state_set Prelmage(state_set $[\beta]$) \{
$X:=\{ \} ;$
for each $s \in S$ do
for each s^{\prime} s.t. $s^{\prime} \in[\beta]$ and $\left\langle s, s^{\prime}\right\rangle \in R$ do $X:=X \cup\{s\} ;$
return X;
\}

Check_EG

state_set Check_EG(state_set $[\beta])\{$
$X^{\prime}:=[\beta] ; j:=1 ;$
repeat
$X:=X^{\prime} ; j:=j+1 ;$ $X^{\prime}:=X \cap \operatorname{Prelmage}(X) ;$
until $\left(X^{\prime}=X\right)$;
return X;
\}

Check_EU

state_set Check_EU(state_set $\left.\left[\beta_{1}\right],\left[\beta_{2}\right]\right)$ \{

$$
X^{\prime}:=\left[\beta_{2}\right] ; j:=1 ;
$$

repeat

$$
\begin{aligned}
& X:=X^{\prime} ; j:=j+1 ; \\
& X^{\prime}:=X \cup\left(\left[\beta_{1}\right] \cap \text { PreImage }(X)\right) ;
\end{aligned}
$$

until $\left(X^{\prime}=X\right)$;
return X;
\}

A relevant subcase: Check_EF

state_set Check_EF(state_set $[\beta])$ \{

$$
X^{\prime}:=[\beta] ; j:=1 ;
$$

repeat

$$
\begin{aligned}
& X:=X^{\prime} ; j:=j+1 ; \\
& X^{\prime}:=X \cup \operatorname{Prelmage}(X) ;
\end{aligned}
$$

until $\left(X^{\prime}=X\right)$;
return X;
\}

Outline

(1) CTL Model Checking: general ideas

(3) CTL Model Checking: a simple example

(3) Some theoretical issues

- CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

6 A relevant subcase: invariants
(7) Exercises

Example 1: fairness

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg E F E G \neg C_{1}$?

Example 1: fairness

$\left[-\mathcal{C}_{1}\right]$

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 0 :

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 1:

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 2:

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 3:

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 4:

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

[$\left.E G \neg C_{1}\right]$, FIXPOINT!

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \vDash \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[\right.$ EFEG $\left.\neg C_{1}\right]$, STEP 0

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[E F E G{ }_{\neg} \mathcal{C}_{1}\right]$, STEP 1

$M \mid \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[\right.$ EFEG $\left.\neg C_{1}\right]$, STEP 2

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \vDash \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[\right.$ EFEG $\left.\neg C_{1}\right]$, STEP 3

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg \mathcal{C}_{1}$?

Example 1: fairness

$\left[\right.$ EFEG $\left.\neg \mathcal{C}_{1}\right]$, STEP 4

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg \mathcal{C}_{1}$?

Example 1: fairness

[EFEG $\left.\neg \mathcal{C}_{1}\right]$, FIXPOINT!

$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
$$

$M \vDash \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$?

Example 1: fairness

$\left[\neg E F E G \neg C_{1}\right]$

$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical User 1 User 2
$M \models \mathrm{AGAF} C_{1} ? \Longrightarrow M \models \neg \mathrm{EFEG} \neg C_{1} ? \Longrightarrow \mathrm{NO}!$

Example 2: liveness

$\mathbf{N}=$ noncritical, $\mathbf{T}=$ trying, $\mathbf{C}=$ critical \quad User $1 \quad$ User 2
$M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow \mathbf{M} \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

Example 2: liveness

$\left[T_{1}\right]:$

$\mathbf{N}=$ noncritical, $\mathbf{T}=$ trying, $\mathbf{C}=$ critical User $1 \quad$ User 2
$M \vDash \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

Example 2: liveness

[$\left.E G \neg C_{1}\right]$, STEPS 0-4: (see previous example)

$M \vDash \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

Example 2: liveness

$\left[T_{1} \wedge E G-C_{1}\right]:$

$\mathbf{N}=$ noncritical, $\mathbf{T}=$ trying, $\mathbf{C}=$ critical User $1 \quad$ User 2
$M \vDash \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

Example 2: liveness

$\left[E F\left(T_{1} \wedge E G \neg C_{1}\right)\right]:$

$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical User 1 User 2
$M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow \mathbf{M} \vDash \operatorname{EF}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

Example 2: liveness

$\left[\neg E F\left(T_{1} \wedge E G \neg C_{1}\right)\right]:$

$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical User 1 User 2
$M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right)$? YES!

The property verified is...

Homework

Apply the same process to all the CTL examples of Chapter 3.

Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute $[\varphi]$
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of φ : $O(|\varphi|)$ steps...
each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq\lceil\varphi\rceil: O(|M|)$

Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [φ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of φ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$

Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [φ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of φ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$

Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [φ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of φ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$
$\Longrightarrow O(|M| \cdot|\varphi|)$

Outline

(1) CTL Model Checking: general ideas

(3) CTL Model Checking: a simple example

(3) Some theoretical issues

CTL Model Checking: algorithms
(5) CTL Model Checking: some examples
(6) A relevant subcase: invariants
(7) Exercises

Model Checking of Invariants

- Invariant properties have the form AG p (e.g., AG \neg bad)
- Checking invariants is the negation of a reachability problem:
- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime}:=Y \cup \text { Prelmage }(Y)
$$

until a fixed point is reached. Then the complement is computed and I is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime \prime}:=Y \cup \text { Prelmage }(Y)
$$

until (i) it intersect [/] or (ii) a fixed point is reached

Model Checking of Invariants

- Invariant properties have the form $\mathbf{A G} \mathbf{p}$ (e.g., $\mathbf{A G} \neg$ bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state?

$$
(\mathbf{A G} \neg \text { bad }=\neg \mathbf{E F} b a d)
$$

- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until a fixed point is reached. Then the complement is computed and I is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage computations:

until (i) it intersect [/] or (ii) a fixed point is reached

Model Checking of Invariants

- Invariant properties have the form AG p (e.g., AG \neg bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state?

$$
(\mathbf{A G} \neg \text { bad }=\neg \mathbf{E F b a d})
$$

- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until a fixed point is reached. Then the complement is computed and I is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage computations:

until (i) it intersect [/] or (ii) a fixed point is reached

Model Checking of Invariants

- Invariant properties have the form AG p (e.g., AG \neg bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state?

$$
(\mathbf{A G} \neg \text { bad }=\neg \mathbf{E F b a d})
$$

- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime}:=Y \cup \operatorname{PreImage}(Y)
$$

until a fixed point is reached. Then the complement is computed and I is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage computations:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until (i) it intersect [/] or (ii) a fixed point is reached

Model Checking of Invariants [cont.]

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

Image $(Y) \stackrel{\text { dof }}{=}\left\{s^{\prime} \mid s \in Y\right.$ and $R\left(s, s^{\prime}\right)$ holds $\}$

- Simplest form: compute the set of reachable states.

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states /
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { holds }\right\}
$$

- Simplest form: compute the set of reachable states.

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from I until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic sten is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { hold } s\right\}
$$

- Simplest form: compute the set of reachable states.

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { holds }\right\}
$$

- Simplest form: compute the set of reachable states.

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { hold } s\right\}
$$

- Simplest form: compute the set of reachable states.

Symbolic Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { hold } s\right\}
$$

- Simplest form: compute the set of reachable states.

Computing Reachable states: basic

State_Set Compute_reachable() \{

$$
Y^{\prime}:=I ; Y:=\emptyset ; j:=1 ;
$$

$$
\text { while }\left(Y^{\prime} \neq Y\right)
$$

$$
j:=j+1
$$

$$
Y:=Y^{\prime}
$$

$$
Y^{\prime}:=Y \cup \operatorname{Image}(Y) ;
$$

return Y ;
\}
$Y=$ reachable

Computing Reachable states: advanced

State_Set Compute_reachable() \{

$$
Y:=F:=l ; j:=1
$$

$$
\text { while }(F \neq \emptyset)
$$

$$
j:=j+1
$$

$$
F:=\operatorname{Image}(F) \backslash Y
$$

$$
Y:=Y \cup F
$$

\}
return Y ;
\}
$Y=$ reachable;F=frontier (new)

Computing Reachable states [cont.]

Checking of Invariant Properties: basic

bool Forward_Check_EF(State_Set BAD) \{

$$
Y:=I ; \quad Y^{\prime}:=\emptyset ; j:=1 ;
$$

while $\left(Y^{\prime} \neq Y\right)$ and $\left(Y^{\prime} \cap B A D\right)=\emptyset$

$$
\begin{aligned}
& j:=j+1 \\
& Y:=Y^{\prime} \\
& Y^{\prime}:=Y \cup \operatorname{Image}(Y) ;
\end{aligned}
$$

\}
if $\left(Y^{\prime} \cap B A D\right) \neq \emptyset / /$ counter-example return true
else
// fixpoint reached return false
\}
$\mathrm{Y}=$ reachable;

Checking of Invariant Properties: advanced

```
bool Forward_Check_EF(State_Set BAD) {
    Y:=F:=l;j:=1;
    while (F\not=\emptyset) and (F\capBAD)=\emptyset
        j:=j+1;
        F:=Image (F)\Y;
        Y:= Y\cupF;
    }
    if (F\capBAD) =\emptyset // counter-example
        return true
    else
                            // fixpoint reached
        return false
```

\}
$Y=$ reachable;F=frontier (new)

Checking of Invariant Properties [cont.]

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage($t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples

- if layer n intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples [cont.]

Outline

(1) CTL Model Checking: general ideas
(2) CTL Model Checking: a simple example
(3) Some theoretical issues

4 CTL Model Checking: algorithms
(5) CTL Model Checking: some examples

6 A relevant subcase: invariants
(7) Exercises

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite φ into an equivalent formula φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only.
(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite φ into an equivalent formula φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution: $\left.\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)\right]$
(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite φ into an equivalent formula φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution: $\left.\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)\right]$
(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$ [Solution:
$\left.\begin{array}{lllll}{[p]} & =\left\{s_{1}, s_{2}\right\} & {[\neg \mathrm{EG} q]} & =\left\{s_{2}\right\} \\ {[q]} & =\left\{s_{0}, s_{1}\right\} & {[((p \wedge q) \wedge \neg \mathrm{EG} q)]} & =\{ \} \\ {[(p \wedge q)]} & =\left\{s_{1}\right\} & {[\operatorname{EF}((p \wedge q) \wedge \neg \mathbf{E G q} q)]} & =\{ \} \\ {[\mathbf{E G} q]} & =\left\{s_{0}, s_{1}\right\} & {[\neg \mathrm{EF}((p \wedge q) \wedge \neg \mathrm{EG} q)]} & =\left\{s_{0}, s_{1}, s_{2}\right\}\end{array}\right]$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite φ into an equivalent formula φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution: $\left.\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)\right]$
(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$ [Solution:

$$
\begin{array}{llll}
{[p]} & =\left\{s_{1}, s_{2}\right\} & {[\neg \mathbf{E G q]}} & =\left\{s_{2}\right\} \\
{[q]} & =\left\{s_{0}, s_{1}\right\} & {[((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\{ \} \\
{[(p \wedge q)]} & =\left\{s_{1}\right\} & {[\operatorname{EF}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\{ \} \\
{[\mathbf{E G q} q]} & =\left\{s_{0}, s_{1}\right\} & {[\neg \mathbf{E F}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\left\{s_{0}, s_{1}, s_{2}\right\}
\end{array}
$$

(c) As a consequence of point (b), say whether $M \models \varphi$ or not. [Solution: Yes, $\left\{s_{1}, s_{2}\right\} \subseteq\left[\varphi^{\prime}\right]$.]

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F q})$.

(a) Rewrite φ into an equivalent formưla φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only.
(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F q})$.

(a) Rewrite φ into an equivalent formưla φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution:

$$
\left.\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F} q)=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)\right]
$$

(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\mathbf{A G}(\mathbf{A F p} \rightarrow \mathbf{A F} q)$.

(a) Rewrite φ into an equivalent formưla φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution:

$$
\left.\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F} q)=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)\right]
$$

(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$ [Solution:

$[p]$	$=\left\{s_{0}\right\}$	$[\neg q]$	$=\left\{s_{1}\right\}$
$[\neg p]$	$=\left\{s_{1}, s_{2}\right\}$	$[E G \neg q]$	$=\left\{s_{1}\right\}$
$[\mathrm{EG} \neg p]$	$=\left\{s_{1}, s_{2}\right\}$	$[\neg \mathrm{EG} \neg p \wedge \mathrm{EG} \neg q]$	$=\{ \}$
$[\neg \mathrm{EG} \neg p]$	$=\left\{s_{0}\right\}$	$[\mathrm{EF}(\neg \mathrm{EG} \neg p \wedge \mathrm{EG} \neg q)]$	$=\{ \}$
$[q]$	$=\left\{s_{0}, s_{2}\right\}$	$[\neg \mathrm{EF}(\neg \mathrm{EG} \neg p \wedge \mathrm{EG} \neg q)]$	$=\left\{s_{0}, s_{1}, s_{2}\right\}$

(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property $\mathbf{A G}(\mathbf{A F p} \rightarrow \mathbf{A F q})$.

(a) Rewrite φ into an equivalent formưla φ^{\prime} expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only. [Solution:

$$
\left.\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F} q)=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)\right]
$$

(b) Compute bottom-up the denotations of all subformulas of φ^{\prime}. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$ [Solution:

| $[p]$ | $=\left\{s_{0}\right\}$ | $[\neg q]$ | $=\left\{s_{1}\right\}$ |
| :--- | :--- | :--- | :--- | :--- |
| $[\neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[E G \neg q]$ | $=\left\{s_{1}\right\}$ |
| $[\mathrm{EG} \neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[\neg \mathrm{EG} \neg p \wedge \mathrm{EG} \neg q]$ | $=\{ \}$ |
| $[\neg \mathrm{EG} \neg p]$ | $=\left\{s_{0}\right\}$ | $[\mathrm{EF}(\neg \mathrm{EG} \neg p \wedge \mathrm{EG} \neg q)]$ | $=\{ \}$ |
| $[q]$ | $=\left\{s_{0}, s_{2}\right\}$ | $[\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathrm{EG} \neg q)]$ | $=\left\{s_{0}, s_{1}, s_{2}\right\}$ |

(c) As a consequence of point (b), say whether $M \models \varphi$ or not.
[Solution: Yes, $\left\{s_{0}, s_{1}, s_{2}\right\} \subseteq\left[\varphi^{\prime}\right]$.]

