
Introduction to Formal Methods
Chapter 01: Formal Methods

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2020/

Teaching assistant: Enrico Magnago – enrico.magnago@unitn.it

CDLM in Informatica, academic year 2019-2020

last update: Monday 18th May, 2020, 14:48

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M.
Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in these
slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by the
authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly

forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public
without containing this copyright notice.

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 1 / 64

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2020/
enrico.magnago@unitn.it

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 2 / 64

Motivations

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 3 / 64

Motivations

Problems in Developing Industrial Systems

Functionality Issues: Growing Size & Complexity
Requirements issues: availability, reliability, safety, security
Application Domain Issues: Safety-Critical, Mission-Critical or
Business-Critical Systems
Market Issues: Time-to-delivery, Costs
Maintenance Issues: Requirements change over time

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 4 / 64

Motivations

Growing size and complexity

increasing dependability
everything important depends on computers
(industrial production, banking, stock market, transport,...)
=⇒ quality is essential

systems increasingly complex
Moore law: exponential growth
(≈ 1030 transistors/processor , multi million LOC’s/OS)
=⇒ cost for testing is exploding

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 5 / 64

Motivations

Desired properties of systems

Availability: a system must be working and able to provide its
services
Reliability: a system must correctly provide its functionalities, as
expected by users
Safety: the system should do nothing very undesirable (causing
damages to people,...)
Security: the system should resist to intruders

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 6 / 64

Motivations

Critical Systems

Safety-critical: systems whose failure can cause life losses or
serious environmental damage
(e.g., trains & planes control, nuclear plants control, ...)
Mission-critical: systems whose failure can cause the failure of the
goals of important missions
(e.g., space craft navigation)
Business-critical: systems whose failure can cause the loss of big
or huge amounts of money
(e.g., bank management software, operating systems)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 7 / 64

Motivations

Time-to-delivery, Costs

time-to-market affects potential revenue dramatically:

1 week delay for a microprocessor
=⇒ loss of more than 20.000.000 US$ (year 2004)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 8 / 64

Motivations

The quest for correctness

“It is fair to state, that in this digital era correct systems for information
processing are more valuable than gold.”

[H. Barendregt. The quest for correctness. 1996.]

Reliability increasingly depends on hard- and software integrity
Defects can be fatal and/or extremely costly

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 9 / 64

Some motivating examples

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 10 / 64

Some motivating examples

The Therac-25 Case

Canada-USA 1985-1987: 4 people killed, 2 seriously injured for
the wrong behaviour of an anti-tumor irradiating machine
(Therac-25)
Cause: wrong behaviour of its control software (wrong interaction
among components)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 11 / 64

Some motivating examples

The Ariane 5 Case

4 June 1996: the first flight of the Ariane 5 failed. After 40 seconds
the rocket changed trajectory and exploded
The SW of the Inertial Reference Systems ceased to work after 36
seconds.
800 Million US$ lost
Cause: a variable overflow!

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 12 / 64

Some motivating examples

The Ariane 5 Case (cont.)

Courtesy of Pao-Ann Hsiung, National Chung Cheng University
Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 13 / 64

Some motivating examples

The PENTIUM Bug

Professor Thomas Nicely from Lynchburg College in Virginia
discovered incorrect behaviors in the Pentium chip.
Cause: a design error in the floating point division algorithm in the
ALU.
The chip was withdrawn and substituted by Intel.
450 US$ millions lost!
Since 1994, Intel adopts formal methods!

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 14 / 64

Some motivating examples

The PENTIUM Bug (cont.)

Courtesy of Pao-Ann Hsiung, National Chung Cheng University
Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 15 / 64

Some motivating examples

The Denver Airport Case

Denver Airport: designed to be a state-of-the-art airport
State-of-the-art baggage-delivering computerized system, 5.300
miles optic-fiber cables
the system turned out to be completely unreliable, huge amounts
of luggages were lost, erroneously delivered or even damaged
the airport was inaugurated with 16-month delay with a manual
baggage-delivering system
3.2 US$ billions lost!

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 16 / 64

Some motivating examples

The AT&T Case

a 9-hour blackout in all AT&T long-distance calls caused by
software errors
the worst blackout in the story of American telecoms
Cause: one single wrong line of code!

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 17 / 64

Problems with traditional methods

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 18 / 64

Problems with traditional methods

Standard Development Process (over-simplified!)

TEST DESIGNDESIGN

DEVELOPMENT

TEST

DEVELOPMENT

Test
Cases

Reqs.

System

System
Code

Sistem

Spec.

Testing

Spec.

Test

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 19 / 64

Problems with traditional methods

Difficulties with Traditional Methodologies

Ambiguous Specifications (Requirements, Analysis, Design)
Errors in specifications/design refinements
Limited coverage by tests

⇓

Expensive errors in the early design phase
Low software quality (hard to maintain)
Infeasibility of achieving (ultra-high) reliability requirements

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 20 / 64

Problems with traditional methods

Error introduction & detection, and relative costs

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 21 / 64

Problems with traditional methods

Current verification techniques

Reviewing, Testing & Simulation (currently mostly used)
Formal verification methods (increasingly used)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 22 / 64

Problems with traditional methods

Reviewing, Testing and Simulation

Peer reviewing (SW): manual code inspection
Testing: The implemented system is executed on sets of inputs
and external events
Simulation: the behaviour of an abstract model is simulated
(included input data, external events)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 23 / 64

Problems with traditional methods

Peer reviewing: Limitations and Disadvantages

time-consuming, expensive, boring,
subtle errors (e.g., concurrency, algorithmic, etc.) hard to catch

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 24 / 64

Problems with traditional methods

Testing: Limitations and Disadvantages

Not all input configurations can be given to the system (limited
coverage)
Each run cannot last forever, or be run infinitely often
No guarantee that bad behaviors are covered
The verification occurs too late in the process
Very difficult, in particular for concurrent systems

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 25 / 64

Problems with traditional methods

Testing: Limitations and Disadvantages (cont.)

Current figures: in industrial SW and HW development, ≥ 50% of the
effort is devoted to testing, and is increasing
=⇒ testing/verification has become the bottleneck of the development
processes

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 26 / 64

Problems with traditional methods

Simulation: Limitations and Disadvantages

Much slower than the system simulated
Each run cannot last forever, or be run infinitely often
Very expensive
Not all behaviors are simulated (limited coverage)
No guarantee that bad behaviors are covered

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 27 / 64

Problems with traditional methods

Testing & Simulation: Key Disadvantage

“Both testing and Simulation can detect bugs, but they cannot
guarantee the absence of bugs” (Dijkstra ’70).
=⇒ Need for something different: Formal Methods

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 28 / 64

Formal Methods

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 29 / 64

Formal Methods

Brief History of Formal Verification

Use of logical assertions
First ideas [Floyd 1967], [Dijkstra].
Axiomatic Verification of sequential programs [Hoare 1969].
Extended to Concurrent Programs in 70s and 80s.
Compositionality.

Very powerful. Manual proofs (some times machine checked).
Acceptance has been low.

Formal Methods are making impact.
Reactive and concurrent systems
Model checking (algorithmic verification)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 30 / 64

Formal Methods

Formal Methods: basics

“Applied Mathematics for modeling and analyzing ICT systems”

Mathematical Models for system behaviors.
Logical notations for specifying properties of programs.
Methods for checking that program meets its desired specification.
Three problems

Formal specification
Formal verification
Formal synthesis

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 31 / 64

Formal Methods

Formal Specification

Specify system requirements with formal, non ambiguous
language.
Language and tools available (e.g., Z, VHDL, VERILOG, Esterel,
SDL, StateCharts, SMV, Promela,...);
abstracts away unnecessary implementation details
Benefits:

first step for formal verification and synthesis
Consistency of formal specification may be checked automatically
(e.g., theorem proving): S 6|= ⊥
the effort of writing requirements in a formal language, alone, may
reveal early specification bugs!!!
may produce executable specifications (early debuggable)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 32 / 64

Formal Methods

Formal Synthesis (hints)

Problem: given a specification S, synthesize a model M
(system/program/circuit) which verifies it: M |= S

Most important in HW (but increasingly used in SW)
pure top-down design, incremental refinement steps
Integrates verification within the development process
Works, but expensive!
Approaches: theorem proving, (extended) planning

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 33 / 64

Formal Methods

Formal Verification

Problem: given a specification S, and a model M
(system/program/circuit), check that M verifies S: M |= S

Most important in HW (but also extensively used in SW)
Exhaustive verification
Still expensive, but getting better!
Approaches: theorem proving, equivalence checking, model
checking

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 34 / 64

Formal Methods

Formal Verification in HW

Fits well in design flow

Designs in VHDL, VERILOG
Simulation, synthesis, and verification
Used as a debugging tool

Who is using it?

Design teams: Intel, AMD, IBM, Lucent, ...
CAD tool vendors: Cadence, Synopsis,...
Commercial model checkers: FormalCheck,...

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 35 / 64

Formal Methods

A quote

“... formal verification has now entered the critical path in the process
of development of a microprocessor”
[Bob Bentley, Intel, CAV’2005]

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 36 / 64

Formal Methods

Formal Verification in SW

Software development process:
High-level modeling not common
Applications: protocols, telecommunications
Languages: ESTEREL, SDL, (UML)

Recent trend: integrate model checking in programming analysis
tools

Applied directly to source code
Main challenge: extracting model from code
Sample projects: SLAM (Microsoft), BLAST (Berkeley), Feaver (Bell
Labs)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 37 / 64

Formal Methods

Benefits

Find design bugs in early design stages.
Achieve higher quality standards.
Shorten time to market reducing manual validation phases.
Produce maintainable products.

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 38 / 64

Formal Methods

Limitations

Appropriate for control-intensive applications (not data-intensive
ones)
Decidability and complexity remains an obstacle
Model, and not system, is verified
Finding suitable abstractions requires expertise

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 39 / 64

Formal verification methods

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 40 / 64

Formal verification methods

Formal Verification Methods: Key Ingredients

Formal Specifications: unambiguous description of the system
and of the required properties
(message sequence charts, temporal logic, automata).
Formal Validation & Verification: exhaustive comparison of the
formal description of the system against the formal properties.
Two main technologies: Theorem Proving & Model Checking

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 41 / 64

Formal verification methods

Theorem Proving

Formal V&V by exhaustive search over the state space.
System modeled as a set of logical formulae Γ

Properties expressed as Theorems Ψ
=⇒ Precise, unambiguous semantics
Verification via logical reasoning:

|= (Γ→ Ψ)

Can Ψ be derived from Γ?
tools available (e.g., PVS, HOL, Lambda)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 42 / 64

Formal verification methods

Theorem Proving: Limitations and Disadvantages

Very hard to mechanize (theorem provers are typically interactive)
The formalization Γ of the system can be very difficult to obtain
It needs a big expertise to use the theorem prover.
Most verification problems out of the reach of current theorem
provers.

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 43 / 64

Formal verification methods

Equivalence Checking (HW)

Two circuits are functionally equivalent if they exhibit the same
behavior

Combinational Circuits: For all possible input values
Sequential Circuits: For all possible input sequences

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 44 / 64

Formal verification methods

Equivalence Checking (cont.)

Checks if two circuits are equivalent: |= C1 ↔ C2

Register-Transfer Level (RTL)
Gate Level

Reports differences between the two
Used incrementally after significant
modification/improvements/refinements
push-button technology
computationally expensive

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 45 / 64

Formal verification methods

Model Checking

Formal V&V by exhaustive search over the state space.
Systems modeled as Finite State Machine M
Properties expressed with a formal representation Ψ
(e.g Temporal Logic, Automata, MSCs, etc.).
=⇒ Precise, unambiguous semantics
Verification via logical reasoning:

M |= Ψ

Is M a logical model for Ψ?
Yes =⇒ the system verifies the property
No =⇒ a counter-example is returned
(representing an execution leading to a bug).

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 46 / 64

Formal verification methods

Model Checking (cont.)

temporal formula

p

qfinite-state model

Model
Checker

G(p -> Fq) yes!

no!

counterexample

p

q

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 47 / 64

Formal verification methods

Industrial Success of Model Checking

Powerful debugging capabilities:
helps detecting problems in early stages of the development cycle
exhaustive, thus effective
provides counterexamples
(directs the designer to the problem).

can be integrated within industrial development cycle:
compilers for practical design languages
(e.g., VHDL, VERILOG, Esterel, SDL, StateCharts, SMV,
Promela,...);

Does not require deep training (“push-button” technology).

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 48 / 64

Formal verification methods

Extending the traditional development process with
M.C.

TEST DESIGNDESIGN

DEVELOPMENT

TEST

DEVELOPMENT

Test
Cases

Reqs.

System

System
Code

Sistem

Spec.

Testing

Spec.

Test

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 49 / 64

Formal verification methods

Extending the traditional development process with
M.C.

TEST DESIGNDESIGN

DEVELOPMENT DEVELOPMENT

TEST

Test
Cases

Reqs.

System

System
Code

Sistem

Spec.

Testing

Spec.

Test

Model Checking

Formal
Model

Formal
Requirements

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 50 / 64

Formal verification methods

Model Checking: Limitations and Disadvantages

Works (mostly) with finite state machines
Engineers are not much at ease with temporal logic formulas (but
encodings can be provided, though)
The explosion of the state space is a big problem: the size of the
F.S.M. grows up to exponentially w.r.t. the number of interacting
components.
The model checking process in practice: M |= Ψ
Is M a logical model for Ψ?

Yes =⇒ the system verifies the property
No =⇒ a counter-example is returned
Timeout/memory overflow =⇒ try a simpler model

=⇒ It is important to find the right level of details for the model

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 51 / 64

Formal verification methods

Model Checking: 3 main problems [Vardi, ’99]

Scaling

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 52 / 64

Formal verification methods

Model Checking: 3 main problems [Vardi, ’99]

Scaling
Scaling

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 53 / 64

Formal verification methods

Model Checking: 3 main problems [Vardi, ’99]

Scaling
Scaling
Scaling

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 54 / 64

Formal verification methods

Model Checking: State-of-the-art

Well-founded theory and algorithms
Robust and well-established tools (e.g. VIS, SPIN, COSPAN,
NuXMV, Uppaal)
Very successful for verifying

medium-size “isolated” hardware
protocols

increasingly popular in industry

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 55 / 64

Formal verification methods

Model Checking: Awards

Amir Pnueli: ACM Turing Award 1996
“For his seminal work introducing temporal logic into computing science and for
outstanding contributions to program and system verification.”

Randal E. Bryant, Edmund M. Clarke, Jr., E. Allen Emerson, and Kenneth L.
McMillan ACM Kanellakis Award 1999
“...for their invention of "symbolic model checking,” a method of formally checking
system designs widely used in the computer hardware industry...”.

Gerard J. Holzmann, Robert P. Kurshan, Moshe Y. Vardi, and Pierre Wolper:
ACM Kanellakis Award 2006
“... demonstrated that checking the correctness of reactive systems can be
achieved using a mathematical analysis of abstract machines.”

Edmund Clarke, E. Allen Emerson and Joseph Sifakis:
ACM Turing Award 2008
“... In recognition of their pioneering work on an automated method for finding
design errors in computer hardware and software [Model Checking]”

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 56 / 64

An application example

Outline

1 Motivations

2 Some motivating examples

3 Problems with traditional methods

4 Formal Methods

5 Formal verification methods

6 An application example

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 57 / 64

An application example

Application Ex: Design of a Communication Protocol

Connection
Manager

Profibus

Safety
Layer

Profibus

Safety
Layer

Connection
Manager

Profibus

Safety
Layer

Profibus

Safety
Layer

Connection
Manager

Profibus

Safety
Layer

Profibus

Safety
Layer

Connection
Manager

Profibus

Safety
Layer

Profibus

Safety
Layer

Applicativo Applicativo

B C

Connessione AB1 (attiva)

Connessione AB2 (ridondata)

Applicativo

A

Canale AB Canale BC

Bus 2

Bus 1

.

The Safety Layer: a high complexity train-to-station
communication protocol
Developed by Ansaldo S.F. and ITC-IRST (1999)
Safety-critical

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 58 / 64

An application example

Previous experience

Incomplete, informal specifications
Existing implementation, very unsatisfactory
A history of expensive debugging on-the-field

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 59 / 64

An application example

Application Ex: Design of a Communication Protocol

Approach:
Formal Specification of Functional Requirements with MSC
Architectural and Formal Model in SDL
=⇒ Executable Specification!!
Formal Validation using Model Checking

Subtle bugs detected after exchange of over 200 messages;
counter-examples represented as Message Sequence Charts
(MSCs)
=⇒ easy to understand to engineers

Detailed Informal/Formal specification to code developers.

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 60 / 64

An application example

Specification Abstract FSM diagram: example

WcA_IdleR

DataA_StandbyR

DataA_WcR

(4,5)

(4,5)

(4,5)

(4,5)

(4,5)

(6’)
. . . .

(8) WdisA_WsoR

(7)

IdleA_WsoR(7)

(2)

(2)

(3)
(2)

(2)

DataA_StartR

(1)

(1)

IdleA_IdleR

SyncA_IdleR

StartA_IdleR

DataA_IdleR

DataA_SyncR

(1)

(1)

(3)

. . . .
(6")

(7)

Operative channel (without backup)

Operative channel (with backup)

Non-operative channel

(8)

(1) Re-syncronization

(3) Connection setup (non-initializer side)

(2) Connection setup (initializer side)

(6’) (Active) Connecton drop

(6") (Redundant) Connecton drop

(7) Switch-over (by local CM)

(8) Switch-over (by remote CM)

(5) Data receive

(4) Data send

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 61 / 64

An application example

Specification SDL transition diagram: example

Executable specification!
process type SL_type

STANDBY

SOI

Crc#seq_ok

Reset_Timers

Saf_SO.ind
(self)

SL_resetpars

WFSO_RESP

WFSO_RESP

Saf_SO.resp
(address)

set(now
+timDataT,
timer_CMt)

set(now
+timDataR,
timer_CMr)

SOA

SOA_ACK

pb_ack

SL_resetpars

DATA

WFSO_RESP

Saf_SO.req
(address)

set(now
+timConn,
timer_cr)

SOI

SOI_2_ACK

pb_ack

SL_resetpars

WFSO_RESP

WFSO_RESP

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

DATA

SOA

Crc#seq_ok

reset
(timer_cr)

Saf_SO.cnf
(self)

SL_resetpars

-

timer_cr

Error_Handle
(false)

SL_resetpars

IDLE

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 62 / 64

An application example

Output MSC counter-examples: example

so_double

saf_disc.ind (true,false,pid(a2!sl(1)))

saf_so.req (pid(a1!sl(1)))

saf_so.cnf (pid(a1!sl(1)))

soi

pb_ack

soi

soa

pb_ack

soa

soi

soi

pb_ack

soa

soa

pb_ack

saf_so.req (pid(b1!sl(1)))

saf_so.cnf (pid(b1!sl(1)))

saf_disc.ind (true,false,pid(b2!sl(1)))

inst_1_cm_a.cm

PROCESS
/modello

/cm_a/cm(1)
inst_a1

BLOCK
/modello

/a1

inst_a2

BLOCK
/modello

/a2
inst_1_pb

PROCESS
/modello
/pb_ab12

/pb(1)

inst_b1

BLOCK
/modello

/b1

inst_b2

BLOCK
/modello

/b2

inst_1_cm_b.cm

PROCESS
/modello

/cm_b/cm(1)

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 63 / 64

An application example

Results:

Implementation completed in planned time.
First implementation passed all tests with 0 errors!
Considered a methodological milestone for the company.

Reference:
A. Cimatti, P. Pieraccini, R. Sebastiani, P. Traverso, A Villafiorita
"Formal specification and validation of a vital protocol".
World Congress on Formal Methods. 1999.

Roberto Sebastiani Ch. 01: Formal Methods Monday 18th May, 2020 64 / 64

	Motivations
	Some motivating examples
	Problems with traditional methods
	Formal Methods
	Formal verification methods
	An application example

