
Formal Method Mod. 1 (Automated Reasoning)
Laboratory 3

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

March 31, 2021



Outline

1. Automatic theorem provers for first-order logic
1) Quick overview on E

2. Getting used with E

3. Simple real-life applications

4. Homework



E Theorem prover

I E is a theorem prover for full first-order logic with equality.
I It accepts a problem specification, typically consisting of a

number of first-order clauses or formulas, and a conjecture.
I The system tries to find a formal proof for the conjecture,

assuming the axioms.
I Accessible from the following link: https:

//wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
1/30

https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html


E input format: TPTP

I If we want to use E, we need to know the input format and
the output provided by the tool.

I The input format accepted by the tool is called TPTP
format.

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
2/30



General structure of TPTP file

A typical TPTP benchmark file is characterized by the following
sections:
I The Header section
I The Include section
I The Formulae section

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
3/30



DFG file: header

I The header contains several comment lines (starting with %)
describing the parsed problem.

I It is not mandatory, but it is strongly suggested to provide
some minimal information:

% Name of the file
% Description of the problem
%
% Basic sintax information (n. of constants,
% formulae and predicates involved)

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
4/30



DFG file: include

I Sometimes you have the opportunity to reuse axioms for
multiple problems (i.e. properties of mathematical theories).

I Instead of copy-pasting the same amount of lines multiple
time, you can create some additional file collecting some
axioms and the call them using a single line:

include(’path/to/file’)

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
5/30



DFG file: formulae

I A variable number of lines containing formulae describing the
problem.

I You can represent them in CNF format or (easier) in a
FOL-like representation. You can mix them in the same file!

fof(<name>,<role>,<logic-formula>).
cnf(<name>,<role>,<logic-formula>).

Warning
The dot at the end of each formula is mandatory!

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
6/30



DFG formulae: names and roles

I Names identify the formula representing a property of our
system, so be sure to give meaningful names.

I Roles determine the gives the user semantics of the formula.
I Multiple axiom formulae can be implemented
I A single conjecture or negated_conjecture can be

provided and it will represent the core of the problem (the
prover will try to find a proof to it).

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
7/30

axiom
conjecture
negated_conjecture


DFG formulae: logic representation

Logic formulae can represented using a combination of Boolean
operators and quantifiers:
I NEGATION is represented as ~
I OR is represented as |
I AND is represented as &
I NOR and NAND can be represented as ~| and ~& respectively
I IF is represented as => or <=, depending on the element that

implies the other.
I IFF is represented as <=>
I XOR can be represented as <~>
I EQUALITY is represented as =
I DISEQUALITY is represented as !=

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
8/30

~
|
&
~|
~&
=>
<=
<=>
<~>
=
!=


DFG formulae: logic representation
(cont.d)

Logic formulae can represented using a combination of Boolean
operators and quantifiers:
I The universal and existential quantifiers are represented

respectively as ! and ?.
I The structure of a quantified formula is:

<Quantifier> [<Quantified variables>] : Formula

For instance, to represent the logical formula "There exists A
so that it is equal to f(1)":

? [A] : (A = f(1))

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
9/30

!
?


DFG formulae: precedence

I Negation has higher precedence than quantification, which in
turn has higher precedence than the binary connectives.

I No precedence is specified between the binary connectives;
brackets are used to ensure the correct association.

I The binary connectives are left associative.

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
10/30



E output

Once you create your file using the TPTP format, you can feed it to
the theorem prover using the command ./eprover –auto -s file.p:
I If a proof is found, then the output string will contain the

sentence # Proof found!
I In the case the prover cannot find a proof, we either can

obtain: # No proof found! or a failure message: # Failure:
Resource limit exceeded

If we want to see the output that generated the proof we must add
the option –proof-object.

Giuseppe Spallitta 1. Automatic theorem provers for first-order logic
11/30



Outline

1. Automatic theorem provers for first-order logic

2. Getting used with E

3. Simple real-life applications

4. Homework



First encodings

Exercise 3.1: socrates
Assume that out of the two sentences:
I Sokrates is a human.
I All humans are mortal.

you want to conclude that "Sokrates is mortal". Can you prove it
using the E theorem prover?

Giuseppe Spallitta 2. Getting used with E
12/30



Encoding step-by-step

To encode a problem and feed it to the prover, we must follow this
procedure:
I Convert the problem from it’s domain language to (first-order)

logic.
I Create a file of the the axioms and conjecture using TPTP

format.

Giuseppe Spallitta 2. Getting used with E
13/30



First encodings: FOL formulation

Reading exercise 3.1, there are two axioms and one conjecture to
encode:
1. (A) Human(sokrates)
2. (A) ∀x.(Human(x) ⇒ Mortal(x))
3. (C) Mortal(sokrates)

These sentences are easy to encode, so we can quickly write the
final problem and feed it to the solver.

Giuseppe Spallitta 2. Getting used with E
14/30



First encodings: results

I Now we can feed the encoding into E
⇒ The prover returns Proof found!, so a proof exists.

I We can output the entire proof using the command option
–proof-object and see the intermediate steps.
I The output syntax (SZSOntology) could seem complex to

read, but we can easily grasp the main idea behind the proof.

Giuseppe Spallitta 2. Getting used with E
15/30



Outline

1. Automatic theorem provers for first-order logic

2. Getting used with E

3. Simple real-life applications

4. Homework



Private investigations

Exercise 3.2: who killed Agatha?
Someone who lives in Dreadbury Mansion killed Aunt Agatha.
Agatha, the butler, and Charles live in Dreadbury Mansion, and are
the only people who live therein. A killer always hates his victim,
and is never richer than his victim. Charles hates no one that Aunt
Agatha hates. Agatha hates everyone except the butler. The butler
hates everyone not richer than Aunt Agatha. The butler hates
everyone Aunt Agatha hates. No one hates everyone. Agatha is not
the butler. Therefore : Agatha killed herself.

Giuseppe Spallitta 3. Simple real-life applications
16/30



Private investigations: variables

First we must define constants, predicates and functions that
efficiently describe the problem:
I Constants: agatha, butler, charles
I Predicates/Functions: lives(X), killed(X,Y), hates(X,Y),

richer(X,Y)

Giuseppe Spallitta 3. Simple real-life applications
17/30



Private investigations: FOL formulae (1)

I Someone who lives in Dreadbury Mansion killed Aunt Agatha:
∃x.(lives(x) ∧ killed(x, agatha))

I Agatha, the butler, and Charles live in Dreadbury Mansion...
lives(agatha)
lives(butler)
lives(charles)

I ... and are the only people who live therein.
∀x.(lives(x) → (x = agatha ∨ x = butler ∨ x = charles))

Giuseppe Spallitta 3. Simple real-life applications
18/30



Private investigations: FOL formulae (2)

I A killer always hates his victim...
∀xy.(killed(x,y) → hates(x, y))

I and is never richer than his victim.
∀xy.(killed(x,y) → ¬ richer(x, y))

I Charles hates no one that Aunt Agatha hate.
∀x.(hates(agatha, x) → ¬ hates(charles, x)))

Giuseppe Spallitta 3. Simple real-life applications
19/30



Private investigations: FOL formulae (3)

I Agatha hates everyone except the butler.
∀x.(x != butler → (hates(agatha, x))

I The butler hates everyone not richer than Aunt Agatha ∀x.(¬
richer(x, agatha) → (hates(butler, x))

I The butler hates everyone Aunt Agatha hates.
∀x.(hates(agatha, x) → hates(butler, x)))

Giuseppe Spallitta 3. Simple real-life applications
20/30



Private investigations: FOL formulae (4)

I No one hates everyone.
∀xexistsy.(¬ hates(x,y))

I Agatha is not the butler.
agatha != butler

I CONJECTURE: Agatha killed herself. killed(agatha, butler)

Giuseppe Spallitta 3. Simple real-life applications
21/30



Private investigations: results

I Now we can feed the encoding into E
⇒ The prover returns Proof found!, so a proof exists.

Giuseppe Spallitta 3. Simple real-life applications
22/30



Task manager

Exercise 3.3: task manager
Your PC needs to complete 5 different tasks (A,B,C,D and E) to
correctly save a file. There are some constraints about the order
execution of the tasks:
I We can execute A after D is completed.
I We can execute B after C and E are completed.
I We can execute E after B or D are completed.
I We can execute C after A is completed.

Which is the task that will execute for last?

Giuseppe Spallitta 3. Simple real-life applications
23/30



Task manager: variables

First we must define constants, predicates and functions that
efficiently describe the problem:
I Constants: A, B, C, D, E
I Predicates/Functions: before(x,y)

Giuseppe Spallitta 3. Simple real-life applications
24/30



Task manager: FOL formulae (1)

For each clue we can build a FOL formula representing the priority:
I We can execute A after D is completed.

before(D,A)
I We can execute B after C and E are completed.

before(C,B) ∧ before(E,B)
I We can execute E after B or D are completed.

before(B,E) ∨ before(D,E)
I We can execute C after A is completed.

before(A,C)

Giuseppe Spallitta 3. Simple real-life applications
25/30



Task manager: FOL formulae (2)

If we run the current encoding, we won’t be able to find a proof.
The main reason is the absence of some hidden conditions
(again...)
I We must ensure that no event can happen before itself:

∀x.(¬ before(x,x))
I We must ensure that other events does not interfere with our

problem (we can assume each external event happens before
the 5 ones discussed in the exercise’s corpus):
∀xy.(x != {a,b,c,d,e} ⇒ before(x,y))

Giuseppe Spallitta 3. Simple real-life applications
26/30



Task manager: FOL formulae (3)

If we run the current encoding, we won’t be able to find a proof.
The main reason is the absence of some hidden conditions
(again...)
I We must ensure the transitivity of the function before:

∀xyz.((before(x,y) ∧ before(y,z)) ⇒ before(x,z))
I CONJECTURE: there is an event that is preceded by everyone

(other than itself): ∃x∀y.(x!=y ⇒ before(y,x))

Giuseppe Spallitta 3. Simple real-life applications
27/30



Task manager: results

I Now we can feed the encoding into E
⇒ The prover returns Proof found!, so a proof exists. Which
is the actual event that executes for last?

I If the conjecture is expressed an an existential formula (such as
the case we are analyzing) we can employ the answer option.

I The conjecture will be assigned a new role, question, and the
output will return the set of constants that can satisfy.

Giuseppe Spallitta 3. Simple real-life applications
28/30



Outline

1. Automatic theorem provers for first-order logic

2. Getting used with E

3. Simple real-life applications

4. Homework



Homework

Homework 3.1: love me, love me not...
Anyone whom Mary loves is a football star.
Any student who does not pass does not play.
John is a student.
Any student who does not study does not pass.
Anyone who does not play is not a football star.
Can we conclude that "If John does not study, then Mary does not
love John"?

Giuseppe Spallitta 4. Homework
29/30



Homework

Homework 3.2: who hated Caesar?
I Marcus was a man.
I Marcus was a Roman.
I All men are people.
I Caesar was a ruler.
I All Romans were either loyal to Caesar or hated him (or both).
I Everyone is loyal to someone.
I People only try to assassinate rulers they are not loyal to.
I Marcus tried to assassinate Caesar.

Use E to find who hated Caesar, if someone who hated Caesar
exists.

Giuseppe Spallitta 4. Homework
30/30


	Automatic theorem provers for first-order logic
	Quick overview on E

	Getting used with E
	Simple real-life applications
	Homework

