Formal Methods:
Module |: Automated Reasoning
Ch. 01: Reasoning in Propositional Logic

Roberto Sebastiani

DISI, Universita di Trento, Italy — roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/
Teaching assistant: Giuseppe Spallitta — giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2020-2021

last update: Tuesday 13" April, 2021

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, and S.Tonetta, who detain its copyright. Some exampes displayed in
these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is detained by
the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly
forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in
public without containing this copyright notice.
1/173

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2021/
giuseppe.spallitta@unitn.it

Outline

0 Boolean Logics and SAT

e Basic SAT-Solving Techniques
@ Resolution
@ Tableaux
@ DPLL
@ Stochastic Local Search for SAT

e Ordered Binary Decision Diagrams — OBDDs

© Modern CDCL SAT Solvers
@ Limitations of Chronological Backtracking
@ Conflict-Driven Clause-Learning SAT solvers
@ Further Improvements
@ SAT Under Assumptions & Incremental SAT

e SAT Functionalities: proofs, unsat cores, interpolants, optimization

2/173

Outline

0 Boolean Logics and SAT

3/173

Propositional Logic (aka Boolean Logic)

Basic Definitions

@ Propositional formula (aka Boolean formula)
e T,.L are formulas
@ a propositional atom A¢, Ao, As, ... is a formula;
e if 1 and ¢, are formulas, then

=01, 1 A Y2, 1V P2, ©1 = P2, P1 < Y2, P1 & P2, 1 D P2
are formulas.

® Ex: ¢ Z (~(A1 — A2)) A (Ag & (HAr @ (A2 V —AY))))
@ Atoms(y): the set {Aq, ..., Ay} of atoms occurring in .
o Ex: Atoms(p) = {A1, Az, Az, As}
@ Literal: a propositional atom A; (positive literal) or its negation
—A; (negative literal)
o Notation: if / := —A;, then =/ .= A;
o Clause: a disjunction of literals \/; /; (g (A1 VA VA3V .L)
@ Cube: a conjunction of literals /\; /j (e.g., (A1 A A2 N Ag A ...))

5/173

Semantics of Boolean operators

Truth Table

—a [aAf |aVB | a—= B |a+ B |as B |adf

a p

-
L
-

6/173

Semantics of Boolean operators (cont.)

Note

@ A, V, <> and & are commutative:
(@nB) <= (BAa)
(@vp) <« (BVa)
(@ B) <= (B¢ a)
(a®B) <= (Boa)

@ A, V, <> and @ are associative:
((aAB)AY) = (an(BA7))

(= (aABAY)
((aVvB)Vy) <= (aV(BV7y) =
: -

(

(aVBV7Y)
aerfB)ery) = (ao (Bo7) (a < B<7)
adB)@y) <= (ad(Bo7)

@ —, < are neither commutative nor associative:

(a = B) > (B—a)
((a=pB)—=7) <~ (a=(6-=17))

adp o)

7/173

Remark: Semantics of Implication “—” (aka “=", “2”)

The semantics of Implication “a — /3” may be counter-intuitive

a — [“the antecedent (aka premise) « implies the consequent (aka

conclusion) 8” (aka “if a holds, then holds” (but not vice versa))
@ does not require causation or relevance between « and g

e ex: “5is odd implies Tokyo is the capital of Japan” is true in p.l.

(under standard interpretation of “5”, “odd”, “Tokyo”, “Japan”)
o relation between antecedent & consequent: they are both true
@ is true whenever its antecedent is false
e ex: “5is even implies Sam is smart” is true
(regardless the smartness of Sam)
e ex: “5is even implies Tokyo is in ltaly” is true (!)
o relation between antecedent & consequent: the former is false
@ does not require temporal precedence of o wrt. 3

e ex: “the grass is wet implies it must have rained” is true
(the consequent precedes temporally the antecedent)

8/173

Syntactic Properties of Boolean Operators

anie% <~ (6]
(aVvp) <= =(-an-p)
~(avp) = (can-b)
(anp) <= —(-aV-p)
~(anB) = (cav-p)
(a=p) < (-aVp)
~(a=p) <= (aA-p)
(ap) <= (aVv-h)
(e p) = (caAp)
(@< pB) — ((a—=p)A(ap))
= ((caVvB)A(aV-p))
(e p) = (caep)
<~ (a <~ —ﬂ)
= ((aVvB)A(maV-p))
(a®B) = —(aep)

Boolean logic can be expressed in terms of {—, A} (or {—, V}) only! J
97173

Exercises

@ For every pair of formulas « <= 3 below, show that o and 3 can
be rewritten into each other by applying the syntactic properties
of the previous slide

o (A1 AN A2) VA <— (A1 V A3) N (A2 V A3)
o (A1 V A2) NAz < (A1 A A3) V (Ag A\ A3)
e A — (A2 — (A3 —)A4)) <— (A1 /\Ag/\Ag) — Ay

A — (Ag A A3) < (A1 — Ag) VAN (A1 — A3)

(A1 V Ag) — Ay — (A1 — A3) A (A2 — A3)

A A — (A1 V Ag) N (—\A1 V ﬂAg)

—‘A1 H—‘Ag <~ A1 <—>A2

Al A A3 <— A9 A D A3

10/173

Tree & DAG Representations of Formulas

@ Formulas can be represented either as trees or as DAGS
(Directed Acyclic Graphs)
@ DAG representation can be up to exponentially smaller
@ in particular, when «’s are involved

(A1 & Az) < (Ag < As)
(2
(((Ar > A2) = (A3 < Ag))A
((AS < A4) — (A1 <> Ag)))
U
(A4 = A2) A (A2 — A1) — ((As — Ag) A (Ag — A3))) A
(((As — Ag) A (As — A3)) = (A1 — A2) A (A2 — Ar))))

11/173

Tree & DAG Representations of Formulas: Example

(((Ar = A2) A (A2 = A1) = ((As — Ag) A (Ag — Ag))) A
(((A3 — Ag) A (Ag — A3)) = (A1 — A2) A (A2 — Ay))))

Al A2 A2 Al A3 A4 A4 A3 A3 A4 A4 A3 Al A2 A2 Al
Tree Representation

Al A2 A3 A4

DAG Representation

Semantics: Basic Definitions

@ Total truth assignment p for ¢:
w: Atoms(p) — {T, L}
e represents a possible world or a possible state of the world
@ Partial Truth assignment p for ¢:
w: A—{T, L}, AC Atoms(yp).
e represents 2k total assignments, k is # unassigned variables
@ Notation: set and formula representations of an assignment

@ 1 can be represented as a set of literals:

EE)(: {/L(/41) = 177/L(/42) = J*} = {’41a 47/42}
@ u can be represented as a formula (cube):

EX: {/L(A1) = T,/L(Az) = J_} — (A1 N —\Ag)

13/173

Semantics: Basic Definitions [cont.]

@ A total truth assignment p satisfies ¢ (1 is a model of ¢, i = ¢):
M':A,‘<:>M(A,‘):T
pE @< not =g
pEaAN<—= plEaand pk=p
pEaVB<—=pkEaorpkEp
pEa— <= ifukEa, thenpy =g
pEae = ukEaiful=p
LEa®B <= ukE aiff not ul= 3

@ M(¢) = {1u] 11 = ¢} (the set of models of)

@ A partial truth assignment ., satisfies ¢
iff all total assignments extending p satisfy ¢
e Ex: {A1} ': (A1 \/Ag))
because both {A, A2} = (A1 V Ax) and {Ay, -Ax} = (A1 V A2)
@ ¢ is satisfiable iff u = ¢ for some u (i.e. M(p) # 0)

@ aentails (e EP):aESiffuEa= uE pforall us
(i.e., M(a) € M(PB))

@ pisvalid (= ¢): E ¢ iff u = forall us (i.e., u € M(y) forall us)

v
147173

Properties & Results

Property
v is valid iff ¢ is not satisfiable

Deduction Theorem
aEpiffa— pisvalid (F a — p)

Corollary
a = B iff a A =5 is not satisfiable

Validity and entailment checking can be straightforwardly reduced to
(un)satisfiability checking!

15/173

Equivalence and Equi-Satisfiability

@ « and S are equivalent iff, for every p,
w = aiff p =B (i.e., if M(a) = M(B))
@ « and § are equi-satisfiable iff
exists pq s.t. g = aiff exists pp s.t. w2 E B
(i.e., if M(a) # 0 iff M(B) # 0)
@ «, equivalent
Y
o, (B equi-satisfiable
@ EX: A; vV As and (Ay V —A3) A (Az V As) are equi-satisfiable, not
equivalent.
{ﬂA1 , Ao, A3}): (A1 V Ag), but
{—\A1,A2,A3} l;é (A1 V —|A3) AN (A3 V A2)
@ Typically used when £ is the result of applying some
transformation T to a: 8 < T(w):
e T is validity-preserving [resp. satisfiability-preserving] iff
T(«) and « are equivalent [resp. equi-satisfiable]

=)

Complexity

@ For N variables, there are up to 2N truth assignments to be
checked.

@ The problem of deciding the satisfiability of a propositional
formula is NP-complete

— The most important logical problems (validity, inference,

entailment, equivalence, ...) can be straightforwardly reduced to

(un)satisfiability, and are thus (co)NP-complete.

4

No existing worst-case-polynomial algorithm.

17/173

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

@ Positive/negative occurrences

@ ¢ occurs positively in ;

e if =y occurs positively [negatively] in ¢,
then 4 occurs negatively [positively] in ¢

o if o1 A w2 OF 1 V o occur positively [negatively] in ¢,
then o4 and p, occur positively [negatively] in ¢;

e if o1 — o occurs positively [negatively] in ¢,
then @1 occurs negatively [positively] in ¢ and ¢, occurs positively
[negatively] in ;

o if 1 <> o Or Y1 @ o OCCUrs in o,
then 4 and 2 occur positively and negatively in ¢;

18/173

Negative Normal Form (NNF)

@ ¢ is in Negative normal form iff it is given only by the recursive
applications of A, V to literals.

@ every ¢ can be reduced into NNF:
(i) substituting all —’s and «’s:

a—pf — -aVp
af = (-aVp)A(aV-p)

(ii) pushing down negations recursively:

“(anp) = -aV-p
“(aVvp) = —-an-0
e’ — «

@ The reduction is linear if a DAG representation is used.
@ Preserves the equivalence of formulas.

19/173

NNF: Example

(A1 < Az) < (As < Ag)
"
((((A1 = A2) A (A1 < A2)) — ((As — Ag) A (Ag < Ag)))A
(((A1 — AQ) A (A1 — Ag)) — ((A3 — A4) VAN (A3 = A4))))

(=((=A1 V A2) A (A1 V —AR))

(8
Vv
((mA1 V A2) A (A1 V —A2)) V =

((mAs V Ag) A (A3 V —Ag)))N
(A3 V Ag) A (A3 V —A))))

(8
((((A1 A =A2) V (A1 A A2)) V ((mA3 V Ag) A (Az V —Ag)))A
((FA1 V A2) A (A1 V —A2)) V ((As A =Ag) V (mA3 A Ag))))

20/173

NNF: Example [cont.]

Note

/®

/}:;}(1:}:) /;:X<(>j§zx\ %L;:i;tx\ \\\\\:ZZD ;?
Al _A2-A1 A2 -A3 A4 A3 -A4 AL A2 Al -A2 A3 -A4-A3 A4
Tree Representation

@

wo
/@%\,ﬁfﬁc }@
Al —A2-Al A2™ -Aﬁ Ad A3 —AA

DAG Representation

For each non-literal subformula ¢, ¢ and —¢ have different
representations = they are not shared.

v

21/173

Optimized polynomial representations

And-Inverter Graphs, Reduced Boolean Circuits, Boolean Expression
Diagrams
@ Maximize the sharing in DAG representations:
{A, <+, =}-only, negations on arcs, sorting of subformulae, lifting
of ='s over <’s,...

b
N
B

22/173

Conjunctive Normal Form (CNF)

@ ¢ is in Conjunctive normal form iff it is a conjunction of
disjunctions of literals:

L K
j

i 1

1

@ the disjunctions of literals \/j'-_("_1 i are called clauses
=

@ Easier to handle: list of lists of literals.
= no reasoning on the recursive structure of the formula

23/173

Classic CNF Conversion CNF ()

@ Every ¢ can be reduced into CNF by, e.g.,
(i) expanding implications and equivalences:
a—pf = -aVp
aep = (~aVp)A(aV-p)
(ii) pushing down negations recursively:
“(aANB) = —-aV-p
—“(aVp) = -aA-f
(e — «
(iii) applying recursively the DeMorgan’s Rule:
(@AB)Vy = (aV)A(BVY)
@ Resulting formula worst-case exponential:
@ ex: ||CNF(\/,{11(/,-1 Alp)|| =
H(/11 V by \/...\//N1)/\(/12\//21 \/...\//N1)/\.../\(/12\//22\/...\///\/2)” =2N
@ Atoms(CNF(yp)) = Atoms(yp)
@ CNF(y) is equivalent to .

@ Rarely used in practice.

za/1

Labeling CNF conversion CNFapei(¢)

Labeling CNF conversion CNF,46/(¢) (aka Tseitin’s CNF-ization)

@ Every ¢ can be reduced into CNF by, e.g., applying recursively
bottom-up the rules:
o = ol(iVv])|BIACNF(B <« (iVv]))
o = l(hA)|BIACNF(B < (A1)
o = ol(h [)IB] A CNF(B & (f ¢ }))
l;, |; being literals and B being a “new” variable.
@ Worst-case linear!
@ Atoms(CNFiapei(p)) 2 Atoms(s)
@ CNFape/(i) is equi-satisfiable (but not equivalent) to ¢.
@ Much more used than classic conversion in practice.

25/173

Labeling CNF conversion CNFape/(p) (cont.)

CNF(B« (V) <

=BV VA
(B V =lh)A

CNF(B« (n])) <

)
(B)
(=B V)N
(=BV)
(BV ~/i=)

CNF(B < (<) —

(=BV =l V [)A
(=B V iV —)A
(BV IV A
(BV IV 1)

26/173

Labeling CNF Conversion CNF ¢ — Example

B15 @
P
\®%

BS\%@\ TN TN

—A3 Al A5 -A4 -A3 A4 A2 -A6 Al A4 A3 A5 -A2 A6 Al -A4

CNF(B1 — (—|A3 V Aq))/\ (—|B1 V A3z V A1) AN (B1 Vv As) AN (B1 V —A;)/\
VAN VAN
CNF(BS > (A1 V —\A4))/\ (“Bg VAV —\A4) AN (Bs V —‘A1) A (Bs \Y A4)/\
CNF(BQ — (B1 > Bg))/\ (—|Bg V =B Vv Bz) N (“Bg V By Vv —‘Bg)/\

(Bg V By Vv Bg) AN (Bg V =B Vv ﬁBz)/\
VAN = ..A
CNF(Biz + (B7 A Bg))A (B12 V =Bz V =Bg) A (=Bi2 V B7) A (=Bi2 V Bg)A
CNF(B13 <~ (Bg \Y B10))/\ (ﬁB13 V By Vv B10) A (313 V ﬁBg) (B13 \Y ﬁBm)
CNF(B14 > (B11 V B12))/\ (—|B14 V Bi1 Vv B12) N (B14 \ —|B11) N (B14 \ —|B12)
CNF(B15 > (B13 AN B14))/\ (B15 Vv —\B13 Vv —\B14) (—\B15 Vv B13) (B15 Vv B14)/\

Bis Bis

27/17

Labeling CNF conversion CNF/zpe (improved)

@ As in the previous case, applying instead the rules:

o = VBl AGNE(ES (v i) (V) pos
o — @l(lvIIBl ACNE((hv 1) — B) if (V1) neg.
o = @l(hnl)B] ACNF(B— (hAL) if (kA1) pos.
o — @l(iADIBl ACNE((iAL) — B) if (AL neg.
o — ¢llh h)IB] ACNF(B— (ke 1) if (] pos.
o — ¢l o LBl ACNF((l+)~ B) if (& 1) neg

@ Smaller in size:

CNF(B— (V1) = (=BV V)
CNF(((li v) = B)) = (=l v B)A(=lV B)

28/173

Labeling CNF conversion CNFape/(p) (cont.)

CNF(B— (iv1])) <= (=BVIVvl)
CNF(B <« (V1)) <= (BV-hA
(BV —I)
CNF(B = (linh)) <= (=BVI)A
(=BV1)
CNF(B<«< (linl)) <= (BV—l-h)
CNF(B— (i< })) <= (=BV VA
(=B V ;v =l)
CNF(B <« (li <])) <= (BV iV I[N
(BV =l v 1)

29/173

Labeling CNF conversion CNF/p¢) — example

BIS@
A Ffﬁ \

Al A4 A3 -A5 -A2 A6 Al -A4
Basic Improved

CNF(B, < (~AsVAD)) A CNF(B, < (-AsV AD)) A
A N
CNF(Bg — (A1 V —\A4)) A CNF(Bg — (A1 Vv ﬁA4)) AN
CNF(By < (B > B2)) A CNF(By — (B & B)) A
A N
CNF(B12 — (B7 A Bs)) A CNF(B12 — (B7 AN Bg)) AN
CNF(B13 <~ (Bg \Y B10)) A CNF(B13 — (Bg V B10)) A
CNF(B14 — (B11 Vv B12)) AN CNF(B14 — (B11 V B12)) AN
CNF(B15 — (B13 A B14)) A CNF(B15 — (B13 A\ B14)) AN
Bis Bis

30/173

Labeling CNF conversion CNF ., — Optimizations

@ Do not apply CNF/pe) when not necessary:
(€.9., CNFiapei(o1 A p2) = CNFiapei(p1) A 2,
if v already in CNF)
@ Apply DeMorgan’s rules where it is more effective: (e.g.,
CNFiapei(p1 N(A — (BAC))) = CNFjapei(1) AN(—AVB)A(-AVC)
@ exploit the associativity of A’s and V’s:
(A1 V (A2 V Ag)) cee. = CNF(B <~ (A1 V Ao Vv A3))
B
@ before applying CNF e, rewrite the initial formula so that to
maximize the sharing of subformulas (RBC, BED)

31/173

Exercises

@ Consider the following Boolean formula ¢:
2((0AT = M)A (As = Ag))V((As = Ag) A(A7 — —Ag))
Compute the Negative Normal Form of ¢

© Consider the following Boolean formula ¢:
(AN AV (ArA Ay V (A3 A —Az) V (1 As A —As))
@ Produce the CNF formula CNF ().

@ Produce the CNF formula CNF zpei().
© Produce the CNF formula CNF () (improved version)

32/173

Outline

e Basic SAT-Solving Techniques

33/173

Propositional Reasoning: Generalities

@ Automated Reasoning in Propositional Logic fundamental task
e Al, formal verification, circuit synthesis, operational research,....
@ Important in Al: KB = «o: entail fact o from knowledge base KR
(aka Model Checking: M(KB) € M(«))
e typically KB >> «
@ All propositional reasoning tasks reduced to satisfiability (SAT)
o KR E a = SAT(KR A —«)=false
o input formula CNF-ized and fed to a SAT solver
@ Current SAT solvers dramatically efficient:

e handle industrial problems with 106 — 107 variables & clauses!
e used as backend engines in a variety of systems

34/173

Truth Tables

@ Exhaustive evaluation of all subformulas:

P1 N\ p2

jry

p1 V2

©1 — P2

P12 P2

H =+ H%
H = S

-

+H -k

H - A

H

@ Requires polynomial space (draw one line at a time).

@ Requires analyzing 2/407s(#)! Jines.

@ Never used in practice.

35/173

Outline

e Basic SAT-Solving Techniques
@ Resolution

36/173

The Resolution Rule

@ Resolution: deduction of a new clause from a pair of clauses
with exactly one incompatible variable (resolvent):

common resolvent c’ common resolvent c"”
T =N —_—— ——— A~ A
(hv..VIkV | VlksV.. Vi) (hv ..V v =l VK4 V..VI)
(hV VIV ke VoV V g Vv)

common c’/ c’

(AvBv C v DVE) (AvB vV =-C Vv F)
(AvBvV DVE Vv F)

@ Note: many standard inference rules subcases of resolution:
(recall that o — 8 <= —a V)

o Ex:

A—-B B—C
A—C

A A—B
B

-B A—~B

(trans.) A

(m. ponens) (m. tollens)

v

37/173

Improvements: Subsumption & Unit Propagation

Alternative “set” notation (I' clause set):
I P1,-6n r,CiVvp,CoV—p
T, ¢4, O e LCvp,CV-pCVCy,

@ Clause Subsumption (C clause):
FTACA(CV V)

FA(C)
@ Unit Resolution: CA(NAIV V)
AN AV
@ Unit Subsumption: CA()A(IV V)
rA()

@ Unit Propagation = Unit Resolution + Unit Subsumption

4

“Deterministic” rule: applied before other “non-deterministic” rules!

J

38/173

Basic Propositional Inference: Resolution [33, 10]

@ Assume input formula in CNF
o if not, apply Tseitin CNF-ization first
= is represented as a set of clauses
@ Search for a refutation of ¢ (is ¢ unsatisfiable?)
e recall: o = g iff a A =8 unsatisfiable

@ Basic idea: apply iteratively the resolution rule to pairs of clauses
with a conflicting literal, producing novel clauses, until either

e a false clause is generated, or
e the resolution rule is no more applicable

@ Correct: if returns an empty clause, then ¢ unsat (a =)

@ Complete: if ¢ unsat (« = B), then it returns an empty clause
@ Time-inefficient

@ Very Memory-inefficient (exponential in memory)

@ Many different strategies

v

39/173

Resolution: basic strategy [10]

function DP(T)

if Lerl /* unsat */
then return False;

if (Resolve() is no more applicable to I') /* sat */
then return True;

if {a unit clause (/) occurs in I'} /* unit */
then T := Unit_Propagate(l,T));
return DP(T)

A = select-variable(T); /* resolve

r = r U UAEC’,—\AEC”{RGSOIVG(C/’ C”)} \ UAGC’,—\AEC”{C,’ C”}},

return DP(T)

*/

Hint: drops one variable A € Atoms(I') at a time

40/173

Resolution: Examples

(A1 \/A2) (A1 \ —|A2) (—|A1 \/AQ) (—|A1 V —|A2)

(Ag) (A2 V —|A2) —|A2 V A2) (—|A2)

I

(
I
L

— UNSAT

41/173

Resolution: Examples (cont.)

(AV BV C) (BV-CV~F) (-BV E)
!
(AVCVE) (-CV ~FV E)

I
(Av EV—F)

— SAT

42/173

Resolution: Examples

(AV B) (AV-B) (~AV C) (-AV —=C)

J
(A) (~AV C) (=AV =C)

I
(€) (=€)

(_|
¢
i

— UNSAT

43/173

Resolution — summary

@ Requires CNF

@ [may blow up
= May require exponential space

@ Not very much used in Boolean reasoning (unless integrated
with DPLL procedure in recent implementations)

44/173

Outline

e Basic SAT-Solving Techniques

@ Tableaux

45/173

Semantic tableaux [39]

@ Search for an assignment satisfying ¢
@ applies recursively elimination rules to the connectives

@ If a branch contains A; and —A;, (v; and —);) for some i/, the
branch is closed, otherwise it is open.

@ if no rule can be applied to an open branch p, then = ¢;
@ if all branches are closed, the formula is not satisfiable;

46/173

Tableau elimination rules

p1Apa (1 Vpa) —(p1 = ¢2)
1 A P1 o
P2 2 2 (A-elimination)
e R,
2 (——-elimination)
p1Ver (et Ap2) 1= S
e e e T (v-elimination)
p1 & 02 (e € p2)
Y1 TP P TP
Y2 T2 T2 P2

(+ -elimination).

47/173

Semantic Tableaux — Example

o= (A1 VA) A (A1 V =A) A (RA1 V Ag) A (HA1 V —AR)

48/17

Tableau algorithm

function Tableau(I)

if Aieland -A; el /* branch closed */
then return False;

if (01 Ap2) €T /* A-elimination */
then return Tableau(l' U {¢1, 2} \{(¢1 A ©2)});

if (-—pq) el /* ——-elimination */
then return Tableau(l U {¢1}\{(——¢1)});

if (o1 Vo) el /* v-elimination */

then return Tableau(l U {p1}\{(¢v1 V ¢2)}) or
Tableau(T U {p2}\{(1 V ¥2)});

return True; /* branch expanded */

49/173

Semantic Tableaux: Example

(mA1) A

(AV 2) A\

(AV A V A3) A\

(As V -A; V Ae) A

(Ay V -As V —|A5) A

(ﬁA3 Vv -As V A7) A
(—|A3 \Y -A; V —'A7) —A;

—> unsat

50/173

Semantic Tableaux — Summary

Handles all propositional formulas (CNF not required).
Branches on disjunctions

Intuitive, modular, easy to extend
= loved by logicians.

Rather inefficient
— avoided by computer scientists.

Requires polynomial space

51/173

Outline

e Basic SAT-Solving Techniques

e DPLL

52/173

DPLL [10, 9]

@ Davis-Putnam-Longeman-Loveland procedure (DPLL)

@ Tries to build an assignment p satisfying ¢;

@ At each step assigns a truth value to (all instances of) one atom.
@ Performs deterministic choices first.

53/173

DPLL rules

o1 A (]) -
) (U

»
S (I Pure)

4

AT el (P

(/'is a pure literal in ¢ iff it occurs only positively).

@ Split applied if and only if the others cannot be applied.

@ Richer formalisms described in [40, 29, 30]

54/173

DPLL — example

o= (A1 VA) A (A1 V =A) A (A1 V A) A (2A1 V —AR)

Al -Al

A2 A2

55/173

DPLL Algorithm

function DPLL(p, 1)

ifo=T /* base */
then return True;

ifo=1 /* backtrack */
then return False;

if {a unit clause (/) occurs in ¢} /* unit */
then return DPLL (assign(l, v), u A 1);

if {a literal / occurs pure in ¢} /* pure ¥/
then return DPLL (assign(l, v), u A 1);

| := choose-literal(p); /* split */

return DPLL(assign(l,¢),u A1) or
DPLL (assign(—1,), p A —l);

@ The pure-literal rule is nowadays obsolete.

@ choose-literal(y) picks only variables still occurring in the formula
56/173

DPLL — example

DPLL (without pure-literal rule)
Here “choose-literal” selects variable in alphabetic, selecting true first.

97

DPLL — summary

Handles CNF formulas (non-CNF variant known [1, 15]).

Branches on truth values
— all instances of an atom assigned simultaneously

Postpones branching as much as possible.
Mostly ignored by logicians.

(The grandfather of) the most efficient SAT algorithms
—> loved by computer scientists.

@ Requires polynomial space
@ Choose_literal() critical!
@ Many very efficient implementations [42, 38, 2, 28].

58/173

Outline

e Basic SAT-Solving Techniques

@ Stochastic Local Search for SAT

59/173

Stochastic Local Search SAT techniques: GSAT,
WSAT [37, 36]

@ Hill-Climbing techniques: GSAT, WSAT

@ looks for a complete assignment;

@ starts from a random assignment;

@ Greedy search: looks for a better “neighbor” assignment
@ Avoid local minima: restart & random walk

60/173

The GSAT algorithm [37]

function GSAT(p)
for i := 1 to Max-tries do
w = rand-assign(y);
for j := 1 to Max-flips do
if (score(y, 1) = 0)
then return True;
else Best-flips := hill-climb(y, u);
A, = rand-pick(Best-flips);
p = flip(Aj, p);
end
end
return “no satisfying assignment found”.

61/173

The WalkSAT algorithm(s) [36]

function WalkSAT(p)
for i := 1 to Max-tries do
u = rand-assign(y);
for j := 1 to Max-flips do
if (score(yp, 1) = 0)
then return True;
else C := randomly-pick-clause(unsat-clauses(y, u));
A, = heuristically-select-variable(C);
p = flip(Aj, p);
end
end
return “no satisfying assignment found”.

@ many variants available [18, 41, 3]

62/173

SLS SAT solvers — summary

@ Handle only CNF formulas.

@ Incomplete

@ Extremely efficient for some (satisfiable) problems.
@ Require polynomial space

@ Used in Atrtificial Intelligence (e.g., planning)

@ Lots of variants (see e.g. [20])

@ Non-CNF Variants: [34, 35, 4]

63/173

Outline

e Ordered Binary Decision Diagrams — OBDDs

64/173

Ordered Binary Decision Diagrams (OBDDs) [8]]

Canonical representation of Boolean formulas

@ “If-then-else” binary direct acyclic graphs (DAGs) with one root
and two leaves: 1,0 (or T, L;or T, F)

@ Variable ordering A¢, Az, ..., Ap imposed a priori.

@ Paths leading to 1 represent models
Paths leading to O represent counter-models

Note

Some authors call them Reduced Ordered Binary Decision Diagrams
(ROBDDs)

65/173

OBDD - Examples

OBDDs of (ay «» by) A (az <+ bo) A (az <+ bz) with different variable
orderings

v

66/173

Ordered Decision Trees

@ Ordered Decision Tree: from root to leaves, variables are
encountered always in the same order

@ Example: Ordered Decision tree for ¢ = (a A b) V (¢ A d)

,@‘\”

IO, \@
\ r’, \w
(@ @ ((@)
; ;0, ,

'/

e
-

—_- _

— SN
L |

—

(c)
&
ih oY

@~
Ow

o= _

1

67/173

From Ordered Decision Trees to OBDD'’s: reductions

@ Recursive applications of the following reductions:
e share subnodes: point to the same occurrence of a subtree
(via hash consing)
e remove redundancies: nodes with same left and right children can
be eliminated (“if Athen B else B” — “B”)

68/173

Reduction: example
@'
4

Reduction: example

Detect redund

Reduction: example

Remove redundacies: e

®)

// N\ »

Reduction: example

Remove redundacies: e

jog /

N
é@é@é@
g

b

Reduction: example

Share identical nodeS'

?ﬂ\r@

E‘k@“
-
=

PN P
I_OJ@I_OJ@

Reduction: example

Share identical nodes;

69/17

Reduction: example

Detect redundancies:

69/17

Reduction: example

Remove redundancies

Final OBDD!

v

69/173

If-Then-Else Operators: “ite(...)”

If-Then-Else Operators: “ite(...)”
@ ite(¢, ", pt): “If » Then o Else ¢~

@ ite(d, 0", 0ot) Z((mpV e)A(PVt) <= ((pAQT)V (mpAph))
° propertles.
‘ite(gba SDT’ SDJ) - Ite(¢7 _‘SDTa _'SOJ_)
ite(¢, 0{ , 1) op ite(p, 0], 03) = ite(9, (s@?op ©3), (@%OP wé)
ite(p1, @1 , p1) Op ite(d2, @3, 03) = ite(dy, (s01 op ite(¢z, <p2 %] 2)
(‘P1 op ’te(¢27 802 » P2)
= ite(ps, Elte(¢1 : 901 01 1)op @5

)
)
)
)
ite(p1, 01 , 07)0P ¥3°)

)
)

op € {N,V,—, +, <, D}

70/173

Recursive structure of an OBDD

Assume the variable ordering A¢, Ao, ...

OBDD(T, {Ar,As, ... An}) = 1
OBDD(L,{Ar,As, ..., An}) = O

OBDD(p, {A1, A, ..., An}) = Iif A
then OBDD(¢[A1|T], {As, ..., An})
else OBDD(y[A1| L], {As, ..., An})

, An:

71/173

Incrementally building an OBDD

obdd_build(T, {..}) :=
obdd_build(L, {..}) :=
obdd_build(A;, {...}) == (A,,T 1),

obdd_build((—p), {A1, ..., An}) :=
apply(—, obdd_build(p, { Ay, ..., An}))

obdd_build((p1 0p 2), {A1, ..., An}) =

reduce(
apply(op,

obdd_build(1, {Ar, ..., An}),

obdd_build(p2, {A1, ..., An})
))

op € {\,V,—, <+, <, D}

72/173

Incrementally building an OBDD (cont.)

@ apply (op, O;, 0)) =

(O op O))

® apply (-, ite(Ai, o], o)) =
ite(A;, apply (=, ¢}), apply (=, 7))
° app/y (Op7 Ite(A,,cp,T,cp,L), Ite(A],(pjT,(p]J'))

if (A; = Aj) then ite(A;,
if (A; < Aj) then ite(A;,

if (A, > A/) then ite(Aj,

op € {\,V,—, <+, D}

apply (op, so, 3 i),
apply (op, so, 7))
apply (op P, o) 7o ite(An o], ¢;
apply (op; ¢; ,Ite(A,,so, ,

apply (op, ite(A i ,so,)
apply (op, ite(Ai, ¢/, ")

)
+)
l

of
N

);
)
);
)

if (Oie{T,L}orQe{T,L})

73/173

Incrementally building an OBDD (cont.)

@ Ex: build the obdd for A; v A, from those of Aq, A> (order:
Aq, Ag): Ay Az

apply(V, ite(Ay, T, L), ite(Az, T, 1))
= ite(Aq, apply(Vv,T,ite(A, T, L)), apply(V, L, ite(As, T, L))
= ite(Ay, T, ite(A2, T, 1))

@ Ex: build the obdd for (Ay V Az) A (Ay V —Az) from those of
(A1 V Az), (A1 Vv —A) (order: Ay, As):
(A1VAz) (A1V-4p)

apply (A, ite(Aqy, T, ite(Az, T, 1)), ite(A1, T,ite(Az, L, T)),
= ite(Aq, apply(N, T,T), apply(A, ite(Az, T, L), ite(As, L, T)
= ite(Ay, T, ite(Az, apply(A, T,L1), apply(A, L, T)))
= ite(Ay, T, ite(Az, L, 1))
= ite(Ay, T, 1)

V.

74/173

OBBD incremental building — example

= (A1 VA) A (A1 V —A2) A (A1 V A2) A (RA1 V —A)

(AlvA2) (Alv-A2) (-ALv A2) (-A2 v -A2)
(ALvA2) A (ALv -A2) (-Alv A2) A (-Al v -A2)

(ALVA2) A (ALV -A2) A (-ALv A2) A (-Al v -A2)

75/17

Critical choice of variable Orderings in OBDD’s

(a1 <> by) A (a2 » b2) A (a3 <> bs)

Linear size Exponential size

OBDD’s as canonical representation of Boolean
formulas

@ An OBDD is a canonical representation of a Boolean formula:
once the variable ordering is established, equivalent formulas
are represented by the same OBDD:

01 ¢ p <= OBDD(p1) = OBDD(y)

@ equivalence check requires constant time!
—validity check requires constant time! (¢ <> T)
—(un)satisfiability check requires constant time! (¢ « 1)

@ the set of the paths from the root to 1 represent all the models of
the formula

@ the set of the paths from the root to 0 represent all the
counter-models of the formula

77/173

Exponentiality of OBDD’s

@ The size of OBDD’s may grow exponentially wrt. the number of
variables in worst-case

@ Consequence of the canonicity of OBDD’s (unless P = co-NP)

@ Example: there exist no polynomial-size OBDD representing the
electronic circuit of a bitwise multiplier

Note

The size of intermediate OBDD’s may be bigger than that of the final
one (e.g., inconsistent formula)

78/173

Useful Operations over OBDDs

@ the equivalence check between two OBDDs is simple
e are they the same OBDD? (= constant time)

@ the size of a Boolean composition is up to the product of the size
of the operands: |f op g| = O(|f| - |g|)

AT

79/17

Boolean quantification

Shannon’s expansion:

@ If v is a Boolean variable and f is a Boolean formula, then
Av.f = fly—o V fly=1
Vv.f = f|V:0Af|V:1

@ v does no more occur in Jv.f and Vv.f !l

@ Multi-variable quantification: J(wy, ..., wy).f == Jwy ... Jw,.f

@ Intuition:
o 4 = 3Jv.fiff exists tvalue € {T, L} s.t. pU{v := tvalue} = f
o u |=Vv.fiff forall tvalue € {T, L}, pU{v := tvalue} = f

@ Example: 3(b,c).((anb)V(cAnd)) = avd

Note

Naive expansion of quantifiers to propositional logic may cause a
blow-up in size of the formulae

V.

80/173

OBDD’s and Boolean quantification

@ OBDD'’s handle quantification operations quite efficiently

e if fis a sub-OBDD labeled by variable v, then f|,— and f|,—o are

the “then” and “else” branches of f

— lots of sharing of subformulae!

v

81/173

Example

Let o & (AA (BV C)) and ¢’ & JAVB.. Using the variable ordering “A, B, C”,
draw the OBDD corresponding to the formulas ¢ and ¢'.

»Z (AN (BV C))

82/173

Example (cont.)

¢ € 3IAVB.(AA(BVC))

o
@

JAVB.¢

VB.(AA(BV C)))[A:=T]
VB.(BV C))
(BvO)[B:=T]

(T

C

A}

A

which corresponds to the following OBDD:

(
A C)

BV C)[B:= 1])

Vv (VB.(AA(BV C)))[A

vV VB.L
v L

= 1]

83/173

OBDD — summary

@ Factorize common parts of the search tree (DAG)
@ Require setting a variable ordering a priori (critical!)
@ Canonical representation of a Boolean formula.

@ Once built, logical operations (satisfiability, validity, equivalence)
immediate.

@ Represents all models and counter-models of the formula.
@ Require exponential space in worst-case

@ Very efficient for some practical problems (circuits, symbolic
model checking).

84/173

Outline

© Modern CDCL SAT Solvers

85/173

Outline

© Modern CDCL SAT Solvers
@ Limitations of Chronological Backtracking

86/173

DPLL: “Classic” chronological backtracking

DPLL implements “classic” chronological backtracking:
@ variable assignments (literals) stored in a stack
@ each variable assignments labeled as “unit”, “open”, “closed”

@ when a conflict is encountered, the stack is popped up to the
most recent open assignment /

@ /is toggled, is labeled as “closed”, and the search proceeds.

87/173

DPLL Chronological Backtracking: Drawbacks

Chronological backtracking always backtracks to the most recent
branching point, even though a higher backtrack could be possible
— lots of useless search!

88/173

DPLL Chronological Backtracking: Example

C1
Co
C3
Cs
Cs
Cs

Cs
Cg

i —A1 VA

i —A1 V Az V Ag
:=AV —A3 VA
:=AsV A5V A

1 =ALV Ag V Aqq

i —A5 V —Ag

AT VAV AL

: AV Ag

: A7V —Ag V A3

89/173

DPLL Chronological Backtracking: Example

C1
Co
C3
Cs
Cs
Cs

Cs
Cg

{...;7Ag, ~A10, ~A11, A12, A1s, ...

i —A1 VA

i A VA3V
:=AV —A3 VAL
i —=ALV As Vv

: ALV Ag V

i —A5 V —Ag

A VAV

: A1V Ag

i A7V —Ag Vv

(initial assignment)

}

A
ﬂA{o\
ﬁA1}\
A/

Ay

89/173

DPLL Chronological Backtracking: Example

Cq: V Ao

Co : V Az V
C3: AV A3V Ay
C4Z—\A4\/A5\/
C5: A4V Ag V

Cs : A5 V —Ag
c7: A VAV \/
cg: AV Ag Vv

Co: A7V —Ag V

{...;7Ag, "A10, A11,A12, A13, ...

... (branch on Ay)

A3
ﬂA{o\
ﬁA1}\
A/

A/

»

A1}

90/173

DPLL Chronological Backtracking: Example

Cq: V Ao \/ ﬁA&f

Co: VA3V vV ﬂA1N

Cs: i V Aq AN
C4Z—\A4\/A5\/ A1/
C5: ALV Ag V :

Cs : A5 V —Ag A1?/

c7: A VAV \/

Cg: A1V Ag v

Cg : A7V —Ag V AF/

Ay

Ag
{--; 7Ag, A1, 2A11, A2, A3, ..., Ay, A2, Az}
(unit A2,A3))

91/173

DPLL Chronological Backtracking: Example

Cq: V Ao \/
Co: VA3V vV
C3: V \/A4\/
Cy : V As V
Cs : V Ag V
Cs : A5 V —Ag
c7: A VAV \/
cg: AV Ag Vv

Co: A7V -Ag V

{..., 7Ag, 7A10, ~A11, A12, A13, ..

(unit Ag)

A1, Az, As, As}

ﬁAA
SN
—ARN

A

A/

92/173

DPLL Chronological Backtracking: Example

AN

Ci: V Ao vV 3
Co: VA3V vV ﬂA1k}
C3: Y% VA, ﬁA1\
Cy : V As V V A1/
Cs : V A6 V \/ :
Cs : V X A1?/
c7: A VAV \/ :
cg: AV Ag vV 3
Co : A7V -Ag V A
Az
A3
ﬁ4
2
{.ss7Ag, ~A10, A1-4,1, A12, A13, ..., A1, Az, A3, A4, As, As }
(unit As, Ag)= conflict

93/173

DPLL Chronological Backtracking: Example

C1
(07)
C3
Cy
Cs
Ce

Cs
Cy

{...;7Ag, "A10, A11,A12, A13, ...

AN

i Ay V Ao ﬂA{O\
: AV A3V :
:=A>V —Az VA
:—A4V As Vv A/

AN

:—ALV Ag V A13/
: A5 V —Ag !
Ay VAV

c A1V Ag
:—A7V —Ag VvV

— backtrack up to A4

94/173

DPLL Chronological Backtracking: Example

ci: A1V A Vv
Co: A VA3V Vv
C3: AV —A3V Ay
Cs: ALV As Vv

C5: ALV Ag V

Cs : A5V —Ag

C7 . VA7V

Cg : V Ag

Cg : —A7V —Ag V

{...;7Ag, "A10, A11,A12, A13, ...

(unit =A;)

ﬁAh
AN,
—ARN

A

A1/

95/173

DPLL Chronological Backtracking: Example

AN

Ci: AV A v ﬂA{o\
Co: A VA3V vV 1
-A
C3: AV A3V Ay 1N
Cq: ALV As V A1g/
C5: ALV Ag V A1/
Cs : A5V —Ag :
C7 . VA7V \/
Cg : V Ag vV Ay NA,
Co : V Vv X A
9 AZ ﬂ;
Ay
Asl X
5
{...;Ag, "A10, A11,A12, A13, ..., "A1, A7, A}
(unit A7, Ag) = conflict

96/173

DPLL Chronological Backtracking: Example

c1: A VA

Co: A1 VA3V

C3: AV —A3V Ay
C4Z—\A4\/A5\/

C5: A4V Ag V

Cs : A5 V —Ag

c7: A VAV —Aqp
cg: AV Ag

Cg : A7V —Ag V A3

{--s A9, mA10, 7A11, A2, Agz, -
— backtrack to the most recent open branching point

}

N

AN
~ANN

A

A1/

97/173

DPLL Chronological Backtracking: Example

SAN

c1: A1 VA ﬂA{o\
C: A VAV :

2 . 1 3 —\A11\\
C3: AV A3V Ay :
C4: A4V As Vv A1g/
C5: A4V Ag V A13/

Cs : —As V —Ag
Cy : A1 \/A7\/ﬂA12 ____________
cg: AV Ag A ; A
Cg : A7V —Ag V A3 A A
Al Ag
A4 5
Al X
g
{--s A9, ~A10, 7A11, At2, Ayz, -}
—> lots of useless search before backtracking up to Aq3!

98/173

Outline

© Modern CDCL SAT Solvers

@ Conflict-Driven Clause-Learning SAT solvers

99/173

Modern Conflict-Driven Clause-Learning SAT Solvers

@ Non-recursive, stack-based implementations
@ Based on Conflict-Driven Clause-Learning (CDCL) schema

@ inspired to conflict-driven backjumping and learning in CSPs
e learns implied clauses as nogoods

@ Random restarts

e abandon the current search tree and restart on top level
@ previously-learned clauses maintained

@ Smart literal selection heuristics (ex: VSIDS)
e “static”: scores updated only at the end of a branch
o “local”: privileges variable in recently learned clauses
@ Smart preprocessing/inprocessing technique to simplify formulas
@ Smart indexing techniques (e.g. 2-watched literals)
o efficiently do/undo assignments and reveal unit clauses
@ Allow Incremental Calls (stack-based interface)
o allow for reusing previous search on “similar” problems

Can handle industrial problems with 106 — 107 variables and clauses!

1007173

Stack-based representation of a truth assignment

@ assign one truth-value at a time (add
one literal to a stack representing)

@ stack partitioned into decision levels:
@ one decision literal
o its implied literals
e each implied literal tagged with the
clause causing its unit-propagation
(antecedent clause)

@ equivalent to an implication graph

ot -+ --> Co
‘/02 -+-->Co
!
__dec.level0; |
\/1 :
‘/11 -L--> Cyy

\l 7L77>C12

dec. levell Lpoo |

A
decision literal 'ly |
/N1 L--> Cpy

implied literals : IN2 L~ Cu

dec. level N |- ‘

v

101/173

Implication graph

@ An implication graph is a DAG s.t.:
each node represents a variable assignment (literal)
each edge /; > [is labeled with a clause
the node of a decision literal has no incoming edges
all edges incoming into a node / are labeled with the same clause
e, st h v oy s liffc=-h V..Vl VI
(c is said to be the antecedent clause of /)
e when both / and —/ occur in the graph, we have a conflict.
@ Intuition:
e representation of the dependencies between literals in u
e the graph contains /; < I,....I, —= [iff | has been obtained from
l, ..., I, by unit propagation on ¢
e a partition of the graph with all decision literals on one side and
the conflict on the other represents a conflict set

102/173

Example

N

c1: A VA

Co: —A1 VA3V Ag ﬁA‘N
C3: AV A3V Ay —\A1\
Cs: ALV A5V Ao :
A/
Cs5: A4V Ag V Aqq :
Cs : A5 V —Ag A/
c7: A1 VAV A
cg: AV Ag

Cg : A7V —Ag V —-Aj3

{..., 7Ag, 2A10, “A11, A2, A13, ...}
(Initial assignment. Note: ¢y, ..., ¢g inconsistent.)

’

103/173

Example

Cq . V A2 :
Co: V Az V ﬂA1N}
C3: AV —A3V Ay —\A1N @

Cs: ALV As Vv
C5: A4V Ag V

Cs : A5 V —Ag A1?/

c7: A VAV \/
cg: AV Ag \/
Cy: A7V —AgV A/

{--, 7Ag, A1, 7A11, A2, A3, ., At}
... (decide Aj)

v

104/173

Example

Cq .
Co :
C3:
1 —A4V As Vv

Cy

Cs :
: A5 V —Ag
Ay VAV
c A1V Ag

A7V —Ag

Cs

Cs
Cy

V Az
V Az Vv
Vv

—AsV Ag V

V Ay

V

Vv
J

{--; 7Ag, A1, 2A11, A2, Ay, ...

(unit A2, A3)

A1, Az, Az}

v

105/173

Example

N
Ci: V /‘2 \//
Co: V Az Vv v ﬂA1N}
C3: VA3V Ag o/ AN
Cy : V 25 V A1/
Cs : V Ag V ;
Cs : A5 V —Ag A1?/
c7: A VAV \/ ;
Cg: A1V Ag v
Co: A7V —Ag V A(/
Ay
As
Ay
{"'7 _‘Aga _'A107 _'A11aA12a A137 ceey A1) A27 A37 A4}
(unit Ag))

106/173

Example

N

Ci: V Ao V :

Co: V Az V Vv ﬂA1N

Ca: AV -A3VAL ~ARN (a) (4s)

Cy : V As V vV A, 2/ /

Cs : V Ag V Vv : c AN

Ce : \ X A1;3_/ Q @ Conflict!
c7: A VAV \/ G / o /
Cg: A1V Ag vV Cs G

Cg : —A7V —Ag V A/: @
i @

{5, 7Ag, =A10, “A1-4,1, Ar2, Az, ----A1,A2,A3,A4,A5,A6}
(unit As, Ag)=— conflict

v

107/173

Unique implication point - UIP [44]

@ A node /in an implication graph is an unique implication point
(UIP) for the last decision level iff every path from the last
decision node to both the conflict nodes passes through /.

e the most recent decision node is an UIP (last UIP)
e all other UIP’s have been assigned after the most recent decision

108/173

Unique implication point - UIP - example

Cq : V A \/
Co: V Az V Vv _'AA}
C3: v VA, ﬂA1N
Cy : V As V v ﬁA{‘\
Cs : V Ag V Vi A1/ @
06 o V X C1
c7: Ay VAV v A/ 0
cg: AV Ag Vv .
Cg : A7V —Ag V “
A
A
A§ Co Cs
@ A is the last UIP f
@ Ay is the 15t UIP Ao (A

109/173

Schema of a CDCL DPLL solver [38, 45]

Function CDCL-SAT (formula: ¢, assignment & pu) {

status := preprocess (¢, u) ;
while (1) ¢{
while (1) {
status := deduce (p,pu) ;
if (status == Sat)
return sat;
if (status == Conflict) {
(blevel,n) := analyze_conflict (¢,p);
//m is a conflict set
if (blevel == 0)

return Unsat;
else backtrack (blevel, p,pu) ;
}
else break;

}
decide_next_branch (p, u) ;

V.

110/173

Schema of a CDCL DPLL solver [38, 45] (cont.)

@ preprocess (p, u) simplifies ¢ into an easier equisatisfiable
formula, updating .

@ decide_next_branch (¢,) chooses a new decision literal
from ¢ according to some heuristic, and adds it to u

@ deduce (p, u) performs all deterministic assignments
(unit-propagations plus others), and updates ¢, x accordingly.

@ analyze_conflict (p,u) Computes the subset 7 of 1 causing
the conflict (conflict set), and returns the “wrong-decision” level
suggested by n (“0” means that 7 is entirely assigned at level 0,
i.e., a conflict exists even without branching);

@ backtrack (blevel, ¢, 1) undoes the branches up to blevel,
and updates ¢, u accordingly

111/173

Backjumping and learning: general ideas [2, 38]

@ When a branch p fails:
(i) conflict analysis: reveal the sub-assignment n C p causing
the failure (conflict set 7)
(ii) learning: add the conflict clause C & - to the clause set
(iii) backjumping: use 7 to decide the point where to backtrack
@ Jump back up much more than one decision level in the stack
=— may avoid lots of redundant search!!.
@ We illustrate two main backjumping & learning strategies:

e the original strategy presented in [38]
o the state-of-the-art 15!UIP strategy of [44]

112/173

Conflict analysis

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C
until C verifies some given termination criteria

113/173

Conflict analysis

1. C .= falsified clause (conflicting clause)
2. repeat
(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C
until C verifies some given termination criteria

criterion: decision
...until C contains only decision literals

Conflicting cl.

—~—
—AsV As V A1 —As V —Ag
=As V As V Aqg —As V —As5 V Aqq (A)
—Ao V —A3 V Ay =A4 V Aqg V Aqq (Ad) °
=A; V Az V Ag =A> V —=A3 V Aig V A4 (AS) <
-A1 VA =A> V =A1 V Ag V Aig V Aqq (A)
—A; V Ag V Ao V Apq 2

(As)

v

113/173

Conflict analysis

1. C := falsified clause (conflicting clause)
2. repeat

(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C

until C verifies some given termination criteria

criterion: last UIP

... until C contains only one literal assigned at current decision level:
the decision literal (last UIP)

Conflicting cl.

—_——
Ay V Ag V Ay —A5 V —Ag
=A4V As V Aqg —A4V —As5 V Aqq (As)
=A> V A3z V Ay =A4 V Ao V Aqq (A) €
—A; V Ag V Ag —As V —As V Ao V Arg A0) &
-A; V A —As V —A1 V Ag V Aqg V Ay (Az) g
—A1 V Ag VA V Aqq

(Ae)

113/17

Conflict analysis

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C
until C verifies some given termination criteria

criterion: 1st UIP
... until C contains only one literal assigned at current decision level
(1st UIP)

Conflicting cl.

—
—-AsV AV A1 —AsV —Ag
=AsV As V Aqg =AsV —As V Aqy (A)
—As VAio V Aqy °
——
1st UIP

(Ae)

1137973

Conflict analysis

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C
until C verifies some given termination criteria

Note:
¢ E C, so that C can be safely added to C.

113/173

Conflict analysis

1. C := falsified clause (conflicting clause)

2. repeat
(i) resolve the current clause C with the antecedent clause of
the last unit-propagated literal /in C
until C verifies some given termination criteria

Note:
¢ = C, so that C can be safely added to C.

Note:

Equivalent to finding a partition in the implication graph of x with all
decision literals on one side and the conflict on the other.

113/173

Conflict analysis and implication graph - example

Ci: vV Ao vV
G V Az V Vi ﬁA& @ Ist UIP
C3: v VAy SN astUtp.
Cy : V As V \/ 1 r :
-A
Cs : V Ag V \/ 1N
Cs : V X A‘?/ 6
c7:Af VAV V4 A/ ; '
Ce : A1 Vi AB \/ { 3Conﬂ1ct!
Cg : A7V —Ag V Cs
A
Ay
Note: in this case decision ﬁj
and last-UIP criteria produce js
the same partition %

114/173

The original backjumping and learning strategy of [38]

@ |dea: when a branch y fails,

(i) conflict analysis: find the conflict set C 1 by generating the
conflict clause C £ - via resolution from the falsified clause
(conflicting clause) using the “Decision” criterion;

(ii) learning: add the conflict clause C to the clause set

(iii) backjumping: backirack to the most recent branching point
s.t. the stack does not fully contain n, and then
unit-propagate the unassigned literal on C

115/173

The Original Backjumping Strategy: Example

_ N ,f
Ci: V A2 \/ : R
Co: V Az V Vv ﬁA1N
C3:AV-A3VA —\A1N
Cy4: V As vV vV A :

Cs: iV AgV v v
Ce : V X A1§/
c7:Ai VAV \/ ‘
cg: AV Ag Vv
Co : A7V —Ag V A
Ay
Ag
£4
= Conflict set: {—Ag, ~A19, ~A11, A1} ("decision” schema
— learn the conflict clause cig := Ag V A1g V Aq1 V —A;

116/173

The Original Backjumping Strategy: Example

C
Co
C3
Cs
Cs

Cs :
A VAV

: A1V Ag

i A7V —Ag Vv

Cs
Cg

Cio :

{.-, 7Ag, 7A10, 7A11, A2, A1, ...

1 —A VA

i A VA3V

1 =AV —A3 VA
i —ALV Ag Vv

: ALV Ag V

—As V - As

V V V —A;

— backtrack up to A,

}

~
ﬁA{o\
/
Ay

117/173

The Original Backjumping Strategy: Example

C
Co
C3
Cs
Cs

Cs :

Cg :
i A7V —Ag Vv

Cg

Cio :

{.-, 7Ag, 7A10, 7A11, A2, A1, ...

i —A VA

i A VA3V vV
1 =AV —A3 VA

i —ALV Ag Vv

: ALV Ag V

—As V —Ag
VA7V
V Ag

V Ao V Ay V —Ar/

(unit —A)

VS
ﬁA{o\
ﬁA1}\
"’

Ay

A —\A1

7_'A1}

118/173

The Original Backjumping Strategy: Example

c1: A VA

Co: A VA3V
C3: AV A3V Ay
Cq: ALV A5V
C5: A4V Ag V

Cs : A5 V —Ag

C7 . VA7V
Cg : V Ag
Co : V V

Cio : V V

{.-, 7Ag, 7A10, 7A11, A2, A1, ...

(unit A7, Ag)

v
v

vV —ArY

—A

ﬁA1&: C1o
S 8 ®
A1g/ C1o
o CS
O
,fﬁ C7
Cio \
via G
A2 Ag
Ay | A
A4 C7
As
.
> _'A‘I s A77 A8}

119/173

The Original Backjumping Strategy: Example

A
c1: A VA \/ k @
Co: A VA3V \/ ﬂA1N Cio

C3: AV A3V Ay _'A‘:1\3 @

Cs: ALV As Vv A/ Cio o
C5: A4V Ag V :
Cs : —As V —Ag A“;’/ Conflict!

Cio : V V V —A;

C7 . VA7V \/ ;f:

Cg: /' VAsg v

Cg : V V X A=A,
\// /42 /qs

{...;7Ag, ~A10, ~A11, A12, A1, ..., A1, A7, Ag}
Conflict!

120/173

The Original Backjumping Strategy: Example

C1

Co :
C3 .

Ca

Cs :

Cs

C7:
Cs :
Co :
Cio :

— conflict set: {ﬁAg, =A10, 7A11, A2, A13} .
— learn Cy1 := Ag V Aig V A11 V -A12 V —Aj3

i —A VA ﬁAg\\f
A1V A3V vi AN
—A> V —A3 V Ay —Aﬁ\\

i ALV As V A, 2/
—AsV Ag V 3

: —As V —Ag A1?/

VA7V o :
Vv Ag v 3
V V X A=A
VAV AV A Al |4
A4 X
As
.

121/173

The Original Backjumping Strategy: Example

C1
Co
C3
Ca
Cs
Cs
cy
Cs
Co

Cio :
Ciq :

— backtrack to Ai3 = Lots of search saved!

i —A VA _‘A‘S\\:
:—AT VA3V ﬂA{o\
1 =AV —A3 VA 3
-A
i A4V As V 1N
: ALV Ag VvV A1g/
1 —As V —Ag A1‘3/‘§"-,
. A1 V A7 V ::: A
c AV Ag
: A7V —Ag V A “_‘A1 E
V V V —A4 A | A
VAV Ay V —A v ~AR e
As
&

122/173

The Original Backjumping Strategy: Example

ci: A1 VA ﬁA%(
Co: A VA3V ﬂxﬁk
C3: AV A3V Ay :
Ca: —AgV As V ﬁAms
Cs: ALV Ag V A1g/
Cs : —As V —Ag A‘%W‘h
Cy : V /‘7 V %: —Ais
Cg : V Ag
Cg : mA7 V —Ag V A1z A A
Cio : V \Y V —A4 Ag\/ A,
Ci1: AoV Arg V Ay V vV ~ARVL

As

8

— backtrack to A3, then set Ai3 and A; to L,...

123/173

State-of-the-art backjumping and learning [44]

@ Idea: when a branch fails,

(i) conflict analysis: find the conflict set C 1 by generating the
conflict clause C £ - via resolution from the falsified clause,
according to the 15!UIP strategy

(ii) learning: add the conflict clause C to the clause set

(iii) backjumping: backirack to the highest branching point s.t. the
stack contains all-but-one literals in n, and then
unit-propagate the unassigned literal on C

124/173

1st UIP strategy — example (7)

Cq . V A

Co : V Az Vv
C3: V V Ay
Cy : V As VvV

Cs : V Ag V

Cs : V

c7:Ai VAV

cg: AV Ag

Co: A7V —Ag V

LX<

Cy

— Conflict set: {ﬁAm, ﬁA11,A4}, learn cig := A1g V A11 V A,

125/173

1st UIP strategy and backjumping [44]

@ The added conflict clause states the reason for the conflict

@ The procedure backtracks to the most recent decision level of
the variables in the conflict clause which are not the UIP.

@ then the conflict clause forces the negation of the UIP by unit
propagation.

E.g.: €19 := Ajg V A1 vV —Ay
= backtrack to Aq1, then assign —A,

126/173

1st UIP strategy — example (7)

Cq: V Ao

Co . V Az V
C3: V V A4
Cy : V As V

Cs : V Ag V

Cs : V
c7: A VAV

Ccg: AV Ag

Cg: "A7V —Ag Vv

— Conflict set: {=Aqp, 7A11, A4}, learn cqg := Ao V A11 V —Ay

LX<

127/173

1st UIP strategy — example (8)

C1
Co
C3
C4
Cs
Ce
c7
Cs

Co :
C10 :

1 —A1 VAo

:—A1 VA3V

i AV —A3 V Ay
i —A4V As Vv

i ALV Ag V

: A5V —Ag
Ay VA7V A
t AV Ag

—A7 V —Ag V —Aj3
V Vv —A4

S
SN
e
Ay’

— backtrack up to Ay = {, —-Ag, —A10, —|A11}

128/173

1st UIP strategy — example (9)

ci: A1 VA ﬁAR
Co : —|A1 \/A3 V ﬂA{o\
Cc3: AV —AzV A\
Cs: Ay V As Vv \/ o 3‘hﬁA4
C5: ALV Ag V V A‘?/
Cs : A5 V —Ag A13/
c7: A1 VA7V —Ais 3
Ccg: AV Ag
Cg : mA7 V —Ag V —Aj3 A p
Cio : V V ﬁA4\/ Ao

As

Ay

As

8

— unit propagate -A; = {..., 7Ag, ~Aig, —

Cio

Cio

I

A11 5 A4}

129/173

1st UIP strategy and backjumping — intuition

@ An UIP is a single reason implying the conflict at the current level
@ substituting the 1st UIP for the last UIP

e does not enlarge the conflict

e requires less resolution steps to compute C

e may require involving less decision literals from other levels
@ by backtracking to the most recent decision level of the variables

in the conflict clause which are not the UIP:
e jump higher
o allows for assigning (the negation of) the UIP as high as possible
in the search tree.

130/173

Learning [2, 38]

Idea: When a conflict set 7 is revealed, then C & —n added to ¢
—> the solver will no more generate an assignment containing 7:
when || — 1 literals in n are assigned, the other is set L by
unit-propagation on C

— Drastic pruning of the search!

131/173

Learning — example

C
Co
C3
Cs
Cs

Ce :
A VAV

: A1V Ag

i A7V —Ag V A3 V

cy
Cs
Cg

C10 :
Ciq :

1 —A1 VA

:—A VA3V
:=AV —A3 VA
:—=ALV Ag Vv

: ALV Ag V

—As V —Ag

V AoV Ay V =4 v
V AoV Ay V V —Aq3y/

= Unit: {—\A1 . —|A13}

132/173

Drawbacks of Learning & Clause discharging

Problem with Learning

Learning can generate exponentially-many clauses
@ may cause a blowup in space
@ may drastically slow down BCP

A solution: clause discharging

Techniques to drop learned clauses when necessary
@ according to their size
@ according to their activity.

A clause is currently active if it occurs in the current implication graph
(i.e., it is the antecedent clause of a literal in the current assignment)

v

133/173

Drawbacks of Learning & Clause discharging

@ Is clause-discharging safe?
@ Yes, if done properly.

Property (see, e.g., [30])

In order to guarantee correctness, completeness & termination of a
CDCL solver, it suffices to keep each clause until it is active.
— CDCL solvers require polynomial space

“Lazy” Strategy
@ when a clause is involved in conflict analisis, increase its activity
@ when needed, drop the least-active clauses

134/173

State-of-the-art backjumping and learning: intuitions

@ Backjumping: allows for climbing up to many decision levels in
the stack
e intuition: “ go back to the oldest decision where you'd have done
something different if only you had known C”
—> may avoid lots of redundant search
@ Learning: in future branches, when all-but-one literals in n are
assigned, the remaining literal is assigned to false by
unit-propagation:
e intuition: “when you’re about to repeat the mistake, do the

opposite of the last step”
—> avoid finding the same conflict again

135/173

Remark: the “quality” of conflict sets

@ Different ideas of “good” conflict set

e Backjumping: if causes the highest backjump (“local” role)
e Learning: if causes the maximum pruning (“global” role)

@ Many different strategies implemented (see, e.g., [2, 38, 44])

136/173

Outline

© Modern CDCL SAT Solvers

@ Further Improvements

137/173

Preprocessing/Inprocessing

@ Part of preprocess () and deduce () steps respectively
@ Simplify current formula into an equivalently-satisfiable one
@ Must be fast (in particular inprocessing)

@ Some techniques:

detect and remove subsumed clauses
detect & collapse equivalent literals
apply basic resolution steps

138/173

Preprocessing/Inprocessing (cont.)

Detect and remove subsumed clauses:

o1 ANV Ih)Npa AV BV) Aps
(3
1 ANV k) Apa A3

139/173

Preprocessing/Inprocessing (cont.)

Detect & collapse equivalent literals [7]
Repeat:
(1) build the implication graph induced by binary clauses

(ii) detect strongly connected cycles = equivalence classes of
literals

(iii) perform substitutions A I

(iv) perform unit and pure literal.
Until (no more simplification is possible).

@ Ex: fk

P1 A (= Vh)ANpa A(=BV B) Az A(=h V) Ay
Y oshoh
(1 A2 Ap3s Apg)lle < hi kg <+ I;]
@ Very effective in many application domains.

v

140/173

Preprocessing/Inprocessing (cont.)

Apply some basic steps of resolution (and simplify)

1A (V) ANpa AV —h) A3
Uresolve
1 A (R) A2 A ps
Uunit—propagate
(01 Apa A @3)[le + T]

141/173

Literal-Decision Heuristics (aka Branching Heuristics)

@ Implemented in decide_next_branch ()

@ Branch is the source of non-determinism for DPLL
= critical for efficiency

@ Many literal-decision heuristics in literature (for DPLL & CDCL)

142/173

Some Heuristics

@ MOMS heuristics (DPLL): pick the literal occurring most often in
the minimal size clauses
— fast and simple, many variants

@ Jeroslow-Wang (DPLL): choose the literal with maximum
score(l) := Ljcc g cep 271°

— estimates /’s contribution to the satisfiability of ¢

@ Satz [21] (DPLL): selects a candidate set of literals, perform unit
propagation, chooses the one leading to smaller clause set
— maximizes the effects of unit propagation

@ VSIDS [28] (CDCL+): variable state independent decaying sum

e “static”: scores updated only at the end of a branch
o “local”: privileges variable in recently learned clauses

143/173

Restarts [16]

Idea: (according to some strategy) restart the search
@ abandon the current search tree and reconstruct a new one

@ The clauses learned prior to the restart are still there after the
restart and can help pruning the search space

@ avoid getting stuck in certain areas of the search space
—> may significantly reduce the overall search space

144/173

Outline

© Modern CDCL SAT Solvers

@ SAT Under Assumptions & Incremental SAT

145/173

SAT under assumptions: SAT (¢, {h, ..., In}) [12]

@ Many SAT solvers allow for solving a CNF formula ¢ under a set
of assumption literals A < {/;, ..., I}: SAT (¢, {k, ..., In})
o SAT(p,{h,...,In}): same result as SAT(p A A7 1)
e often useful to call the same formula with different assumption
lists: SAT (¢, A1), SAT (¢, A2), ...
@ |dea:
e /i,..., I, “decided” at decision level 0 before starting the search
o if backjump to level 0 on C £ —) s.t. n C A, then return UNSAT

Property

If the “decision” strategy for conflict analysis is used,
then 7 is the subset of assumptions causing the inconsistency

146/173

Selection of sub-formulas

Idea: select clauses [12, 23]
Let p be A7, C;i
@ let S;...S, be fresh Boolean atoms (selection variables).
o let A= (S;,....S;,} C{Sy,...,Sn}
— SAT(AL,(=SiV C)), A): same as SAT(Ak i (C))
@ if S;is not assumed, then —S; v C; does not contribute to search
= “Select” (activate) only a subset of the clauses in ¢ at each call.

v

Generalised ldea: select blocks of clauses

Let o be AL; (AL Cj)-
@ let S;...5, be fresh Boolean atoms (selection variables).

o let A¥(S;,....S;,} C{Sy,..,Sn}
@ SAT(AL{(AL{(=Si Vv Cj)), A): same as SAT((A i (A1 Ci))
— Allows for “selecting” block of clauses at each call.

Example

@ Initial formula :

(A
(—A3
(ﬁAz
(A

(ﬁA1

@ Augmented formula ¢’:

@ SAT
@ SAT

V-As
Vv A
VvV As
VvV As
VA3

VvV Ay
V—Ag
V-As
v A
VA4

VA3
V—-As
VvV Ay
V—Ag
VvV Ag

V-As
Vv A
VvV As
V As
VA3

)
)
A
)
)

// group 1
// group 1
// group 2
// group 2
// group 3

VA3
V—As
VvV Ay
V—Ag
vV Ag

)
A
A
)

A

// group 1
// group 1
// group 2
// group 2
// group 3

¢, {Ss, S3}): activates group 2,3
¢, {Sy, S3}): activates group 1,3

4

148/173

Example

@ Initial formula :

(A
(—A3
(ﬁAz
(A

(ﬁA1

@ Augmented formula ¢’:

@ SAT
@ SAT

V-As
Vv A
VvV As
VvV As
VA3

VvV Ay
V—Ag
V-As
v A
VA4

VA3
V—-As
VvV Ay
V—Ag
VvV Ag

V-As
Vv A
VvV As
V As
VA3

)
)
A
)
)

// group 1
// group 1
// group 2
// group 2
// group 3

VA3
V—As
VvV Ay
V—Ag
vV Ag

)
A
A
)

A

// group 1
// group 1
// group 2
// group 2
// group 3

¢, {Ss, S3}): activates group 2,3
¢, {Sy, S3}): activates group 1,3

4

148/173

Example
@ Initial formula :

(ﬁAg vV A5 VvV As

(A3 V As V-Ag

(—\A1 V-As V Ag
@ Augmented formula ¢’:
(=S1 v Ay VoA
(—|S1 V-Az VvV Ao
(V-As VvV As
(vV A V As
(V-AT VA3
S.

A/ group2
)\ // group 2
)\ // group 3

Vv-As)A // group 1, inactive
V=As A // group 1, inactive
v A7z)A // group 2
V-Ag)N // group 2
vV Ag)N // group3

>

AT (¢, {Sz, S3}): activates group 2,3
SAT (¢, {S1, S3}): activates group 1,3

4

148/173

Example

@ Initial formula :
(Ay v-Ay Vv-Asz A // group 1
(mAs VvV Ay V-As A // group 1

(mAy VA3 Vv Ag)A // group3
@ Augmented formula ¢’:
(v Ay V-Ay V-As A // group
(V-As V Ay V-As A // group 1
(=S2 v-Ay Vv As Vv Az)A // group 2,inactive
(=S VvV A VvV As V-Ag)A // group 2, inactive
(V-Ay V-Az VvV Ag)A // group 3
@ SAT(¢,{Ss, S3}): activates group 2,3

@ SAT(¢,{Sy, S3}): activates group 1,3

>

4

148/173

Incremental SAT solving [12, 11]

@ Many CDCL solvers provide a stack-based incremental interface
e it is possible to push/pop ¢; into a stack of subformulas {¢1, ..., #x}
o check incrementally the satisfiability of = AX_, ¢;.
@ Maintains the status of the search from one call to the other
@ in particular it records the learned clauses (plus other information)
= reuses search from one call to another

@ Very useful in many applications (in particular in FV)

@ Idea: incremental calls SAT(¢', A1), SAT(¢', A2),...

o & EN(=SiV $i), Aj C {Sy,..., S}, (251 v A; Cj) E N(=S1 v Cy)
e push/pop selection variables S;
@ in practice, also subformulas ¢; can be pushed/popped

@ Key efficiency issue: learned clauses safely reused from call to
call (even if assumptions have been popped)
def

o alearnedclause C=\,;-§ Vv C'isst \;(=SV¢) EC
— C contains the vars selecting the subformulas it is derived from
= in SAT(¢', A), if some S; ¢ A, then C is not active

149/17

Example

@ Initial formula :

A
(A VoA VA3 A /] &
(mAs VvV A V-As A /] b

@ Augmented formula ¢’:

. N
(vV Ar VoA VoA A
(VoAs VA V=As A

[push(Sy)]: SAT(¢',{..., S1}): &1 active

/] é1
/] o1

150/173

Example

@ Initial formula :

A
(A VoA VA3 A /] &
(mAs VvV A V-As A /] b

@ Augmented formula ¢’:

. A

(vV A; VoA VA3)/\ // b1

(V-As vV Ay V-As A /[¢

(vV Ar V-As V-As)A // learned C;

[push(Sy)]: SAT(¢',{..., S1}): &1 active = learn C; from ¢4

150/173

Example

@ Initial formula :
A
(A VoA VA3 A /] &
(—|A3 vV Ax V-As)/\ // o
(—|A2 vV As VvV As)/\ // b2
(ﬁA1 V—-As; V-As)/\ // (;52

@ Augmented formula ¢’:

. A

(vV A; VoA VA3)/\ // b1

(V-As vV Ay V-As A /[¢

(V-A> V As VvV A;)/\ // P2

(VoA VoA V-As A /) ¢

(vV Ar V-As V-As)A // learned C;

[push(Sz)]: SAT(¢',{..., S1, Sa}): 1, $2 active

150/173

Example

@ Initial formula :
A
(A VoA VA3 A /] &
(—|A3 vV Ax V-As)/\ // o
(—|A2 vV As VvV As)/\ // b2
(ﬁA1 V—-As; V-As)/\ // (]52

@ Augmented formula ¢’:

. A

(vV Ar VoA VA3 A /] b

(V-As V A V-As)N /) b

(VoA VvV As vV A7 AN /) ¢

(V-Ar V-As V-As A /) e

(vV Ar V-As V-As)A // learned C;
(Y V-As V-As)A // learned C

[push(S2)]: SAT (¢, {..., S1, S2}): ¢1, ¢ active = learn C, from ¢1, ¢»

150/173

Example

@ Initial formula :
A
(A VoA VA3 A /] &
(—|A3 vV Ax V-As)/\ // o

(—|A1 V-As V As)/\ // b3
@ Augmented formula ¢’:
vV A V-Ay VA3 // o1
V-As V A V-As /] o1

-S VoA VvV A5 VA

(

(

(// @2, inactive
(“Sz V=A; VoA VAs

(

(

(

// @2, inactive
V=Ar V-A3 Vv As /] b3
vV Ai VA3 VAs // learned C;

VoS VoA VAs // learned C,, inactive
[pop(Sz2);push(Ss)]l: SAT(¢',{..., St, Ss}): ¢1, ¢5 active =...

>>>>>> > >

— N

150/173

Example

@ Initial formula :
A
(A VoA VA3 A /] &
(—|A3 vV A V-As)/\ // o

(—|A1 V-As V As)/\ // b3
@ Augmented formula ¢’:
: A
(vV A; VoA VA3)/\ // b1
(V-As VA V-As A /) ¢
(ﬁSz V-A V A5 V Ar)/\ // ¢2, inactive
(=S2 VoA V-As V-As)N // ¢e,inactive
(V-A; V-As V As)/\ // b3
(vV Ar V-As V-As)A // learned C;
(VoS, V-As V-As)N // learned Cy, inactive

[pop(Sz2);push(Ss)]l: SAT(¢',{..., St, Ss}): ¢1, ¢5 active =...

@ C; derived from ¢y = C; active only when ¢4 is active
@ (G, derived from ¢4, po = C, active only when both ¢4, ¢, are active

150..47

Outline

e SAT Functionalities: proofs, unsat cores, interpolants, optimization

151/173

Advanced functionalities

Advanced SAT functionalities (very important in formal verification):
@ Building proofs of unsatisfiability
@ Extracting unsatisfiable Cores
@ Computing Craig Interpolants
@ Optimization in SAT: MaxSAT (hints)
@ Enumeration on SAT: All-SAT and Model Counting (hints)

152/173

Building Proofs of Unsatisfiability

@ When ¢ is unsat, it is very important to build a (resolution) proof
of unsatisfiability:

e to verify the result of the solver
e to understand a “reason” for unsatisfiability
e to build unsatisfiable cores and interpolants
@ Can be built by keeping track of the resolution steps performed
when constructing the conflict clauses.

153/173

Building Proofs of Unsatisfiability

@ recall: each conflict clause C; learned is computed from the
conflicting clause C;_x by backward resolving with the
antecedent clause of one literal | g clause

—_
Ck Ci—k
Co Ci_z
Cq Ci_1
Ci
—~

conflict clause

@ Cy, ..., Ck, and C;j_k can be original or learned clauses

@ each resolution (sub)proof can be easily tracked:
k i-k -> i-k-1

2 i-2 > i-1
1 i-1 —> 1

154 /17

Building Proofs of Unsatisfiability

@ ... in particular, if ¢ is unsatisfiable, the last step produces “false”

as conflict clause

conflicting clause

PN
Ck Ci—k
C Ciz
Cy Ci_1
1

(we assume that level-0 literals are also resolved away)
@ Cy =1, Ci_1 = —I for some literal /
@ Cy,..., Ck, and C;_k can be original or learned clauses...

<

155/173

Building Proofs of Unsatisfiability

Starting from the previous proof of unsatisfiability, repeat recursively:

@ for every learned leaf clause C;, substitute C; with the resolution
proof generating it

until all leaf clauses are original clauses

Cki ... ijk Ci—ki ... C"*k/’i—k
C1,‘1 C”/w o g

T Ci«

Cit Cij e Gy

: Co Ci_z
Ci Ci-1

— We obtain a resolution proof of unsatisfiability for (a subset of)
the clauses in ¢

156/17

Building Proofs of Unsatisfiability: example

(Bo V By Vv A1) N (Bo V By Vv Ag) N (ﬁBo V By Vv A2) N (ﬁBo \Y ﬁB1) N (ﬁBz V ﬁB4)/\
(_‘A2 \Y Bg) N (—\A1 V B3) A By A (A2 \Y Bs) A (—\Be V —\B4) A (Be \Y —\A1) A By

(—‘Bo\/—\B1) (B1 \/—\Bo\/Az) (Bo\/—\B1 \/A1) (B1 \/Bo\/Ag)

— ~

(—Bo V A) (Bo VAV A)

-

(—A1 V Bs) (A1 V Az)

>~ /

(Bs v Az) (=Bs V —By)

(A2 V —By) (=A2 V Bo)
N e
(=B2V —B4) (=By V By)
. _—
B, (~By)

\/

€

v

157/173

Extraction of unsatisfiable cores

@ Problem: given an unsatisfiable set of clauses, extract from it a
(possibly small/minimal/minimum) unsatisfiable subset

—> unsatisfiable cores (aka (Minimal) Unsatisfiable Subsets, (M)US)

@ Lots of literature on the topic [46, 24, 26, 31, 43, 19, 13, 6]
@ We recognize two main approaches:

e Proof-based approach [46]: byproduct of finding a resolution proof
e Assumption-based approach [24]: use extra variables labeling
clauses

@ Many optimizations for further reducing the size of the core:

repeat the process up to fixpoit

e remove clauses one-by one, until satisfiability is obtained
e combinations of the two processed above
(*

158/173

The proof-based approach [46]

Unsat core: the set of leaf clauses of a resolution proof]
(Bo V =By Vv A1) A (Bo V By Vv Ag) A (—\Bo V By Vv A2) A (—\Bo V —|B1) A (“Bz \Y —|B4)/\
(—\A2 V Bg) AN (ﬂA1 V Bg) A Bs A (Ag Vv Bs) A (—|Be \Y —\B4) A (Bs Vv —\A1) A By
(=Bo V =By) (B V=BV Ap) (BoV =By v Ay) (B1 VBV A)
— ~~
(=Bo V Ap) (Bo VA1V A)
\
(—A V Bs) (A1 V Az)
~ /
(Bs V Az) (=Bs V =Bs)
(A2 Vv —By) (~Az V Bo)
AN e
(=B2 V —B4) (B4 V By)
\ /
B, (—Bs)
S~ _—
1

159/173

The assumption-based approach [24]

Based on the following process:

(i) each clause C; is substituted by =S, v C;, s.t. S; fresh “selector”
variable

(ii) before starting the search each S; is forced to true.
(iii) final conflict clause at dec. level 0: \/jﬁS,-
= {C;}; is the unsat core!

160/173

The assumption-based approach to core extraction

Example

(Bo V =By Vv A1) A (Bo V By Vv Ag) N (ﬁBo V By Vv Ag)/\

(=Bo V =Bi) A (=B V =Bs) A (2A2 V Bo) A (2A1 V B)A

By A (A2 V B5) A (—\Bg V —|B4) N (BG V —\A1) A By

(i) add selector variables:

(ﬁS1 V ByV BV A1) A (ﬁSz V ByV By Vv Az) VAN (ﬁS3 V-ByV BV Ag)/\
(ﬁS4 V =By Vv ﬁB1) N (ﬁ85 V =B Vv ﬁB4) A\ (ﬁSs V —As V Bg)/\
(—'87 V —A; VvV Bs) A (ﬂSg \ B4) A (ﬂSg VAV B5) A (ﬁSm V —Bg V —\B4)
(—\811 V Bg V ﬂA1) 74\ (ﬁ812 V B7)

(i) The conflict analysis returns:
=SV SV aS3V -8,V aSsV =SV SV Sy V —\811,
(iii) corresponding to the unsat core:
(Bo V =B Vv A1) VAN (Bo V BV Ag) VAN (—|Bo V By Vv Ag)/\
(ﬁBo V ﬁB1) AN (ﬁBg V ﬁB4) VAN (ﬁAz V Bz)/\
By A (—\Be V —‘84) A (Be V —‘A1)

v

161/173

Computing Craig Interpolants in SAT

Notation: Let “X < Y”, X, Y being Boolean formulas, denote the fact
that all Boolean atoms in X occur also in Y.

Definition: Craig Interpolant

Given an ordered pair (A, B) of formulas such that AAB = L,
a Craig interpolant is a formula / s.t.:

a) A=,
b) INBE 1,
c) I<Aand/=<B.

@ Very important in many Formal Verification applications
@ A few works presented [32, 25, 27]

162/173

Computing Craig Interpolants in SAT: a General
Algorithm [32]

Algorithm: Interpolant generation (for SAT)
(i) Generate a resolution proof of unsatisfiability P for AA B.
(i) .
(ii) For every leaf clause C in P, set Io &
if C € B.
(iv) For every inner node C of 7? obtalned by resolution from c & pv¢1
and C, & ﬂpv ¢, set IC IC1 V I, if p does not occur in B, and
Ic £ Ig, A g, otherwise.
(v) Output /; as an interpolant for (A, B).

“n\ B” [resp. “n | B"]is the set of literals in n whose atoms do not
[resp. do] occur in B.

ClBifCecAandIcET

@ optimized versions for the purely-propositional case [25, 27]

163/173

Computing Craig Interpolants in SAT: example

AZ (B VA) A A A (—Bo V =A2) A (mAr V =As V —Bs V —Bs)

def

B= (=B;V By)A(—=Bi VB)A(BiV Bs)

—A1V —AV
—Bs Vv —By
—B3V By

A1V AV
~Bs \ B/ VB

A1V -A V By

B, vA'\ /

Az V By

N

—AxV Bp

AN

—As

A
N7
originafproof

—ByV Ay

/

=By VB4

\
/
—B3V By
/

1B; Vv —By
B, /
AN
(B V =By v —Bs)

T

/
(Bi vV —B;V -By)
-B,

/
L (BIV-BV-B)A-B

AN

(B1 VB3V —By) A B,
interpolant proof

= (B V B3V —Bs) A =B is an interpolant

y

164/173

MaxSAT (hints)

@ MaxSAT: given a pair of CNF formulas (ppn, ps) S.t. on A ps = L,
©s & {C4, ..., Ck}, find a truth assignment y satisfying ¢, and
maximizing the amount of the satisfied clauses in ¢s.

@ Weighted MaxSAT: given also the positive integer penalties
{wi, ..., W}, p must satisfy ¢, and maximize the sum of
penalties of the satisfied clauses in s

@ Generalization of SAT to optimization

= much harder than SAT
@ Many different approaches (see e.g. [22])
e EX:

((Aiv-h) A [4]

on 2 (A V Ap) (pscjef((ﬂ/h\/ A) A [3])
(A1 V-A) A [2]

= pu = {A1, A2} (penalty = 2)

v
163571

All-SAT & Model Counting (hints)

@ All-SAT: enumerate all truth assignments satisfying ¢
e a partial model . not assigning k atoms represents 2 models

@ All-SAT over an “important” subset of atoms P £ {P;};:
enumerate all assignments over P which can be extended to
satisfiable truth assignments propositionally satisfying ¢

@ Model Counting (aka #SAT) [17]: like All-SAT, but count models
rathern than enumerate them.

e a partial assignment p not assigning k atoms is counted for 2%

166/173

References |

(]

(2]

131

[4]

5]

6]
71

18]

9]

A. Armando and E. Giunchiglia.

Embedding Complex Decision Procedures inside an Interactive Theorem Prover.
Annals of Mathematics and Atrtificial Intelligence, 8(3—4):475-502, 1993.

R. J. Bayardo, Jr. and R. C. Schrag.

Using CSP Look-Back Techniques to Solve Real-World SAT instances.

In Proc. AAAI'97, pages 203-208. AAAI Press, 1997.
A. Belov and Z. Stachniak.

Improving variable selection process in stochastic local search for propositional satisfiability.

In SAT'09, LNCS. Springer, 2009.

A. Belov and Z. Stachniak.
Improved local search for circuit satisfiability.

In SAT, volume 6175 of LNCS, pages 293-299. Springer, 2010.

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability.
108 Press, February 2009.

Booleforce, http://fmv. jku.at/booleforce/.

R. Brafman.

A simplifier for propositional formulas with many binary clauses.

In Proc. IJCAIO1, 2001.

R. E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677—691, Aug. 1986.

M. Davis, G. Longemann, and D. Loveland.
A machine program for theorem proving.
Journal of the ACM, 5(7), 1962.

167/173

http://fmv.jku.at/booleforce/

References Il

[10] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201-215, 1960.

[11] N. Eén and N. Sérensson.
Temporal induction by incremental sat solving.
Electr. Notes Theor. Comput. Sci., 89(4):543-560, 2003.

[12] N. Eén and N. Sérensson.
An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of LNCS, pages 502-518. Springer, 2004.

[13] R. Gershman, M. Koifman, and O. Strichman.
Deriving Small Unsatisfiable Cores with Dominators.
In Proc. CAV'06, volume 4144 of LNCS. Springer, 2006.

[14] E. Giunchiglia, M. Narizzano, A. Tacchella, and M. Vardi.
Towards an Efficient Library for SAT: a Manifesto.
In Proc. SAT 2001, Electronics Notes in Discrete Mathematics. Elsevier Science., 2001.

[15] E. Giunchiglia and R. Sebastiani.
Applying the Davis-Putnam procedure to non-clausal formulas.
In Proc. AI*IA’99, volume 1792 of LNAI. Springer, 1999.

[16] C. Gomes, B. Selman, and H. Kautz.
Boosting Combinatorial Search Through Randomization.
In Proceedings of the Fifteenth National Conference on Atrtificial Intelligence, 1998.

[17] C.P. Gomes, A. Sabharwal, and B. Selman.
Model Counting, chapter 20, pages 633—-654.
In Biere et al. [5], February 2009.

168/173

References llI

[18] H.H.Hoos and T. Stutzle.
Stochastic Local Search Foundation And Application.
Morgan Kaufmann, 2005.

[19] J. Huang.
MUP: a minimal unsatisfiability prover.
In Proc. ASP-DAC '05. ACM Press, 2005.

[20] H. A. Kautz, A. Sabharwal, and B. Selman.
Incomplete Algorithms, chapter 6, pages 185-203.
In Biere et al. [5], February 2009.

[21] C. M. Li and Anbulagan.
Heuristics based on unit propagation for satisfiability problems.
In Proceedings of the 15th International Joint Conference on Atrtificial Intelligence (IJCAI-97), pages 366-371, 1997.

[22] C. M. Liand F. Manya.
MaxSAT, Hard and Soft Constraints, chapter 19, pages 613-631.
In Biere et al. [5], February 2009.

[23] I. Lynce and J. Marques-Silva.
On Computing Minimum Unsatisfiable Cores.
In 7th International Conference on Theory and Applications of Satisfiability Testing, 2004.

[24] I. Lynce and J. P. Marques-Silva.
On computing minimum unsatisfiable cores.
In SAT, 2004.

[25] K. McMillan.
Interpolation and SAT-based model checking.
In Proc. CAV, 2003.

169/173

References IV

[26] K. McMillan and N. Amla.
Automatic abstraction without counterexamples.
In Proc. of TACAS, 2003.

[27] K. L. McMillan.
An interpolating theorem prover.
Theor. Comput. Sci., 345(1):101-121, 2005.

[28] M. W. Moskewicz, C. F. Madigan, Y. Z., L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Design Automation Conference, 2001.

[29] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Abstract DPLL and abstract DPLL modulo theories.
In F. Baader and A. Voronkov, editors, Proceedings of the 11th International Conference on Logic for Programming,
Atrtificial Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of LNCS, pages 36-50. Springer,
2005.

[30] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.

Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937—977, November 2006.

[31] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L. Markov.
Amuse: A Minimally-Unsatisfiable Subformula Extractor.
In Proc. DAC’04. ACM/IEEE, 2004.

[32] P. Pudlék.
Lower bounds for resolution and cutting planes proofs and monotone computations.
J. of Symb. Logic, 62(3), 1997.

[33] A. Robinson.
A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23-41, 1965.

170/173

References V

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

R. Sebastiani.
Applying GSAT to Non-Clausal Formulas.
Journal of Artificial Intelligence Research, 1:309-314, 1994.

B. Selman and H. Kautz.
Domain-Independent Extension to GSAT: Solving Large Structured Satisfiability Problems.
In Proc. of the 13th International Joint Conference on Atrtificial Intelligence, pages 290-295, 1993.

B. Selman, H. Kautz, and B. Cohen.
Local Search Strategies for Satisfiability Testing.
In Cliques, Coloring, and Satisfiability, volume 26 of DIMACS, pages 521-532, 1996.

B. Selman, H. Levesque., and D. Mitchell.
A New Method for Solving Hard Satisfiability Problems.
In Proc. of the 10th National Conference on Atrtificial Intelligence, pages 440-446, 1992.

J. P. M. Silva and K. A. Sakallah.
GRASP - A new Search Algorithm for Satisfiability.
In Proc. ICCAD’96, 1996.

R. M. Smullyan.
First-Order Logic.
Springer-Verlag, NY, 1968.

C. Tinelli.
A DPLL-based Calculus for Ground Satisfiability Modulo Theories.
In Proc. JELIA-02, volume 2424 of LNAI, pages 308-319. Springer, 2002.

D. Tompkins and H. Hoos.
UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT.
In SAT, volume 3542 of LNCS. Springer, 2004.

171/173

References VI

[42] H.Zhang and M. Stickel.
Implementing the Davis-Putnam algorithm by tries.
Technical report, University of lowa, August 1994.

[43] J.Zhang, S. Li, and S. Shen.
Extracting Minimum Unsatisfiable Cores with a Greedy Genetic Algorithm.
In Proc. ACAI, volume 4304 of LNCS. Springer, 2006.

[44] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik.
Efficient conflict driven learning in a boolean satisfiability solver.
In ICCAD '01: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design, pages 279-285,
Piscataway, NJ, USA, 2001. IEEE Press.

[45] L.Zhang and S. Malik.
The quest for efficient boolean satisfiability solvers.
In Proc. CAV'02, number 2404 in LNCS, pages 17-36. Springer, 2002.

[46] L.Zhang and S. Malik.
Extracting small unsatisfiable cores from unsatisfiable boolean formula.
In Proc. of SAT, 2003.

172/173

Disclaimer

The list of references above is by no means intended to be all-inclusive. The author
of these slides apologizes both with the authors and with the readers for all the
relevant works which are not cited here.

The papers (co)authored by the author of these slides are availlable at:
http://disi.unitn.it/rseba/publist.html.

Related web sites:
@ Combination Methods in Automated Reasoning
http://combination.cs.uiowa.edu/
@ The SAT Association
http://satassociation.org/
@ SATLive! - Up-to-date links for SAT
http://www.satlive.org/index. jsp

@ SATLIB - The Satisfiability Library
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/

173/173

http://disi.unitn.it/rseba/publist.html

	Boolean Logics and SAT
	Basic SAT-Solving Techniques
	Resolution
	Tableaux
	DPLL
	Stochastic Local Search for SAT

	Ordered Binary Decision Diagrams – OBDDs
	Modern CDCL SAT Solvers
	Limitations of Chronological Backtracking
	Conflict-Driven Clause-Learning SAT solvers
	Further Improvements
	SAT Under Assumptions & Incremental SAT

	SAT Functionalities: proofs, unsat cores, interpolants, optimization

