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CHAPTER 3.

CONSERVATIVE CODE FOR MULTIPLE ACCESS CHANNELS

3.1. General

The family of conservative codes is a new coding scheme for preserving the time
integrity of serial communication over s multiple access channel. These codes are
characterized by a constant number of transitions in each codeword and a knewn delim-
iting transition (rising or falling edge) at the end of each codeword ([Ofek87a],

[Ofek87b)).

The conservative code enables a receiver and its serial-to—parallel converter to
operate without a training period {preamble), i.e., no phase-locked loop is used for clock
recovery. Instead, very accurate delay lines are used at the receiving side for decoding
and for serial-to-parallel conversion. At very high bandwidth, delay lines can be aceu-

rately realized by using transmission lines or wave guides,

The main objective of this code is to preserve timing information, as opposed to
codes which preserve data integrity. In fact, these two coding objectives can be com-
bined by a two-level transforimation, as shown in Figure 3.1. At the transmitter side,
the error—detecting/correcting transformation is first applied, and then, the conservative
code is used for adding the timing information. At the receiver side, the conservative
code is used for the decoding and parallel-to-serial conversion, and then, the error—
detecting/correcting function is applied. These two levels of encoding/decoding

correspond to the first two levels of the communication protocol: the conservative
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transformation 8 part of the physical level interface, while the error—

detecting/correcting codes are part of the link level protocol.

In most existing designs the receiver’s clock is explicitly recovered from the serial
codewords with a phase-locked loop, This clock is then used for decoding and serial-to-
parallel conversion. Hence, the major requivements of the encoding/decoding scheme are
to ensure a sufficient number of transitions. Common examples for this kind of code are
Manchester, biphase, 4B/5B, and others {see [WiFr83], [Sore84], [Seve80|, {Mang83],
[Lacr84] and [Joly84]). None of the existing coding schemes have a fixed ratie of total
number of transitions to the total number of bits. Therefore, it is more difficult to
decode and to repartition the serial information into bytes and words without a phase—

locked loop.

Two additional constraints are imposed on the conservative encoding scheme: (i)
balancing each codeword, i.e., making the number of zeros and ones equal, and {ii) limit-
ing the maximum run—lengths at the high and low levels, i.e., the maximum level dura-

tion is limited. These two restrictions limit the DC shift of the receiver, and thereby

Transmatter Side Receiver Side
Error HError
Detecting & Consgervative Conservative Detecting &
Correcting Code / \ Code Correcting
Code Code

| Preserving Time Information _|

Preserving Data Integrity

Figure 3.1: The Encoding/Decoding Protocols Levels
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increase the decoding reliability and decrease the receiver complexity. It is shown that
both constraints can be imposed simultaneously without a significant degradation in

encoding efficiency.

The family of conservative codes is a feasible alternative to other known codes.
Applying the additional constraints of balaneing and Hinited run-length helps to simplify
and improve the encoder and decoder design. The balancing constraint reduces the
number of variables of the encoding/decoding Boolean functions from n to n /2. The
maximum run-length constraint can reduce the time delay needed for realizing the

decoding and encoding of Boolean funections.

3.2. Description of the Conservative Code

The family of conservative codes is defined on a block of n bits {let n be even)
Byy0pyeenenry , With exactly n /2 transitions in every codeword. If a; can be either -1 or
+1, then the encoding is defined by

fomeyp -l

27 88 q=t1
{ =]
and
Gy Gy =1, or a,=1 and g, ,=a5=—1
The a, . is the first bit {a,) of the next codeword. In the more general case, for b tran-
sitions per codeword, b<{n, and b is even,

[
E aial+1 = Fp - Zb —{"t

e}

and the known delimiter always oceurs at the end of the n*® bit-cell of each codeword.

If b is odd, then every other codeword is complemented bit-by-bit, and the above equa-



tion holds. The transitions are used ab the receiver side to count how many bits have
arrived and to clock them in parallel into an array of shift registers, with the codeword’s

delimiting transitions.

The conservative encoding scheme maps {-bit data words onte n-bit codewords.

For n even, ¥ maximizes the different possible codewords when § = 7 Given n and {,

the number of possible different conservative codewords is computed as follows: each
codeword ¢ can be mapped uniquely to ¢! such that if there is a transition at the end of
the bit cell, then this bit is mapped to one, and if there is po transition at the end of the
bit cell this bit is mapped to zero. So, the mapped codeword ¢ has exactly b1 ones
btft.

which are arbitrarily placed in ¢/, and the one is always after the n'® bit cell. Thus,

the number of different codewords is [?:}% ], and the values of [, n and b satisfy the fol-

lowing inequality:

9l & !'n —1!? -
(n—b )b —1}!

The efficieney of the encoding, u, is the ratio of { to n.

If n is exactly divisible by four, then the codeword’s bit counter need use only the
rising edges or the failing edges. In this case, the counter connts to —Z- in order to deter-
mine the delimiting transition of a codewerd. If n is not exactly divisible by four, the
delimiting transition must be determined with a counter that uses both edges, which is

more complex and can reduce the digital electronic bandwidth. In the following discus-

sion it I8 assumed that n =4k,
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3.2.1. The 1-2 PWM code

The 1-2 pulse-width-modulation (PWM) code is a special case of the conserva-
tive scheme, with exactly one transition for every bit. In this scheme, wero is encoded
as a level for one clock period, and one is encoded as a level for two clock periods, as
shown in Figure 3.2. The decoding circuitry is very simple, as shown in Pigure 3.3.
One shift register is used for recording the odd bits, and the other shift register for
recording the even bits. The outputs of the two registers are combined into one paral-
lel word. Since the transmission length depends on the actual data, and not only on
the number of bits in each packet, the baud rate is not constant. The efficiency of this
encoding averages 67%, and in worst case is only 509%. If the transmission is slotted

(TDMA), then one must assume the worst case efficiency of 50%.

3.2.2. The 8B/12B conservative code

Ancther example is encoding 8 bits of data inte a 12-bit codeword {8B/12B con-
servative scheme). Every codeword has (i} 6 transitions, (i} the 12* bit is always one,
and {iii} the first bit is always zero. Hence, every codeword has a falling edge as iis

delimiter. The number of bits is increased by 50%, and the encoding efficiency is 67%.

?81 701‘ '!17 71? ‘Ji}) 3‘1? 707

Figure 3.2: 1-2 PWM Encoding Scheme
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Figure 3.3: The 1-2 PWM Decoder

Eight bits of data need 258 different 12-bit codewords. The total number of different

‘ i
possible codewords is {%1J = é%{“ = 462, which is greater than 256.

Higher—order encoding is possible, e.g., 12-bit data into a 16-bit code {12B/16B
conservative scheme), or 16-bit data into a 20-bit code (16B/20B conservative

scheme), with respective efficiencies of 75% and 80%.

3.3, Analysis of the Conservative Code

For practical purpeses, two additional constraints are imposed on the encoding.
First, limited run-length, i.e., the maximum duration of the serial signal at a high or low
level, is limited to m bits. Second, the codeword is balanced, such that each codeword

has the game number of low and high bits.
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The main use of the conservative encoding scheme is in very high bandwidth fiber
optic nebtworks. Since fiber optic receivers are usually ac-coupled, using capacitors, an
excessive de level shift can cause errors in the interpretation of serial data. Alse, the
clock information emcoded into the serial data must be accurately interpreted. The
above constraints limit the de shift and, therefore, increase the decoding reliability and
decrease the optical receiver complexity, It will be shown that both constraints can be

simultaneously imposed without a significant efficiency degradation.

Balanced block encoding schemes have been proposed by [WiFr83], [Knat86] and
[Leis84]. Some other almost balanced codes are described by {Joly84], [Mang83],
[Lacr84]. But none of these attempts to conserve the number of transitions in each code-

word. Limited run-length coding is treated in {Fran70], [Fran82} and [HoOs75].

3.3.1. Analysis

The analysis proceeds in two steps: first, the total number of different conserva-
tive codewords of length n under the above constraints is computed, then the

efficiency is computed.

Figure 3.4 shows the model for computing the number of different codewords, as
a square wave with 2k—transitions (b==2k), L.e., & bits of high level and k& bits of low
level. All the high and low levels can be extended by a total of 2k bit periods. If e, is
the amount each high or low level is extend;ad, then

61 "{" 62 ‘%" rory *‘}*ﬁzk = ﬁk’,
withe, ¢ 0, 1,2, -+, 2k.
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2k 5 2k

A Conservative Codeword of n bits

Figure 3.4: The Analysis Model

Thus, with no additional constraints, the total number of different conservative

codewords is equal to the number of different integer solutions of the above equation:

_ {4k ~1Y __jn-—-1 ) n—1jl
Cln) = [%wl]” a4 (k—1)2k!
2

3.3.2. Conservative/bslanced encoding

Under the balancing constraints, the high levels and the low levels are indepen-
dently extended by &k bit periods independently. Thus, the number of different low-
level duration arrangements is equal to the number of different integer soiutions of the
following equation:

61+e g+€3+-.n'+ek T-":k
withe; € 0,1,2, - -+ , k, which is:

OB(n) = (gfck:il]

Since the high and low levels can be arranged independently, the total number of PO~

sible arrangements of a conservative/balanced codeword of length n is
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CB(n) = (CB(n))= (261 - {(%"WTH

Figure 3.5 describes the enceding efficiency p(n) as a function of n, for the two

cases of conservative and conservative/balanced codes.

e )=100 llog‘f(“)}
[}ogEGB {n) J
sep(n )ﬂloo“mmgmm

It iz apparent that the efficiency of the conservative/balanced encoding is about 80%
for codewords larger than 32 bits. Since the high- and low-level encodings are
independent, it is possible to realize the encoder by using two look-up tables of n /2
address lines [2”"’/ ? entries); while the realization of a conservative encoding with a
look—up table requires n address lines {£" eniries). Therefore, if the maximum table
size which is reasonable to construct has 18 address lines, the efficiency of the
conservative/balanced code is 78%%, and is better than the 75% efficiency of the conser-

vative encoding,

3.3.3. Encoding with a limited run-length

This section analyzes the efficiency of the conservative code with limited run-
length of m at a high or a low level. The problem can be expressed as follows: given
the above square-wave form with 2k transitions, all the high and low levels are
extended by a total of 2% bit periods not exceeding m —1 at each continucus level, If
e; is the amount each high or low level is extended (¢, € {0, 1, 2, .. ,m~1}, m-1<2k),

then the number of different arrangements is equal to the number of different integer

solutions of the following equation:
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Figure 3,5: Conservative and Conservative/Balanced

4

81+€ 2+€3+mn+62k R 2]0

which is the coefficient of z°* in the polynomial expansion of the fellowing generating

function:

B )={1 -tz 4o S )

The coeflicient is expressed as the function CRfn,m}

entnm) =30 (] ()
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Figure 3.6: Encoding with a Limited Run-length m

Figure 3.6 shows the encoding efficiency pfn} as a function of n, for conservative

codes with a limited run-length of m.

per{n =100

llogg(}’R(n ,m )J

From Figure 3.6 it is apparent that the encoding effictency is little improved for a

run-length greater than 4.
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3.3.4. Balanced encoding with limited run-length

In this section both constraints are imposed on the conservative code. Formally,
the code has the following constraints: (i) n /2 transitions, (ii) n /2 ones, {iii} a falling

edge as its delimiter, and (iv) maximurm run-length at the high or low level of m.

This counting problem can be solved independently for the high and low levels.
The number of different arrangements for the high (or low} level is the coefficient of 2
in the polynomial expansion of the following generating function fm-1<k}):
h(z)={t+a +zitadt+a™ 1)
Raising this coefficient to the power 2 will produce the total number of possible
arrangements, which is expressed in the function CBR{n,m):
PSkm () (2Zk—1emi )|
. g e Y
CBR(n,m) = [ 2=y (5] (PR
Figure 3.7 describes the encoding efficiency ufn) as the function of n for

conservative/balanced codes with limited run-length of m.

llogchR {n,m) J

#epr(n)=100
- Again, the encoding efficiency is little improved for a run-length greater than 4, and

that applying both constraints changes the encoding efficiency very little,

3.3.5. Collision detection of the c@nservabive / balanced code

The star topology of the net guarantees that if a collision has eccurred, it can be
seen by all the pet’s nodes for any packet length. The following design enables the

nodes to detect and diagnose collistons, by encoding the data with the
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Figure 3.7: Conservative/Balanced with Run—length m

conservative/balanced code. Thus, each codeword has a fived number of transi-
tions, and an equal number of zeros and ones. After an optical collision the high-level
duration is longer and the low-level duration is shorter. Hence, the codeword is not
balanced anymore. A simple combinational network can detect the nonbalanced code-

word, as shown in Figure 3.8, and then indicate a collision or an error. The error-
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detection circuit counts the nuraber of ones in a codeword of n bits. If the number of

ones ig larger than _f_;;.., then it is probable that a collision has occurred. If the number
of ones is less than »g'-«, then the failure is probably due to other canses. If the number

of ones is exactly —27—, then it is a legal codeword, This simple error-detection mechan-

F

ism is very effective, and uses the inherent properties of the comservative/balanced

encoding scheme.

3.4. Generating the Look—up Table for the Code

In this section siraple methods for generating the look-up table for encoding and

decoding under the various constraints are presented.

3.4.1. Conservative code with no constraints

The transformations of the /-bit data word into an n-bit codeword and back can
be done by using one look-up table for the encoder and one for the decoder. These
tables are realized by two combinational or sequential networks, i.e., ROM or finite

state machine.

Let U be the data word, U =={uj, uy < , 1), and C be the codeword,

C ={eq, ep - * , ¢,). Let b be the number of transitions in every codeword.

First, all possible binary data words of length [ are listed in their binary order.
The size of this list is 2. As data words we select a subset of the above list, since not

all possible may be used, it is assumed that the size of data word subset is Ly 0y < 24,
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Figure 3.8: Collision and Error Detection for Conservative/Balanced Code

The list of all possible conservative codewords is generated in the following steps:
Step 1 ~ a line of length #n is divided into n segments. There are n —1 possible posi-

tions for b —1 transitions, i.e., a transition at the end of the first line segment, or 2™

segment, and so on. The last transition that can be selected is at the end of the n—1"

line segment. The 5** transition is the delimiter, and is always at the end of the n®*
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line segment. Thus, b —1 transitions are selected from n —1 positions in the codeword.
Let {1, 2, 3, ... , n—1} be the set of different transition positions in the codeword.

Then all possible subsets of length & —1 are listed in a lexicographical order. There

are [?g‘ :11 ] different subsets.

Step 2 ~ from the above list of subsets, the list of all different codewords is gen-
erated. Using the following procedure each subset {s;, 1 < j <b—1} is mapped
uniguely into a conservative codeword.

Note that if, the number of transitions (b) is even, then there are two equivalent cases:
{i) the first bit is always zero, and (i1} the first bit is always one. If b is odd then the
first bit alternates between zero and one. The following procedure generates code-
words such that the first bit is always zero. If the first bit would be one, then a corn-

plement list of conservative codewords would be abtained.

o o==
¢y =@
DOi=2ton
IFi—1 edsy, oy 5.9
THEN v =v-+1 mod 2
¢; =1
END

Note that if b is odd, then, while transmitting a sequence of codewords, all even code-
words should be inverted {or complemented) bit-by-bit. Thus, the delimiting transi-
tion would be preserved. At the receiving side, after the serial-to-parallel conversion,

these codewords should be inverted back to the original codeword.
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In general, a subset of codewords is selected from this list, with a size of

Lboony < {’;:}1] Clearly, for one-to-one transformations {rom the subset of data
words to the subset of codewords, Ly oy < Leony = p-
The encoding table is a one-to-one mapping from the data subset to the codeword

subset; the decoding table is the reverse. Al the unused codewords in the codeword

list may be used for an ercor signal or for control,

Note that the one-to-one mapping is arbitrary, and there are p! different possi-

ble mappings.,
In the following example I=4, n=7, and b =4, and a possible one-to-one mapping
is

Data Word Clodeword

0000 TN BN
0001 0106111
0010 0100011
Q011 0100001
6100 01103111
G101 0110011
0L 0110001
Giii 0111011
1000 2111001
1001 0111101
1010 D010111
1011 o010011
1100 0010001
1101 0011011
1116 0011001
1111 p0i1101
Unused 0001011
Unused 0001001
Unused 001101
Unused 0000101

The unused codewords may be used for error detection or communication control.
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3.4.2. Conservative balanced code

Generating the mapping table for the conservative balanced code is done as
described before, with an additional step that eliminates the nonbalanced codewords

from the codeword list, as described in the following procedure:

r=0, 5 =0
DO i=lton
IF ¢; =1,
THEN r =r 41
ELSE & =s+1
END

I¥' r —s 5 {one of predetermined set of values},

THEN take this codeword off the codeword lisi

Note that the above set of values may be zero for codewords of even length, or {1, ~1)

for codewords of odd length.

In the above example with I=4, n =7, b=d4, and the possible differences between
the high and low level is +1 or -1, the mapping is as follows:

Data Word Codeword

G001 0100111
0610 0100011
0101 0110013
0110 0110001
1600 0111001
1010 0010111
1011 010011
1101 0011011
1110 0011001

1131 0011101
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000G 0001011
0011 0001101

Note that the following data words are not mapped to any codeword, and therefore

cannot be used: 0100, 0111, 1001, 1100,

3.4.3. Limited run-length

Generating the mapping table for the conservative code with Hmited run-length
of m, is done as described before, with an additional step which eliminates the code-
words with run-length greater than m from the codeword list, as deseribed in the fol-

lowing procedure:

DO i=1ton—1

IF ¢; = ey,
THEN r =¢+1
ELSE r =1
Fr>m,

THEN v =1
END
IF v =1,

THEN take this codeword off the codeword list

In the above example with I=4, n=7, b=4, and m = 3, the mapping is as fol-

lows:
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Data Word  Codeword

oGa1 0100111
0010 0100011
0011 100001
0100 0110311
0101 01100311
0110 0110001
0111 0111013
1006 0111001
1610 4010111
1011 0010011
1100 0010001
1101 0011011
1110 08110061
1111 0011101
Qo000 0001011
1001 0001001
Unused 0001101
Unused 0000101

3.4.4. Limited run-length with balancing

Generating the mapping table for the balanced conservative code with limited
run-length of m is done as described before, with an additional step which eliminates
the codewords with run-length greater than m, and unbalanced codewords from the

conservative codewords list, as described in the following procedure:

r=t}, a==0
DO1=1ton
IF ¢; =1,
THEN v = »+1
ELSE 5 = s+1
END

IF r—s 3 {one of predetermine set of values},

THIEEN take this codeword off the codeword list
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roe=1
v o=
DO ¢=1 to n—1
e = e,
THEN 7 ==r -1
ELSE r =1
Fr>m,
THEN v =1
END
IFv =1,

THEN take this codeword off the codeword list

In the above example with {=4, n=7, b=4, and m = 3, the mapping is as fol-
lows:

Data Word Codeword

0001 0100131
0010 0100011
0101 0110013
0110 0110003
1000 0111001
1010 2016111
1011 00310011
1101 0011011
1110 0011001
1111 0013101
0000 0001011
0011 001101

Note that the following data words are not mapped to any codeword, and therefore

cannot he used: 0100, 0111, 1001, 1100,



