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Abstract

Recent work has shown that Tree Ker-
nels (TKs) and Convolutional Neural Net-
works (CNNs) obtain the state of the art in
answer sentence reranking. Additionally,
their combination used in Support Vec-
tor Machines (SVMs) is promising as it
can exploit both the syntactic patterns cap-
tured by TKs and the embeddings learned
by CNNs. However, the embeddings are
constructed according to a classification
function, which is not directly exploitable
in the preference ranking algorithm of
SVMs. In this work, we propose a new hy-
brid approach combining preference rank-
ing applied to TKs and pointwise rank-
ing applied to CNNs. We show that our
approach produces better results on two
well-known and rather different datasets:
WikiQA for answer sentence selection and
SemEval cQA for comment selection in
Community Question Answering.

1 Introduction

Recent work on learning to rank (L2R) has shown
that deep learning and kernel methods are two
very effective approaches, given their ability of
engineering features. In particular, in question
answering (QA), Convolutional Neural Networks
(CNN), e.g., (Severyn and Moschitti, 2015; Miao
et al., 2016; Yin et al., 2016) can automatically
learn the representation of question and answer
passage (Q/AP) in terms of word embeddings and
their non-linear transformations. These are then
used by the other layers of the network to mea-
sure Q/AP relatedness. In contrast, Convolution
Tree Kernels (CTK) can be applied to relational
structures built on top of syntactic/semantic struc-
tures derived from Q/AP text (Tymoshenko et al.,

2016a). CNNs as well as CTKs can achieve
the state of the art in ranking APs or also ques-
tions. Considering their complementary approach
for generating features, studying ways to com-
bine them is very promising. In (Tymoshenko
et al., 2016a), we investigated the idea of extract-
ing layers from CNNs and using them in a ker-
nel function to be further combined with CTKs in
a composite reranking kernel. This was used in
an SVMRank (Joachims, 2002) model, which ob-
tained a significant improvement over the individ-
ual methods. However, the simple use of CNN
layers as vectors in a preference ranking approach
is intutively not optimal since such layers are basi-
cally learnt in a classification model, thus they are
not optimized for SVMRank.

In this work, we further compare and investi-
gate different ways of combining CTKs and CNNs
in reranking settings. In particular, we follow the
intuition that as CNNs learn the embeddings in a
classification setting they should be used in the
same way for building the reranking kernel, i.e.,
we need to use the embeddings in a pointwise
reranking fashion. Therefore, we propose a hy-
brid preference-pointwise kernel, which consists
in (i) a standard reranking kernel based on CTKs
applied to the Q/AP structural representations; and
(ii) a classification kernel based on the embed-
dings learned by neural networks. The intuition
about the hybrid models is to add CNN layer vec-
tors, not their difference, to the preference CTK.
That is, CNN layers are still used as they were
used in a classification setting whereas CTKs fol-
low the standard SVMRank approach.

We tested our proposed models on the answer
sentence selection benchmark, WikiQA (Yang
et al., 2015), and the benchmark from cQA
SemEval-2016 Task 3.A1 corpus. We show that
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Figure 1: Shallow chunk-based tree representation of a question in the Q/AP pair: Q: “Who wrote white
Christmas?”, AP: “White Christmas is an Irving Berlin song”.

the proposed hybrid kernel consistently outper-
forms standard reranking models in all settings.

2 Answer Sentence/Comment Selection

We focus on two question answering subtasks: an-
swer sentence selection task (AST) and the com-
ment selection task from cQA.

AST consists in selecting correct answer sen-
tences (i.e., an AP composed of only one sentence)
for a question Q from a set of candidate sentences,
S = {s1, ..., sN}. In factoid question answering,
Q typically asks for an entity or a fact, e.g., time
location and date. S is typically a result of so-
called primary search, a result of fast-recall/low-
precision search for potential answer candidates.
For example, it could be a set of candidate APs re-
turned when running a search engine over a large
corpus using Q as a search query. Many such APs
are typically not pertinent to the original question,
thus automatic approaches for selecting those use-
ful are very valuable.

cQA proposes a task similar to AST, where Q
is a question asked by a user in a web forum and
S are the potential answers to the question posted
as comments by other users. Again, many com-
ments in a cQA thread do not contain an answer
to the original question, thus raising the need for
automatic comment selection.

The crucial features for both tasks capture infor-
mation about the relations between Q and an AP.
Manual feature engineering can provide competi-
tive results (Nicosia et al., 2015), however, it re-
quires significant human expertise in the specific
domain and is time-consuming. Thus, machine
learning methods for automatic feature engineer-
ing are extremely valuable.

3 CTK and CNN models

Our baselines are the standalone CTK and CNN
models originally proposed in (Severyn et al.,

task3/

2013; Severyn and Moschitti, 2015) and further
advanced in (Tymoshenko et al., 2016a,b). The
following subsections provide a brief overview of
these models.

3.1 CTK structures

The CTK models are applied to syntactic struc-
tural representations of Q and AP. We used shal-
low chunk-based and constituency tree represen-
tations in AST (Tymoshenko et al., 2016a) and
cQA (Tymoshenko et al., 2016b), respectively. We
follow the tree construction algorithms provided in
the work above. Due to the space restrictions, we
present only high-level details below.

A shallow chunk-based representations of a text
contains lemma nodes at leaf level and their part-
of-speech (POS) tag nodes at the preterminal level.
The latter are further grouped under the chunk and
sentence nodes.

A constituency tree representation is an ordi-
nary constituency parse tree. In all representa-
tions, we mark lemmas that occur in both Q and
AP by prepending the REL tag to the labels of
the corresponding preterminal nodes and their par-
ents.

Moreover, in the AST setting, often question
and focus classification information is used (Li
and Roth, 2002), thus we enrich our representa-
tion with the question class and focus information,
when is available.

Additionally, we mark AP chunks containing
named entities that match the expected answer
type of the question by prepending REL-FOCUS-
<QC> to them. Here, the< QC > placeholder is
substituted with the actual question class. Fig. 1 il-
lustrates a shallow chunk-based syntactic structure
enriched with relational tags.

3.2 Convolutional Neural Networks

A number of NN-based models have been pro-
posed in the research line of answer selection (Hu
et al., 2014; Yu et al., 2014). Here, we employ
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Figure 2: CNN architecture to compute the simi-
larity between question and answer.

the NN model described in (Tymoshenko et al.,
2016a) and depicted in Fig. 2. It includes two main
components (i) two sentence encoders that map
input documents i into fixed size m-dimensional
vectors xsi , and (ii) a feed forward NN that com-
putes the similarity between the two sentences in
the input.

We use a sentence model built with a convolu-
tion operation followed by a k-max pooling layer
with k = 1. The sentence vectors, xsi , are con-
catenated together and given in input to standard
NN layers, which are constituted by a non-linear
hidden layer and a sigmoid output layer. The sen-
tence encoder, xsi = f(si) outputs a fixed-size
vector representation of the input sentence si (we
will refer to f(si) as question embedding, QE, and
answer embedding, AE, respectively).

Additionally, we encode the relational informa-
tion between Q and AP, by injecting relation fea-
tures into the network. In particular, we associate
each word w of the input sentences with a word
overlap binary feature indicating if w is shared by
both Q and AP.

4 Hybrid learning to rank model

We represent a Q/AP pair as p = (q, a, ~x), where
q and a are the structural representations of Q and
AP (as described in Sec. 3), and ~x is a feature vec-
tor that incorporates the features characterizing the
Q/AP pair (e.g., similarity features between Q and
AP or their embeddings learned by an NN).

Reranking kernel. This kernel captures differ-
ences between two Q/AP pairs, p1 and p2, and pre-
dicts which pair should be ranked higher, i.e., in
which pair, AP has higher probability to provide

a correct answer to Q. In the reranking setting, a
training/classification instance is a pair of Q/AP
pairs, 〈p1 = (q, a1, ~x1), p2 = (q, a2, ~x2)〉. The
instance is positive if p1 is ranked higher than p2,
and negative otherwise. One approach for pro-
ducing training data is to form pairs both using
〈p1, p2〉 and 〈p2, p1〉, thus generating both positive
and negative examples.

However, since these are clearly redundant as
formed by the same members, it is more efficient
training with a reduced set of examples such that
members are not swapped. Algorithm 1 describes
how we generate a more compact set of positive
(E+) and negative (E−) training examples for a
specific Q.

Given a pair of examples, 〈p1, p2〉 and 〈p′1, p′2〉,
we used the following preference kernel (Shen and
Joshi, 2003):

RK(〈p1, p2〉, 〈p′1, p′2〉) = K(p1, p
′
1)+

+K(p2, p
′
2)−K(p1, p

′
2)−K(p2, p

′
1),

(1)

which is equivalent to the dot product between
vector subtractions, i.e.,

(
φ(p1)−φ(p2)

)
·
(
φ(p′1)−

φ(p′2)
)
, used in preference reranking, where φ is

a feature map. Additionally, we indicate (i) with
RTK the preference kernel using TKs applied to
q and a trees, i.e., TK(pi, pj) = TK(qi, qj) +
TK(ai, aj); and (ii) with RV , the preference ker-
nel applied to vectors, i.e., V (pi, pj) = V (~xi, ~xj).
Our final reranking kernel is:

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

+RV (〈p1, p2〉, 〈p′1, p′2〉) (2)

Now, if we substitute the explicit form for RV , we
have:

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

+V (p1, p
′
1) + V (p2, p

′
2)− V (p1, p

′
2)− V (p2, p

′
1)

Since our vectors are internal network layers in
order to not lose important information with differ-
ences (operated by RV ), we only keep V (p1, p

′
1)

(or equivalently V (p2, p
′
2)), i.e.,

RK(〈p1, p2〉, 〈p′1, p′2〉) = RTK(〈p1, p2〉, 〈p′1, p′2〉)+

V (p1, p
′
1) (3)

Note that our approach also works when using
Alg. 1.



Algorithm 1 Generating training data for reranking
Require: Sq+, Sq− - (q, a, ~x)-triplets for correct and wrong

answer sentences per question Q
1: E+← ∅, E−← ∅, flip← true
2: for all s+ ∈ Sq+ do
3: for all s− ∈ Sq− do
4: if flip == true then
5: E+ ← E+ ∪ (s+, s−)
6: flip← false
7: else
8: E− ← E− ∪ (s−, s+)
9: flip← true

10: return E+, E−

5 Experiments

In our experiments, we compare various methods
of combining CTKs and CNNs, using standard
and our hybrid reranking kernels. The software
for reproducing our experimental results is avail-
able at https://github.com/iKernels/
RelTextRank.

5.1 Experimental setup

WikiQA, sentence selection dataset: this was
created for open domain QA. Table 1 provides the
statistics regarding this dataset. Following Yang
et al. (2015), we discard questions that have either
only correct or only incorrect answers.

cQA, SemEval-2016 dataset: we used the En-
glish data from Task 3, Subtask A2. We can ex-
actly compare with the state of the art in SemEval.
It contains questions collected from the Qatar Liv-
ing forum3 and the first ten comments per question
manually annotated. The train, dev. and test sets
contain 1790, 244 and 327 questions, respectively.

Text Preprocessing: we used the Illinois chun-
ker (Punyakanok and Roth, 2001) and the Stanford
CoreNLP (Manning et al., 2014) toolkit, v3.6.0.
When experimenting with SemEval-2016, we per-
form preprocessing as in (Tymoshenko et al.,
2016a), e.g., we truncate all the comments to 2000
symbols and sentences to 70 words.

CTKs: we trained our models with SVM-Light-
TK4 using the partial tree kernel (PTK) and the
subset tree kernel (STK). We use PTK for WikiQA
and STK for SemEval as suggested in our previ-
ous work (Tymoshenko et al., 2016a) with default

2http://alt.qcri.org/semeval2016/
task3/index.php?id=description-of-tasks

3http://www.qatarliving.com/forum
4http://disi.unitn.it/moschitti/

Tree-Kernel.htm

Dataset Q AP Q with AP
WikiQA-train 2,118 20,360 873
WikiQA-test 633 6,165 243
WikiQA-dev 296 2,733 126

Table 1: WikiQA statistics.

parameters and the polynomial kernel (P) of de-
gree 3 on all feature vectors, which are embed-
dings learned as described in Section 3.2.

Neural Network (CNN) setup: we used the
same setup and parameters as (Tymoshenko et al.,
2016a): we pre-initialize the word embeddings
with skipgram embedding of dimensionality 50
trained on the English Wikipedia dump (Mikolov
et al., 2013). We used a single non-linear hidden
layer (with hyperbolic tangent activation, Tanh),
whose size is equal to the size of the previous
layer, i.e., the join layer. The network is trained us-
ing SGD with shuffled mini-batches using the Rm-
sprop update rule (Tieleman and Hinton, 2012).
The model is trained until the validation loss stops
improving. The size of the sentences embedding
(QE and AE) and of the join layer is set as 200.

QA metrics: we report our results in terms of
Mean Average Precision (MAP), Mean Recipro-
cal Rank (MRR) and P@1.

5.2 Ranking with trees and embeddings

We evaluate the combination techniques proposed
in Sec. 4 on the SemEval-2016 and WikiQA de-
velopment (DEV) and test (TEST) sets. Addition-
ally, to have more reliable results, it is standard
practice to apply n-fold cross-validation. How-
ever, we cannot do this on the training (TRAIN)
sets, since the embeddings learned in Sec. 3.2 are
trained on TRAIN by construction, and therefore
cross-validation on TRAIN would exhibit unreal-
istically high performance. Thus, we employed
the following disjoint Cross Validation approach:
we train 5 models as in traditional 5-fold cross-
validation on TRAIN. Then, we merged WikiQA
DEV and TEST sets, split the resulting set into
5 subsets, and use i-th subset to test the model
trained in i-th fold (i=1,..,5).

Table 2 reports the performance of the models.
Here, Rank corresponds to the traditional rerank-
ing model described by Eq. 2 in Sec. 4. Hybrid
refers to our new reranking/classification kernels
described by Eq. 3. V means that the model uses
a kernel applied to the embedding feature vectors
only. T specifies that the model employs struc-
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WikiQA SemEval-2016, Task 3.A
DEV TEST Cross Validation DEV TEST

MRR MAP P@1 MRR MAP P@1 MRR MAP P@1 MAP MRR MAP MRR
Rank:T 72.33 71.96 59.02 71.25 69.71 56.54 71.57±2.09 70.56±1.98 57.56±3.43 65.19 73.16 75.14 82.90
Class:V 70.88 70.55 58.20 66.98 65.18 53.59 68.54±1.78 67.45±1.64 55.95±1.54 65.63 72.69 75.16 82.37
Rank:V 69.39 68.73 54.92 67.56 66.42 54.43 66.64±3.21 65.66±2.19 51.83±2.66 65.29 72.65 74.49 81.77
Rank:T+V 71.54 71.05 59.02 71.56 69.99 57.38 70.23±2.63 69.33±2.15 56.79±3.19 66.22 73.74 74.79 81.69
Hybrid:T+V 75.05 74.02 63.93 74.08 72.19 61.60 74.36±2.67 72.69±1.73 62.16±3.31 68.08 75.09 77.10 83.45
CNN 72.04 71.73 59.84 70.34 68.73 56.12 — — — 66.48 73.46 76.17 81.32
Rank’:T+V 71.29 70.79 57.94 72.51 71.29 59.26 — — — — — — —
ABCNN — — — 71.27 69.14 — — — — — — — —
KeLP (#1) — — — — — — — — — — — 79.19 86.42
ConvKN (#2) — — — — — — — — — — — 77.66 84.93

Table 2: Experimental results on WikiQA and SemEval-2016 Task 3.A corpora

tural representations with a tree kernel. Finally,
V +T means that both embedding feature vectors
and trees are used.

The experiments show that: in general, a stan-
dalone model with CTKs applied to the syntac-
tic structures (Rank:T) outperforms the standalone
feature-based models using embeddings as feature
vectors (V).

Then, the straightforward combination of tree
and polynomial kernels applied to the syntactic
structural representations and embeddings (Rank:
T+V) does not improve over the Rank: T model.

At the same time, the Hybrid model consistently
outperforms all the other models in all possible ex-
perimental configurations, thus confirming our hy-
pothesis that the classification setting is more ap-
propriate when using embeddings as feature vec-
tors in the kernel-based ranking models.

Additionally, for reference, we report the per-
formance of the CNN we used to obtain the em-
beddings. It is consistently outperformed by the
Hybrid model on all the datasets.

Finally, in the last four lines of Tab. 2, we re-
port the performance of the state-of-the-art mod-
els from previous work, measured on exactly the
same experimental settings we used.

Here Rank’:T+V is our model described in
(Tymoshenko et al., 2016a), based on the tradi-
tional reranking model. Our updated version ob-
tains comparable performance on WikiQA-DEV
and slightly lower performance on WikiQA-TEST
(probably, just due to differences in preprocessing
after we updated our pre-processing pipelines).

ABCNN (Yin et al., 2016) is another state-of-
the-art system based on advanced attention-based
convolutional networks. All our models involving
CTKs outperform it.

KeLP (#1) (Filice et al., 2016) and ConvKN
(#2) (Barrón-Cedeño et al., 2016) are the two top-
performing SemEval 2016, Task 3.A competition
systems (Nakov et al., 2016). ConvKN (#2) is an

earlier version of our approach, which also em-
ploys CTKs and embeddings. Both KeLP and
ConvKN (i) employ cQA-domain-specific hand-
crafted features, which also consider the thread-
level information, while in this work, we do not
use manually engineered features; (ii) they employ
PTK, which is capable of learning more power-
ful features than SST, but it is more computation-
ally complex; (iii) KeLP system parameters were
optimized in cross-validation on the training set,
while, in this work, we perform no parameter op-
timization. Nevertheless, the performance of our
Hybrid:T+V models on SemEval TEST is compa-
rable to that of ConvKN (#2).

6 Conclusion

In this paper, we have studied and compared state-
of-the-art feature engineering approaches, namely
CTKs and CNNs, on two different QA tasks, AST
and cQA. We investigated the ways of combining
the two approaches into a single model and pro-
posed a hybrid reranking-classification kernel for
combining the structural representations and em-
beddings learned by CNNs.

We have shown that the combination of CTKs
and CNNs with a hybrid kernel in the reranking
setting outperforms the state of the art on AST and
is comparable to the state of the art in cQA. In par-
ticular, in cQA, a combination of CTKs and CNNs
performs comparably to the systems using domain
specific features that were manually engineered.
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