
Structural Semantic Models for Automatic
Analysis of Urban Areas

Gianni Barlacchi1,2, Alberto Rossi3, Bruno Lepri3, and Alessandro Moschitti2,4

1 SKIL - Telecom Italia, Trento, Italy
gianni.barlacchi@gmail.com

2 University of Trento, Trento, Italy
3 Bruno Kessler Foundation (FBK), Trento, Italy

alrossi@fbk.eu, lepri@fbk.eu
4 Qatar Computing Research Institute, HBKU, Doha, Qatar

amoschitti@gmail.com

Abstract. The growing availability of data from cities (e.g., traffic flow,
human mobility and geographical data) open new opportunities for pre-
dicting and thus optimizing human activities. For example, the auto-
matic analysis of land use enables the possibility of better administrat-
ing a city in terms of resources and provided services. However, such
analysis requires specific information, which is often not available for
privacy concerns. In this paper, we propose a novel machine learning
representation based on the available public information to classify the
most predominant land use of an urban area, which is a very common
task in urban computing. In particular, in addition to standard feature
vectors, we encode geo-social data from Location-Based Social Networks
(LBSNs) into a conceptual tree structure that we call Geo-Tree. Then,
we use such representation in kernel machines, which can thus perform
accurate classification exploiting hierarchical substructure of concepts as
features. Our extensive comparative study on the areas of New York
and its boroughs shows that Tree Kernels applied to Geo-Trees are very
effective improving the state of the art up to 18% in Macro-F1.

1 Introduction

The demographic trend clearly shows an increasing concentration of people in
huge cities. By 2030, 9% of the world population is expected to live in just
41 mega-cities, each one with more than 10M inhabitants. Thus, the growing
availability of data [2] makes it possible to discover new interesting aspects about
cities and its life at a fine unprecedented granularity.

A fundamental challenge that policy makers and urban planners are dealing
with is land use classification, which plays an important role for infrastructure
planning and development, real-estate evaluations, and authorizations of busi-
ness permits. More in detail, policy makers and urban planners need to associate
different urban areas with specific human activities (e.g., residential, industrial,
business, nightlife and others). However, traditional survey-based approaches to



2 Gianni Barlacchi, Alberto Rossi, Bruno Lepri, and Alessandro Moschitti

classify areas are time consuming and very costly to be applied to modern huge
cities. Therefore, automatic approaches using novel sources of data (e.g., data
from mobile phones, LBSNs, etc.) have been proposed. For example, [19] de-
signed supervised and unsupervised approaches to infer New York City (NYC)
land use from check-in. A check-in usually consists of latitude and longitude co-
ordinates associated with additional metadata such as the venue where the user
checked-in, comments and photos. Such data can be extracted from LBSNs like
Foursquare 5, a social network application that provides the number and type
of activities present in the target area (e.g., Arts & Entertainment, Nightlife
Spot, etc.). The approach basically used feature vectors, mainly consisting of the
number of check-in with the associated activity inferred from the Foursquare
category of the place (e.g., eating if the check-in is done in a restaurant). As
Gold Standard, the authors used data provided by the NYC Department of City
Planning in 2013 mapped on a grid of 200×200 meters.

In this paper, we represent geographical areas in two different ways: (i) as
a bag-of-concepts (BOC), e.g., Arts and Entertainment, College and University,
Event, Food extracted from the Foursquare description of the area; and (ii) as
the same concepts above organized in a tree, reflecting the hierarchical category
structure of Foursquare activities. We designed kernels combining BOC vectors
with Tree Kernels (TKs) [17, 6, 9, 10] applied to concept trees and used them in
Support Vector Machines (SVMs). This way, our model (i) can learn complex
structural and semantic patterns encoded in our hierarchical conceptualization of
an area and (ii) highly improves the accuracy of standard classification methods
based on BOC. Our GeoTK represents an interesting novelty as we show that
TKs not only can capture semantic information from natural language text,
e.g., as shown for semantic role labeling [12] and question answering [15, 3], but
they can also convey conceptual features from the hierarchy above to perform
semantic inference, such as deciding which is the major activity of a land. Our
approach is largely applicable as (i) it can use any hierarchical category structure
for POIs categories (e.g., OpenStreet Map POIs data); and (ii) many cities offer
open access to their land use data.

Finally, we carry out a study with different granularities of the areas to be
analyzed. This also enables to analyze the trade-off between the precision in
targeting the area of interest and the accuracy with which we carry out the
estimation. More in detail, we divide the NYC area in squares with edges of 50,
100, 200 and 250 meters and, for each cell, we classify its most predominant land
use class (e.g., Residential, Commercial, Manufacturing, etc.). Our extensive
experimentation, including a comparative study as well as the use of several
machine learning models, shows that GeoTKs are very effective and improve the
state of the art up to 18% in Macro-F1.

The reminder of this paper is organized as follows, Sec. 2 introduces the
related work, Sec. 3 describes the task and the related data, Sec. 4 presents
our hierarchical tree representation and our GeoTK. Then, Sec. 5 illustrates the
evaluation of our approach, and finally Sec. 6 derives some conclusions.

5 https://foursquare.com
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2 Related Work

Several works have targeted land use inference by means of different sources of
information. For example, [18] built a framework that, using human mobility
patterns derived from taxicab trajectories and Point Of Interests (POIs), classi-
fies the functionality of an area for the city of Beijing. The model is similar to the
one used for topic discovery in a textual document, where the functionality of
an area is the topic, the region is the document, and POIs and mobility patterns
are metadata and words, respectively. Specifically, [18] have used an advanced
model combining Latent Dirichlet Allocation (LDA) with Dirichlet Multinomial
Regression (DMR), in order to insert also information coming from the POIs
(metadata). Hence, for each region, after the parameter estimation with DMR,
they have a vector representing the intensity of each topic. This vector is then
used to aggregate formal regions having similar functions by k-means clustering.

Similarly, [1] proposed a spatio-temporal approach for the detection of func-
tional regions. They exploited three different clustering algorithms by using dif-
ferent set of features extracted from Foursquare’s POIs and check-in activities in
Manhattan (New York). This task permits to better understand how the func-
tionality of a city’s region changes over time. Other works have used geo-tagged
data from social networks: for example, [8] used tweets as input data to predict
the land use of a certain area of Manhattan. Moreover, they try to infer POIs
from tweets’ patterns clustering the surface with Self-Organizing-Map, then char-
acterizing each region with a specific tweet pattern and finally using k-means to
infer land use. Again, [19] have used check-in data to compare unsupervised and
supervised approaches to land use inference.

Finally, some works have also used Call Detail Records (CDRs) [8, 16, 13, 7],
which are typically used by mobile phone operators for billing purposes. This
data registers the time and type of the communication (e.g., incoming calls, In-
ternet, outgoing SMS), and the radio base station handling the communication.
For example, [16] have used CDRs jointly with a Random Forest classifier to
build a time-varying land use classification for the city of Boston. The intuition
behind this work is to mine a time-variant relation between movement patterns
and land use. In particular, they perform a Random Forest prediction and then
they compare it with the predictions obtained for the neighboring regions, apply-
ing a sort of consensus validation (e.g., they modify the prediction if a certain
number of neighbors belong to a different uniform function). This way, they
model different land uses for different temporal slots of the day.

Compared to the state of the art, the main novelties introduced by our
work are the following: (i) we model the hierarchical semantic information of
Foursquare using GeoTK, thus adding powerful structural features in our clas-
sification models; and (ii) we study how the size of the grid impacts on the
accuracy of different models, thus investigating the trade-off between granular-
ity of the analysis and accuracy. It should be also noted that, in contrast to
previous work, GeoTK does not rely on external resources (e.g., mobile phone
data) or heavy features engineering in addition to the structural kernel model.
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3 Datasets

We use the shape file of New York provided by the NYC government 6. This
file is publicly available and contains the entire shape of New York divided in
the 5 boroughs: Manhattan, Brooklyn, Staten Island, Bronx, and Queens. Then,
we build a grid over the entire city in order to enable our classification task.
The goal is to infer the land use of a region given a target label and a feature
representation of the region. In the next subsections, we describe (i) the land use
data and labels utilized by our approach, and (ii) the Foursquare’s POIs used
to obtain a feature representation of the land of a region.

3.1 Land Use

In our study, we use MapPluto, a freely available dataset provided by the NYC
government, which contains precise geo-referenced information for each city’s
borough. For example, it provides the precise category and shape for each build-
ing in the city. More in detail, it contains the following land use categories:
(i) One and Two Family Buildings, (ii) Multi-Family Walk-Up Buildings, (iii)
Multi-Family Elevator Buildings, (iv) Mixed Residential and Commercial Build-
ings, (v) Commercial and Office Buildings, (vi) Industrial and Manufacturing
Buildings, (vii) Transportation and Utility, (viii) Public Facilities and Institu-
tions, (ix) Open Space and Outdoor Recreation, (x) Parking Facilities, and (xi)
Vacant Land. Land use information is very fine-grained, and in most cases there
is only one land use assigned to one building, thus making it very difficult to de-
termine the land use with just POI information. A reasonable trade-off between
classification accuracy and the desired area granularity consists in segmenting
the regions in squared cells: each cell will refer to more than one land use but
we consider the predominant class as its primary use.

3.2 Foursquare’s Point of Interests

We extracted 206,602 POIs from the entire NYC. As for the land use data, we
have several sources of information, but we focused on the ten macro-categories
of the POIs, each one specialized in maximum four levels of detail. These levels
follow a hierarchical structure7, where each level of a category has a finite num-
ber of subcategories as node children. For instance, the first level of POIs main
categories is constituted by: (i) Arts and Entertainment, (ii) College and Uni-
versity, (iii) Event, (iv) Food, (v) Nightlife Spot, (vi) Outdoors and Recreation,
(vii) Professional and Other Places, (viii) Residence, (ix) Shop and Service, and
(x) Travel and Transport. The second level includes 437 categories whereas the
third level contains a smaller number of categories, 345.

6 http://www1.nyc.gov/site/planning/data-maps/open-data/districts-download-
metadata.page

7 https://developer.foursquare.com/categorytree
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Fig. 1. Example of land use distribution in New York City.

4 Semantic Structural Models for Land Use Analysis

Previous works [14, 13, 4] have mainly used features extracted from LBSNs (e.g.,
Foursquare’s POIs) in the XGboost algorithm [5]. However, these feature vectors
have several limitations such as (i) the small amount of information available for
the target area and (ii) their inherent scalar nature, which does not capture the
existence and the type of relations between different POIs. Here, we propose a
much powerful approach based on TKs applied to a semantic structure based on
the hierarchical organization of the Foursquare categories.

4.1 Bag-Of-Concepts

The most straightforward way to represent an area by means of Foursquare
data is to use its POIs. Every venue is hierarchically categorized (e.g., Profes-
sional and Other Places→ Medical Center→ Doctor’s office) and the categories
are used to produce an aggregated representation of the area. We use this fea-
ture representation by aggregating all the venues together, namely we count the
macro-level category (e.g., Food) in all the POIs that we found in any cell grid.
This way, we generate the Bag-Of-Concepts (BOC) feature vectors, counting the
number of each activity under each macro-category.

4.2 Hierarchical Tree Representation of Foursquare POIs

Every LBSN (e.g., Foursquare) has its own hierarchy of categories, which is
used to characterize each location and activity (e.g., restaurants or shops) in
the database. Thus, each POI in Foursquare is associated with a hierarchical
path, which semantically describes the type of location/activity (e.g., for Chinese
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Fig. 2. Example of Geo-Tree built according to the hierarchical categorization of
Foursquare venues.

Restaurant, we have the path Food → Asian Restaurant → Chinese Restaurant).
The path is much more informative than just the target POI name, as it provides
feature combinations following the structure and the node proximity information,
e.g., Food & Asian Restaurant or Asian Restaurant & Chinese Restaurant are
valid features whereas Food & Chinese Restaurant is not.

In this work, we propose, a tree structure, Geo-Tree (GT), where its nodes
are Foursquare categories and the edges among them are the same provided in
the hierarchical category tree of Foursquare. Our structure is basically composed
of all paths associated with the POIs that we find in the target grid cell. Pre-
cisely, we connect all these paths in a new root node. This way, the first level of
root children corresponds to the most general category in the list (e.g., Arts &
Entertainment, Event, Food, etc.), the second level of our tree corresponds to the
second level of the hierarchical tree of Foursquare, and so on. The terminal nodes
are the finest-grained descriptions in terms of category about the area (e.g., Col-
lege Baseball Diamond or Southwestern French Restaurant). For example, Fig.
2 illustrates the semantic structure of a grid cell obtained by combining all the
categories’ chains of each venue. Given such representation, we can encode all
its substructures in kernel machines using TKs as described in the next section.

4.3 Geographical Tree Kernels (GeoTK)

Structural kernels are very effective means for automatic feature engineering [11].
In kernel machines both learning and classification algorithms only depend on
the evaluation of inner products between instances, which correspond to com-
pute similarity scores. In several cases, the similarity scores can be efficiently
and implicitly handled by kernel functions by exploiting the following dual for-
mulation of the classification function:

∑
i=1..l yiαiK(oi, o) + b, where oi are the

training objects, o is the classification example, K(oi, o) is a kernel function that
implicitly defines the mapping from the objects to feature vectors xi. In case of
tree kernels, K determines the shape of the substructures describing trees.

4.4 Tree Kernels

In the majority of machine learning approaches, data examples are transformed
in feature vectors, which in turn are used in dot products for carrying out both
learning and classification steps. Kernel Machines (KMs) allow for replacing the
dot product with kernel functions, which compute the dot product directly from
examples (i.e., they avoid the transformation of examples in vectors).
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Fig. 3. Some of the exponential fragment features from the tree of Figure 2

Given two input trees, TKs evaluate the number of substructures, also called
fragments, that they have in common. More formally, let F = {f1, f2, . . . ..fF}
be the space of all possible tree fragments and χi(n) an indicator function such
that it is equal to 1 if the target f1 is rooted in n, equal to 0 otherwise. TKs over
T1 and T2 are defined by TK(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2

∆(n1, n2), where NT1

e NT2
are the set of nodes of T1 and T2 and

∆(n1, n2) =

F∑
i=1

χi(n1)χi(n2) (1)

represents the number of common fragments rooted at nodes n1 and n2. The
number and the type of fragments generated depends on the type of the used
tree kernel functions, which, in turn, depends on ∆(n1, n2).

Syntactic Tree Kernels (STK) Its computation is carried out by using
∆STK(n1, n2) in Eq. 1 defined as follows (in a syntactic tree, each node can
be associated with a production rule):
(i) if the productions at n1 and n2 are different ∆STK(n1, n2) = 0;
(ii) if the productions at n1 and n2 are the same, and n1 and n2 have

only leaf children then ∆STK(n1, n2) = λ; and
(iii) if the productions at n1 and n2 are the same, and n1 and n2 are

not pre-terminals then ∆STK(n1, n2) = λ
∏l(n1)

j=1 (1 +∆STK(cjn1
, cjn2

)),

where l(n1) is the number of children of n1 and cjn is the j-th child of the node
n. Note that, since the productions are the same, l(n1) = l(n2) and the compu-
tational complexity of STK is O(|NT1 ||NT2 |) but the average running time tends
to be linear, i.e., O(|NT1 |+ |NT2 |), for natural language syntactic trees [10].

Finally, by adding the following step:
(0) if the nodes n1 and n2 are the same then ∆STK(n1, n2) = λ,
also the individual nodes will be counted by ∆STK . We call this kernel STKb.

The Partial Tree Kernel (PTK) [10] generalizes a large class of tree ker-
nels as it computes one of the most general tree substructure spaces. Given two
trees, PTK considers any connected subset of nodes as possible features of the
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Size Commercial Mixed Open Space Other Residential Transportation
Train 394 225 1220 1622 6248 538
Test 175 85 534 615 2330 214

Table 1. Distribution of land use classes in the training and test set for NYC.

substructure space. Its computation is carried out by Eq. 1 using the following
∆PTK function:

if the labels of n1 and n2 are different ∆PTK(n1, n2) = 0;

else∆PTK(n1, n2) = µ
(
λ2+

∑
I1,I2,l(I1)=l(I2)

λd(I1)+d(I2)

l(I1)∏
j=1

∆PTK(cn1(I1j), cn2(I2j))
)
,

where µ, λ ∈ [0, 1] are two decay factors, I1 and I2 are two sequences of indices,
which index subsequences of children u, I = (i1, ..., i|u|), in sequences of children
s, 1 ≤ i1 < ... < i|u| ≤ |s|, i.e., such that u = si1 ..si|u| , and d(I) = i|u| − i1 + 1 is
the distance between the first and last child.

When the PTK is applied to the semantic Geo-Tree of Fig. 2, it can generate
effective fragments, e.g., those in Fig. 3.

Combination of TKs and feature vectors Our TKs do not consider the
frequency8 of the POIs present in a given grid cell. Thus, it may be useful to en-
rich the feature space with further information that can be encoded in the model
using a feature vector. To this end, we need to use a kernel that combines tree
structures and feature vectors. More specifically, given two geographical areas,
xa and xb, we define a combination as: K(xa, xb) = TK(ta, tb) + KV (va,vb),
where TK is any structural kernel function applied to tree representations, ta

and tb of the geographical areas and KV is a kernel applied to the feature vec-
tors, va and vb, extracted from xa and xb using any data source available (e.g.,
text, social media, mobile phone and census data).

5 Experiments

We test the effectiveness of our approach on the land use classification task,
where the goal is to assign to each area the predominant land use class as per-
formed in previous work by [19, 16]. We first test several models on Manhattan
using several grid sizes, then we focus on evaluating the best models on all NYC
boroughs and finally, we use the best models on the entire NYC, also enabling
comparisons with previous work.

5.1 Experimental Setup

We performed our experiments on the data from NYC boroughs, evaluating
grids of various dimensions: 50 × 50, 100 × 100, 200 × 200 and 250 × 250 me-

8 It is possible to add the frequency in the kernel computation but for our study
we preferred to have a completely different representation from previous typical
frequency-based approaches.
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Fig. 4. Accuracy of common machine learning
models on different cell sizes in Manhattan.
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Fig. 5. Accuracy of GeoTKs according to dif-
ferent cell sizes of Manhattan.
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Fig. 6. Accuracy of kernel combinations using BOC vectors and GeoTKs according to
different cell sizes of Manhattan.

ters. We applied a pre-processing step in order to filter out cells for which it
is not possible to perform land use classification. In particular, from each grid,
we removed the cells (i) that cover areas without a specified land use (e.g., cell
in the sea) and (ii) for which we do not have POIs (e.g., cells from Central
Park). For each grid, we created training and test sets, randomly sampling 80%
vs. 20% of the cells, respectively. We labelled the dataset following the same cat-
egory aggregation strategy proposed by [19], who assigned the predominant land
use class to each grid cell. Note that given the categories described in Sec. 3.1,
we merged (i) One & Two Family Buildings, (ii) Multi-Family Walk-Up Build-
ings and (iii) Multi-Family Elevator Buildings into a single general Residential
category. Then, we also aggregated (i) Industrial & Manufacturing, (ii) Public
Facilities & Institutions, (iii) Parking Facilities and (iv) Vacant Land into a
new category called Other. Thus, the aggregated dataset contains six different
classes: (i) Residential, (ii) Commercial and Office Buildings, (iii) Mixed Resi-
dential and Commercial Buildings, (iv) Open Space and Outdoor Recreation, (v)
Transportation and Utility, (vi) Other. The names and distribution of examples
in training and test sets (for the grid of 200 × 200) are shown in Tab. 1. Com-
pared to the original categorization, this new taxonomy has a lower granularity,
thus facilitating the identification of the predominant class in each cell.
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Area Cell XGBoost SVM-poly PTK PTK+poly STK STK+poly STK b STK b+poly

Manhattan

50 45.0 39.9 47.6 48.0 45.0 47.6 47.4 48.6
100 54.0 54.4 53.9 55.5 48.1 55.0 53.1 55.5
200 63.0 64.4 61.3 66.1 50.4 65.4 62.1 65.9
250 57.0 63.2 54.6 61.8 39.6 63.9 56.1 63.2

Bronx

50 43.0 30.9 44.9 44.9 42.2 43.4 42.4 43.2
100 50.0 43.7 53.2 54.1 51.2 53.2 54.7 54.0
200 59.0 56.4 62.6 60.6 56.4 60.4 61.8 61.8
250 59.0 58.6 63.5 64.9 59.3 59.6 63.0 65.2

Brooklyn

50 49.0 44.2 51.3 51.6 48.7 51.3 51.4 52.2
100 61.0 61.0 63.1 63.5 62.4 62.9 63.1 63.2
200 71.0 71.5 72.9 73.6 70.1 73.2 73.3 73.8
250 70.0 68.9 71.3 72.6 67.9 70.3 70.6 71.4

Queens

50 48.0 32.4 51.5 51.5 50.2 51.0 50.5 50.3
100 58.0 57.2 61.4 61.3 59.8 60.6 61.6 61.7
200 67.0 66.5 70.5 71.3 69.3 69.9 70.4 71.0
250 68.0 68.3 72.9 73.1 70.1 72.2 72.4 73.6

StatenIsland

50 51.0 38.63 54.4 55.2 52.8 54.6 53.8 54.9
100 57.0 56.73 58.1 58.7 53.6 57.4 56.0 58.1
200 60.0 60.0 61.8 61.1 60.2 60.0 61.3 60.9
250 66.0 64.87 67.4 66.3 66.0 67.2 67.9 67.4

Table 2. Accuracy of the best models for each New York borough and cell size.

To train our models, we adopted SVM-Light-TK9, which allow us to use
structural kernels ([10]) in SVM-light10. We experimented with linear, poly-
nomial and radial basis function kernels applied to standard feature vectors.
We measured the performance of our classifier with Accuracy, Macro-Precision,
Macro-Recall and Macro-F1 (Macro indicates the average over all categories).

5.2 Results for Land Use Classification

We trained multi-class classifiers using common learning algorithm such as Lo-
gistic Regression (LogReg), XGboost [5], and SVM using linear, polynomial and
radial basis function kernel, named SVM-{Lin, Poly, Rbf}, respectively, and our
structural semantic models, indicated with STK, STKb and PTK. We also com-
bined kernels with a simple summation, e.g., PTK+Poly indicates an SVM using
such kernel combination.

We first tested our models individually just on Manhattan using different
grid sizes. Figures 4 and 5 show the accuracy of the multi-classifier for different
models according to different granularity of the sampling grid. We note that
SVM-Poly, XGboost and LogReg show comparable accuracy. PTK and STKb

perform a little bit less than the feature vector models. Interestingly, the kernel
combinations in Fig. 6 provide the best results. This is an important finding as
XGboost is acknowledged to be the state of the art for land use classification.
Additionally, when the size of the grid cell becomes larger, the accuracy of TKs
degrades faster than the one of kernels based on feature vectors, mainly because
the conceptual tree becomes too large. After the preliminary experiments above,
we selected the most accurate models on Manhattan and tested them on the
other boroughs of NYC. Tab. 2 shows that TKs are more accurate than vectors-
based models and the combinations further improve both models.

In the final experiments, we tested our best models on the entire NYC with
a grid of 200×200. We first tuned the following parameters on a validation set:

9 http://disi.unitn.it/moschitti/Tree-Kernel.htm
10 http://svmlight.joachims.org/
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Model Acc. F1 Prec. Rec.

baseline 58.9 12.4 0.98 16.6
XGBoost 63.2 36.1 57.9 31.9
SVM-poly 62.1 27.4 51.3 25.9
STK b+poly 67.4 42.6 63.9 37.4
PTK+poly 66.9 41.4 63.8 36.2
STK b 66.6 38.1 52.8 33.9
PTK 65.9 37.2 58.7 33.0
STK+poly 65.5 37.3 54.5 33.3
STK 62.7 25.9 41.5 24.7

Zhan et al. 65.6 - - -

Table 3. Classification results on New York City.

(i) the decay factors µ and λ for TK, (ii) C value for all the SVM approaches,
and the specific parameters, i.e., degree in poly and γ in RBF kernels, (iii) the
important and the parameters of XGBoost such as the maximum depth of the
tree and the minimum sum of weights of all observations in a child node.

Table 3 shows the results in terms of Accuracy, Macro F1, Macro-Precision
and Macro-Recall. The model baseline is obtained by always classifying an ex-
ample with the label Residential, which is the most frequent. We note that: (i)
all the feature vector and TK combinations show high accuracy, demonstrating
the superiority of GeoTK over all the other models. (ii) STKb+poly (polynomial
kernel of degree 2) achieved the highest accuracy, improving over XGBoost up
to 4.2 and 6.5 absolute percent points in accuracy and F1, respectively: these
correspond to an improvement up to 18% over the state of the art.

Finally, Zhan et al. [19] is the result obtained on the same dataset using check-
in data from Foursquare. Although an exact comparison cannot be carried out
for possible differences in the experiment setting (e.g., Foursquare data changing
over time), we note that our model is 1.8 absolute percentage points better.

6 Conclusions

In this paper, we have introduced a novel semantic representation of POIs to
better exploit geo-social data in order to deal with the primary land use classi-
fication of an urban area. This gives the urban planners and policy makers the
possibility to better administrate and renew a city in terms of infrastructures,
resources and services. Specifically, we encode data from LBSNs into a tree
structure, the Geo-Tree and we used such representations in kernel machines.
The latter can thus perform accurate classification exploiting hierarchical sub-
structure of concepts as features. Our extensive comparative study on the areas
of New York and its boroughs shows that TKs applied to Geo-Trees are very
effective, improving the state of the art up to 18% in Macro-F1.
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