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Abstract
English. We propose a hierarchical se-
mantic representation of urban areas ex-
tracted from a social network to classify
the most predominant land use, which is
a very common task in urban computing.
We encode geo-social data from Location-
Based Social Networks with standard fea-
ture vectors and a conceptual tree structure
that we call Geo-Tree. We use the latter
in kernel machines, which can thus per-
form accurate classification, exploiting hi-
erarchical substructure of concepts as fea-
tures. Our comparative study on three
datasets extracted from Milan, Rome and
Naples shows that Tree Kernels applied
to Geo-Trees are very effective improving
the state of the art.

Italiano. In questo lavoro, proponiamo un
nuovo modello semantico per la rappre-
sentazione di aree urbane utilizzando dati
da social media. In particolare, model-
liamo tale informazione con una struttura
ad albero che abbiamo chiamato Geo-
Tree. Questa viene utilizzata, in combi-
nazione con un vettore di feature clas-
sico, nelle kernel machine per fare clas-
sificazione della destinazione di uso delle
aree urbane. Abbiamo valutato il nostro
approccio su tre grandi metropoli italiane
quali Milano, Roma e Napoli. I risultati
mostrano come i Geo-Tree, applicati ai
Tree Kernel, riescono a raggiungere risul-
tati di molto superiori ad altri modelli at-
tualmente stato dell’arte.

1 Introduction
The growing availability of data from cities (Bar-
lacchi et al., 2015a) (e.g., traffic flow, human mo-
bility and geographical data) opens new opportu-
nities for predicting and thus optimizing human

activities. For example, the automatic analysis of
land use enables the possibility of better adminis-
trating a city in terms of resources and provided
services. However, such analysis requires specific
information, which is often not available for pri-
vacy concerns. In this paper we follow the ap-
proach proposed in (Barlacchi et al., 2017) and
we use public textual descriptions of urban ar-
eas to design a novel machine learning represen-
tation. We represent urban areas as: (i) a bag-
of-concepts (BOC), e.g., the terms Arts and En-
tertainment, College and University, Event, Food
extracted from the Foursquare description of the
area; and (ii) the same concepts above organized in
a tree, which reflects the hierarchical organization
of Foursquare activities. We combine BOC vec-
tors with Tree Kernels (TKs) (Collins and Duffy,
2002; Moschitti, 2006) applied to concept trees
(Geo-Tree) and use them in Support Vector Ma-
chines (SVMs). The Geo-Tree allows the model
to learn complex structural and semantic patterns
from the hierarchical conceptualization of an area.
We show that TKs not only can capture seman-
tic information from natural language text, e.g., as
shown for semantic role labeling (Moschitti et al.,
2008) and question answering (Severyn and Mos-
chitti, 2013; Barlacchi et al., 2015b), but they can
also learn from the hierarchy above to perform se-
mantic inference, such as deciding which the ma-
jor activity of a land is.

We carried out a study on land use prediction
of three Italian cities: Milan, Rome and Naples
as follows: (i) we divided each city in squares of
200x200 meters; (ii) then, we classify the most
predominant land use class (e.g., High Density Ur-
ban Fabric or Open Space and Outdoor), assigned
by the city administration. The results show that
GeoTKs achieve an impressive improvement over
state-of-the-art classification approaches based on
BOC., i.e., 21.2%, 13.6% and 54.3% of relative
improvement in Macro-F1 over Milan, Rome and



Naples datasets, respectively.

2 Related Work
Previous work has modeled land use classification
by means of different sources of information. For
example, Yuan et al. (2012) built a framework that,
using human mobility patterns derived from taxi-
cab trajectories and Point Of Interests (POIs), clas-
sifies the functionality of an area for the city of
Beijing. Assem et al. (2016) proposed a spatio-
temporal approach based on three different clus-
tering algorithms to model the change of function-
ality of a city’s region over time. They extracted
features from Foursquare’s POIs and check-in ac-
tivities of Manhattan. Yao et al. (2017) built se-
quences of POI concepts reflecting their spatial
distance. Then, they applied Word2Vec (Mikolov
et al., 2013) to these sequences to derive vectors
representing each area, which was used to train
a land use classifier. In general, most previous
work applies extensive feature engineering, which
is typically costly as it requires to fully understand
the target domain. Our approach alleviates this
problem with automatic feature engineering ap-
plied to an abstract land representation.

3 Land Description Data
Geospatial city areas are described with the pop-
ular shape file format, where each shape is a col-
lection of points geo-localized using their coordi-
nates. The latter are provided with the well-known
Coordinate Reference System (CRS) WGS84,
adopted for the common latitude/longitude geolo-
cation. We use (i) shape files provided by Urban
Atlas1, a website providing data for large urban ar-
eas (more than 100, 000 inhabitants) and (ii) POIs
from Foursquare2.

3.1 Land Use
Cities are divided in small areas associated with
a main land use. In total, there are 17 differ-
ent land use classes defined from the open dataset
Urban Atlas 3. We focused on those related to
city centers, discarding those less interesting from
a social viewpoint, i.e., associated with rural ar-
eas such as forests, agricultural, semi-natural and
wetland areas and mineral extraction and dump
sites. Thus, we selected the following categories:

1https://www.eea.europa.eu/data-and-maps/data/urban-
atlas

2https://foursquare.com/
3https://www.eea.europa.eu/data-and-maps/data/urban-

atlas#tab-additional-information

(i) High Density Urban Fabric, (ii) Medium Den-
sity Urban Fabric, (iii) Low Density Urban Fab-
ric, (iv) Industrial, commercial, public, military
and private units, (v) Open Space & Recreation,
(vi) Transportation. We collapsed Medium and
Low Density Urban Fabric into one single cate-
gory, ML-Density Urban Fabric as they only have
few samples. Land use distribution is very fine-
grained, making its classification based on POI in-
formation very difficult. A trade-off between clas-
sification accuracy and the desired area granular-
ity consists in segmenting the regions in squared
cells. As each cell can contain more than one land
use label, we consider the predominant label as its
primary use.

3.2 Point-Of-Interest
A POI is usually characterized by a location (i.e.,
latitude and longitude), textual information (e.g.,
a description of the activity in that place) and
a hierarchical categorization that provides differ-
ent levels of detail about the activity of the place
(e.g., Food, Asian Restaurant, Chinese Restau-
rant). We used POIs extracted from Foursquare, a
geolocation-based social network supported with
web search facilities for places and a recommen-
dation system. In particular, we extracted 46,731,
43,389 and 7,219 POIs from Milan, Rome and
Naples4, respectively. We focused on the ten
macro-categories of such POIs5, each one special-
ized in maximum four levels of detail.

4 Structural Models
In most machine learning algorithms data exam-
ples are transformed in feature vectors, which
in turn are used in dot products to carry out
both learning and classification. Kernel Machines
(KMs) allow for replacing the dot product with
kernel functions, which directly compute it on the
examples, i.e., they avoid the transformation of ex-
amples in vectors. The main advantage of KMs is
a much lower computational complexity as it does
not directly depend on the feature space size.

4.1 Point-of-interests Features
The most straightforward way to represent an area
by means of Foursquare data is the use its POIs.
Every venue is hierarchically categorized (e.g.,
Professional and Other Places → Medical Center
→ Doctor’s office) and the categories are used to
produce an aggregated representation of the area.

4For some reasons Foursquare is less popular in Naples
5https://developer.foursquare.com/categorytree



We define a feature vector for a grid cell by count-
ing the macro-level category (e.g., Food) in all the
POIs that we found in that cell.

4.2 Geographical Tree Kernel
Foursquare has its own hierarchy of categories,
which is used to characterize each location and ac-
tivity (e.g., restaurants or shops) in the database.
Thus, each Foursquare POI is associated with a hi-
erarchical path, which semantically describes the
type of location/activity (e.g., for Chinese Restau-
rant, we have the path Food → Asian Restau-
rant → Chinese Restaurant). The path is much
more informative than just the target POI name,
as it provides feature combinations following the
structure and the node proximity information, e.g.,
Food & Asian Restaurant or Asian Restaurant
& Chinese Restaurant are valid features whereas
Food & Chinese Restaurant is not.

Figure 1: Example of Geo-Tree built from a col-
lection POIs in a cell.

Geo-Tree: we propose a new tree structure, i.e.,
Geo-Tree, whose nodes and edges among them are
subsets of the Foursquare hierarchy (FH). A Geo-
Tree of a grid cell is constituted by a new root node
connecting the subtrees of FH rooted in concepts
present in the cell. In other words, we connect all

the paths of FH starting from grid concepts. Figure
1 shows an example of the FH paths of a cell and
the resulting Geo-Tree.

This way, the nodes of the first level, i.e.,
the root children, correspond to the most general
FH categories, e.g., Arts & Entertainment, Event,
Food, etc., the second level of our tree corre-
sponds to the second level of the hierarchical tree
of Foursquare, and so on. The terminal nodes are
the finest-grained descriptions in terms of category
about the area, e.g., College Baseball Diamond
or Southwestern French Restaurant. For exam-
ple, Fig. 2 illustrates the semantic structure of a
grid cell obtained by combining all the categories’
chains of each venue.

Figure 2: Example of Geo-Tree in Milan for an
area labeled as Open Space & Recreation.

GeoTK: given a Geo-Tree, we can encode all
its substructures in kernel machines using TKs.
In particular, we used the Syntactic Tree Kernels
(STKb) with Bag-Of-Words and the Partial Tree
Kernel (PTK) (Moschitti, 2006). Our TKs by con-
struction do not consider the frequency6 of the
POIs present in a given grid cell.
BOC kernel: to complement GeoTK, we repre-
sent a cell also creating a BOC representation,
namely we count the macro-level category (e.g.,
Food) in all the POIs that we found in any cell
grid. This way, we generate feature vectors by
counting the number of each activity under each
macro-category. In order to take the popularity of
the area into consideration, we included (i) the to-
tal sum of unique users that did at least one check-
in in the cell, and (ii) the total sum of check-in
done in the cell. Note that, given an area, the num-
ber of unique users provides an idea on how many
people visited it, while the number of check-in can
be used to represent its popularity.
Kernel combination: finally, given two geo-
graphical areas, xa and xb, we define a kernel
combining Geo-Tree and BOC as: K(xa, xb) =
TK(ta, tb) + KV (va,vb), where TK is any

6It is possible to add the frequency in the kernel computa-
tion but for our study we preferred to have a completely dif-
ferent representation from previous typical frequency-based
approaches.



structural kernel function applied to tree represen-
tations, ta and tb of the geographical areas and
KV is a kernel applied to the feature vectors, va

and vb, extracted from xa and xb using any data
source available (e.g., text, social media, mobile
phone and census data).

5 Experiments and Results
We performed our experiments on the data from
Milan, Rome and Naples. We used a grid of
200x200meters as it is indicated as the best size
from other similar previous work on land use
classification (Toole et al., 2012; Zhan et al.,
2014; Barlacchi et al., 2017). We applied a pre-
processing step in order to filter out cells for which
land use classification cannot be performed. In
particular, for Milan and Rome, we selected the
central point of the shape and we included those
cells that have their centroid in the radius of 15 and
8 kilometers, respectively. For Naples, we kept all
the cells due to the smaller size of the city. Then,
for all the three cities, we removed the cells that
(i) cover areas without a specified land use (e.g.,
the cells in the sea) and (ii) do not have POIs (e.g.,
the countryside cells). After this step, we obtained
a grid with 2,581, 5,657 and 1,314 cells for Milan,
Rome and Naples, respectively. We created, sep-
arately for each city, the training and test set ran-
domly sampling 80% vs. 20% of the cells. We la-
belled the dataset following the same category ag-
gregation strategy proposed by Zhan et al. (2014),
who assigned the predominant land use class to
each grid cell.

To train our models, we applied SVM-Light-
TK7, which enables the use of structural kernels
(Moschitti, 2006) in SVM-Light8. In particular,
due to the nature of the task, we used a Python
wrapper around SVM-Light-TK to perform mul-
ticlass classification9. We experimented with lin-
ear, polynomial and radial basis function kernels
applied to standard feature vectors. We measured
the performance of our classifier by averaging Pre-
cision, Recall and F1 over all land use categories.

5.1 Results for Land Use Classification
We trained multi-class classifiers using com-
mon learning algorithm such XGboost (Chen and
Guestrin, 2016), and SVM using linear, poly-
nomial and radial basis function kernels, named

7http://disi.unitn.it/moschitti/Tree-Kernel.htm
8http://svmlight.joachims.org/
9https://github.com/aseveryn/SVMTK-Multiclass-

Classifier

City Model Prec. Rec. F1

Milan

baseline 0.200 0.119 0.149
XGBoost 0.294 0.317 0.297
STK b+Rbf 0.368 0.364 0.360
PTK+Rbf 0.430 0.350 0.345
STK b 0.448 0.307 0.320
PTK 0.364 0.302 0.309

Rome

baseline 0.200 0.089 0.124
XGBoost 0.291 0.306 0.279
STK b+Lin 0.359 0.314 0.317
STK 0.338 0.300 0.302
PTK 0.340 0.300 0.299
PTK+Lin 0.359 0.297 0.291

Naples

baseline 0.200 0.100 0.133
XGBoost 0.236 0.272 0.219
STK b+Rbf 0.361 0.331 0.338
STK b+Lin 0.338 0.302 0.300
STK b 0.409 0.290 0.299
PTK 0.318 0.298 0.297

Table 1: Classification results on Rome, Milan and Naples.
Prec., Rec. and F1 are averaged over all categories.

SVM-{Lin, Poly, Rbf}, respectively, and our
structural semantic models, indicated with STKb

and PTK. We also combined kernels with a sim-
ple summation, e.g., PTK+Lin indicates an SVM
using such kernel combination.

Table 1 shows the average of F1, Precision and
Recall over the different categories. The model
baseline is obtained by always classifying an ex-
ample with the label High Density Urban Fabric,
which is the most frequent. Due to space con-
straint, we only reported six models, namely: the
baseline, XGBoost and the top four kernel models.

We note that: (i) GeoTK always outperforms
XGBoost and the baseline, demonstrating the su-
periority of our novel approach. This is an inter-
esting finding as XGboost is the current state of the
art for land use classification. (ii) STKb combined
with feature vector always produces the best re-
sults, improving the F1-score over XGBoost up to
6.3, 3.8 and 11.9 absolute points for Milan, Rome
and Naples, respectively. (iii) Kernel combina-
tions always provide the best results.

6 Conclusions
In this paper, we have introduced Geo-Trees, a
novel semantic representation based on a hierar-
chical classification of POIs, to better exploit geo-
social data to the classification of the primary land
use of an urban area. This is an important task
as it gives the urban planners and policy makers
the possibility to better administrate and renew a
city in terms of infrastructures, resources and ser-
vices. More in detail, we have built our classi-
fiers with combinations of a kernel over BOC and
TKs applied to Geo-Trees, thus exploiting hierar-



chical substructure of concepts as features. Our
comparative study on three large Italian cities, Mi-
lan, Rome and Naples shows that our models can
relatively improve the state of the art up to 11.9
absolute points in F1-score.
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